Структура астрономии как научной дисциплины
Возникновение современной космологии, ее ранние формы. Теоретическая астрономия и небесная механика. Происхождение и эволюция небесных тел. Галактическая космогония. Астрофизика — учение о строении небесных тел. Космогонические гипотезы 18—19 вв.
Рубрика | Астрономия и космонавтика |
Вид | реферат |
Язык | русский |
Дата добавления | 12.10.2010 |
Размер файла | 22,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Содержание
ВВЕДЕНИЕ
1. Астрометрия
2. Теоретическая астрономия
3. Небесная механика
4. Астрофизика
5. Звёздная астрономия
6. Космогония
7. Космология
СПИСОК ЛИТЕРАТУРЫ
ВВЕДЕНИЕ
Современная астрономия подразделяется на ряд отдельных разделов, которые тесно связаны между собой, и такое разделение астрономии в известном смысле условно. Главнейшими разделами астрономии являются:
- астрометрия.
- теоретическая астрономия.
- небесная механика.
Эти три раздела в основном решают первую задачу астрономии (исследование движения небесных тел), и их часто называют классической астрономией.
- астрофизика.
- звёздная астрономия.
В этих двух разделах в основном решаются вопросы второй задачи астрономии (строение небесных тел).
- космогония.
- космология.
На основании всех полученных знаний о небесных телах последние два раздела астрономии решают её третью задачу (происхождение и эволюция небесных тел).
1. Астрометрия
Астрометрия -- изучает видимые положения и движения светил. На этапе исторического развития науки роль астрометрии долгое время состояла также в высокоточном определении географических координат и времени с помощью изучения движения небесных светил (в данный момент для того и другого существуют новейшие способы). Современная астрометрия состоит из:
· фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звёздных положений и определение числовых значений астрономических параметров, -- величин, позволяющих учитывать закономерные изменения координат светил;
· радиоастрономии
· сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем;
Астромемтрия (от др.-греч. ?уфспн -- «звезда» и мефсЭщ -- «измеряю») раздел астрономии, главной задачей которого является изучение геометрических, кинематических и динамических свойств небесных тел.
Основную задачу астрометрии можно более развёрнуто сформулировать как: высокоточное определение местонахождения небесных тел и векторов их скоростей в данный момент времени. Полное описание этих двух величин дают шесть астрометрических параметров:
- небесные экваториальные координаты, или положения, -- прямое восхождение () и склонение ();
- собственные движения, то есть экваториальные скорости по прямому восхождению и склонению ();
- параллаксы;
- лучевые скорости.
Знания этих астрометрических параметров для астрономического объекта с высокой точностью позволяют получить о нём следующую информацию:
- абсолютная светимость объекта;
- масса и возраст объекта;
- классификация местонахождения объекта: в Солнечной системе, в Галактике, за её пределами, и т. п.;
- классификация семейства небесных тел, к которому принадлежит объект;
- отсутствие/наличие у объекта невидимых спутников;
Многие из этих сведений необходимы для того, чтобы делать выводы о физических свойствах и внутреннем строении наблюдаемого объекта, а также давать ответы и на более фундаментальные вопросы -- об объеме, массе и возрасте всей Вселенной. Т.о., астрометрия является одним из необходимых разделов астрономии, дающим экспериментальную информацию, необходимую для развития остальных разделов (астрофизики, космологии, космогонии, небесной механики, и т. п.).
2. Теоретическая астрономия
Теоретическая астрономия даёт методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).
Теоретическая астрономия ориентирована к развитию компьютера или аналитических моделей для того чтобы описать астрономические предметы и явления. 2 поля комплектуют, с теоретической астрономией изыскивая объяснить обсервационные результаты, и замечания будучи использованными для того чтобы подтвердить теоретические результаты.
Теоретические астрономы используют широкий выбор инструментов включают аналитические модели(например, polytropes приблизиться поведения звезда) и вычислительно численные имитации. Каждое имеет некоторые преимущества. Аналитические модели процесса вообще более лучшие для давать проницательность в сердце идет дальше. Численные модели могут показать существование явлений и влияний в противном случае не были бы увидены. Theorists в астрономии стремятся создать теоретические модели и рисунок вне обсервационные последствия тех моделей. Это помогает наблюдателям искать данные могут опровергнуть модель или помочь в выбирать между несколькими дублированием или противоречя моделей. Theorists также пытаются произвести или доработать модели для того чтобы учесть новые данные. В случае сбивчивости, вообще тенденция должна попытаться сделать минимальные изменения к модели для приспособления данных. In some cases, большое количество времени сбивчивых данных излишек может вести для того чтобы подытожить затерянность модели.
Темы изучили теоретическими астрономами включают: звездная динамика и развитие; образование галактики; широкомасштабная структура дело в Вселенный; начало космические лучи; вообще релятивность и физическая космология. Астрофизическая релятивность служит как инструмент калибровать свойства структур большого диапазона для гравитация играет значительно роль в физических расследованных явлениях и за основа для черная дыра (astro) физикаи изучение гравитационные волны. Некоторые широко признавали и изучали теории и модели в астрономии, теперь включенной в Модель lambda-CDMбудьте Большая челка, Космическое взвинчивание, темное дело, и основные теории физика.
3. Небесная механика
Небемсная мехамника (англ. celestial mechanics) -- раздел астрономии, применяющий законы механики для изучения движения небесных тел. Небесная механика занимается предвычислением положения Луны и планет, предсказанием места и времени затмений, в общем, определением реального движения космических тел.
Естественно, что небесная механика в первую очередь изучает поведение тел Солнечной системы -- обращение планет вокруг Солнца, спутников вокруг планет, движение комет и других малых небесных тел. Тогда как перемещение далеких звёзд удается заметить, в лучшем случае, за десятилетия и века, движение членов Солнечной системы происходит буквально на глазах -- за дни, часы и даже минуты. Поэтому его изучение стало началом современной небесной механики, рождённой трудами И. Кеплера (1571 -- 1630) и И. Ньютона (1643 -- 1727). Кеплер впервые установил законы планетного движения, а Ньютон вывел из законов Кеплера закон всемирного тяготения и использовал законы движения и тяготения для решения небесно-механических проблем, не охваченных законами Кеплера. После Ньютона прогресс в небесной механике в основном заключался в развитии математической техники для решения уравнений, выражающих законы Ньютона. Таким образом, принципы небесной механики -- это «классика» в том смысле, что и сегодня они такие же, как во времена Ньютона. Применение результатов небесной механики к движению искусственных спутников и космических кораблей составляет астродинамику.
4. Астрофимзика
Астрофимзика (от греч. буфспн -- «светило» и цэуйт -- «природа») -- наука на стыке астрономии и физики, изучающая физические процессы в астрономических объектах, таких, как звёзды, галактики и т. д. Физические свойства материи на самых больших масштабах и возникновение Вселенной изучает космология.
Астрофизика -- учение о строении небесных тел. Астрофизика есть таким образом часть астрономии, занимающаяся изучением физических свойств и химического состава Солнца, планет, комет или неподвижных звёзд и туманностей. Главные экспериментальные методы астрофизики: спектральный анализ, фотография и фотометрия вместе с обыкновенными астрономическими наблюдениями. Спектроскопический анализ составляет область, которую правильнее было бы назвать астрохимией, химией небесных тел, так как главные указания, даваемые спектроскопом, касаются химического состава изучаемых астрономических объектов. Фотометрические и фотографические исследования выделяются иногда в особые области астрофотографии и астрофотометрии. Астрофизику не следует смешивать с физической астрономией, каковым именем принято означать теорию движения небесных тел, то есть то, что также носит название небесной механики. К Астрофизике относят также исследование строения поверхности небесных тел, специально Солнца и планет, насколько это возможно из телескопических наблюдений над этими телами. А. есть ещё совершенно юная наука. Самое название её существует только с 1865 и предложено Цельнером. Астрофизические обсерватории существуют ещё только в очень немногих странах. Из них особенно знамениты Потсдамская обсерватория под управлением Фогеля и Медонская под управлением Жансена. В Пулкове также устроено астрофизическое отделение, во главе которого стоит Гассельберг. В настоящей статье мы изложим историю и главные результаты астроспектроскопии, или того отдела Астрофизики, который состоит из приложения спектрального анализа к изучению небесных тел.
5. Звёздная астрономия
Изучение звёзд и звёздной эволюции имеет фундаментальное значение для нашего понимания Вселенной. Астрофизика звезд развивалась на основе наблюдений и теоретического понимания, а сейчас и с помощью компьютерного моделирования.
Формирование звезд происходит в областях плотной пыли и газа, известных как гигантские молекулярные облака. Если происходит дестабилизация, то фрагменты облака могут сжаться под воздействием гравитации и сформировать протозвезду. Достаточно плотные и горячие области вызовут термоядерные реакции, таким образом начнется главная последовательность звезды.
Почти все элементы, более тяжелые чем водород и гелий, создаются внутри ядра звезды.
6. Космогония
Космогония (греч. kosmogonнa, от kуsmos -- мир, Вселенная и gone, goneia -- рождение), область науки, в которой изучается происхождение и развитие космических тел и их систем: звёзд и звёздных скоплений, галактик, туманностей, Солнечной системы и всех входящих в неё тел -- Солнца, планет (включая Землю), их спутников, астероидов (или малых планет), комет, метеоритов. Изучение космогонических процессов является одной из главных задач астрофизики. Поскольку все небесные тела возникают и развиваются, идеи об их эволюции тесно связаны с представлениями о природе этих тел вообще. В современной К. широко используются законы физики и химии.
Космогонические гипотезы 18--19 вв. относились главным образом к происхождению Солнечной системы. Лишь в 20 в. развитие наблюдательной и теоретической астрофизики и физики позволило начать серьёзное изучение происхождения и развития звёзд. В 60-х гг. 20 в. началось изучение происхождения и развития галактик, природа которых была выяснена только в 20-х гг.
Процессы формирования и развития большинства космических тел и их систем протекают чрезвычайно медленно и занимают миллионы и миллиарды лет. Однако наблюдаются и быстрые изменения, вплоть до процессов взрывного характера. При изучении К. звёзд и галактик можно использовать результаты наблюдений многих сходных объектов, возникших в разное время и находящихся на разных стадиях развития. Однако, изучая К. Солнечной системы, приходится опираться только на данные о её структуре и о строении и составе образующих её тел.
Галактическая космогония. Звёзды разных типов составляют в Галактике определенные подсистемы, которые образовались на различных стадиях формирования Галактики (см. Звёздные подсистемы). Сначала Галактика была протяжённым медленно вращающимся газовым облаком. Газ сжимался к центру; в процессе этого сжатия из него формировались звёздные скопления, большая часть которых позже рассеялась. Звезды, образовавшиеся в это время, движутся по очень вытянутым орбитам и заполняют слабо сплюснутый сфероид -- тот объём, в котором ранее был газ. Эти звёзды входят в звёздные подсистемы, относящиеся к сферической составляющей Галактики. В отличие от звёзд, которые движутся практически без трения, газ теряет кинетическую энергию хаотических движений и сжимается. Радиус сфероида уменьшается, он ускоряет своё вращение, пока центробежная сила не уравновесит тяготение на экваторе. После этого сжатие происходит главным образом к экваториальной плоскости. На этой стадии образовались подсистемы, относящиеся к промежуточной составляющей Галактики. После образования подсистем плоской составляющей газ уже не сжимался; он удерживался не столько движениями, сколько давлением магнитного поля. Звёзды, образовавшиеся из газа на этой стадии, входят в подсистемы плоской составляющей. Горячие звёзды и скопления, в состав которых они входят, -- молодые, они входят также в плоскую составляющую. В других составляющих Галактики массивных звёзд нет, их эволюция уже закончилась. Различаются и скопления в разных составляющих. В плоских они содержат по нескольку сотен или тысяч звёзд и называются рассеянными, в сферических -- десятки и сотни тысяч звёзд и называются по их виду шаровыми скоплениями. В плоских составляющих звёзды движутся в среднем по орбитам, близким к круговым, и колеблются относительно галактической плоскости. В промежуточных они движутся по более вытянутым орбитам, а в сферических составляющих плоскости вытянутых орбит ориентированы почти хаотически. Чем толще подсистема, тем больше дисперсия скоростей звёзд перпендикулярно плоскости.
Помимо возрастных и кинематических различий, подсистемы различаются и по химическому составу звёзд. В подсистемах промежуточных составляющих содержание тяжёлых элементов по отношению к водороду и гелию в несколько раз меньше, чем в плоских, а в сферических оно меньше в десятки и даже сотни раз, причём чем старше группа звёзд и чем больше её среднее расстояние от плоскости, тем меньше содержание тяжёлых элементов. Эта особенность объясняется тем, что тяжёлые элементы образуются внутри звёзд при ядерных реакциях и при взрывах сверхновых. Вместе с оболочками сверхновых и со звёздным ветром тяжёлые элементы попадают в межзвёздную среду, и следующее поколение звёзд образуется из газа, уже обогащенного этими элементами. Гелий тоже образуется при ядерных реакциях, но основная часть его образовалась, по-видимому, на дозвёздной стадии эволюции Вселенной. Различие химического состава влияет на спектр и на внутреннее строение звёзд. В частности, субкарлики -- это тоже звёзды главной последовательности, но в сферических и промежуточных подсистемах они не совпадают с главной последовательностью из-за отличия химического состава, искажающего их цвет.
Звёзды и межзвёздная среда представляют собой 2 фазы эволюции вещества галактик. Со временем межзвёздная среда истощится, в Галактике исчезнут молодые звёзды, большая часть массы будет сосредоточена в звёздах малой массы, которые эволюционируют медленно, а также в остатках звёзд: в белых карликах, нейтронных звёздах и более массивных остатках, находящихся в состоянии коллапса.
В изложенной концепции существенно, что как сами звёзды, так и галактики образовывались в результате конденсации первоначально диффузного газа. Эта концепция вытекает из огромного количества фактов, в частности из упомянутого различия подсистем. Действительно, более молодые звёзды включают в большом количестве те элементы, которые рассеиваются в межзвёздной среде при взрывах сверхновых. Форма подсистем разных возрастов показывает, что вещество, из которого образовались звёзды, уплощалось; но уплощаться может только диффузная среда, т. к. плотные тела движутся почти без трения. С помощью радиоастрономических наблюдений были обнаружены компактные области, окруженные плотным холодным газом. Это явление может быть интерпретировано как результат образования горячей звезды в центре холодного плотного сгустка.
В. А. Амбарцумян выдвинул другую космогоническую концепцию, основанную на том факте, что в объектах самых разных масштабов -- от звёзд-карликов до ядер галактик -- наблюдаются взрывы, проявления нестационарности, а также на предполагаемом распаде некоторых звёздных систем и скоплений галактик. Согласно этой концепции, в ядрах галактик содержится сверхплотное "дозвёздное" вещество, которое и служит материалом для образования галактик. Входящие в состав галактик звёздные ассоциации также образуются из "осколков" этого вещества; наблюдаемые на поверхности звёзд-карликов взрывы объясняются также распадом «дозвёздного» вещества. Скопления галактик также предполагаются относительно молодыми (в астрономическом смысле этого слова), образовавшимися из "дозвёздного" вещества. Свойства «дозвёздного» вещества ещё неизвестны. Однако в концепции В. А. Амбарцумяна предполагается, что для этого вещества фундаментальные законы современной физики могут оказаться несправедливыми.
7. Космоломгия
Космоломгия (космос + логос) -- раздел астрономии, изучающий свойства и эволюцию Вселенной в целом. Основу этой дисциплины составляет математика, физика и астрономия. В своих задачах она часто пересекается с философией и богословием.
Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира.
В китайской космологии считалось, что Земля -- своего рода чаша, прикрытая небом, состоящая из полусфер, вращающихся на очень низком расстоянии от Земли.
Возникновение современной космологии связано с развитием в XX веке Общей теории относительности Эйнштейна и физики элементарных частиц.
В 1922 А. А. Фридман предложил решение уравнения Эйнштейна, в котором изотропная вселенная расширялась из начальной сингулярности. Подтверждением теории нестационарной вселенной стало открытие в 1929 Э. Хабблом космологического красного смещения галактик. Таким образом, возникла общепринятая сейчас теория Большого Взрыва.
Список литературы
Астрономическая картина мира и ее творцы А. И. Еремеева .-- М.: Недра, 1984.--224 с.
Естественнонаучные представления Древней Руси: Счисление лет. Символика чисел. "Отреченные" книги. Астрология. Минералогия / Под ред. Р.А.Симонова.--М.: Наука, 1988.--318 с.
Звездное небо: Предания и новейшие знания о созвездиях, звездах и планетах Дж. Корнелиус.--М.: Б.и, 2000. -- 176 с.
История астрономии: Пер. с англ. / А. Панненкук .-- М.: Наука, 1966. -- 592 с.: ил.
Концепции современного естествознания / В. М. Найдыш. -- М.: Гардарики, 2000.-- 476 с.
Краткая история астрономии / А. Берри. -- 2-е изд.--М.: ОГИЗ, 1946.--363 с.
О системах галактики / М. Б. Сизов. -- М.: Прометей, 1992.--16 с.
Происхождение и эволюция Земли и других планет Солнечной системы / А. А. Маракушев. -- М.: Наука, 1992.--204 с.
Рождение звезд / В. Г. Сурдин. -- М.: Эдиториал УРСС, 1999.-- 232 с.
Точные науки в древности: Пер. с англ. / О. Нейгебауер.-- М.: Наука, 1968.--224 с.
Физическая модель Вселенной / Б. П. Иванов.-- СПб.: Политехника, 2000.--312 с.
Эволюция солнечной системы: Пер. с англ. / Х. Альвен, Г. Аррениус.--М.: Мир, 1979.--511 с.
Подобные документы
Горизонтальная система небесных координат. Экваториальная система небесных координат. Эклиптическая система небесных координат. Галактическая система небесных координат. Изменение координат при вращении небесной сферы. Использование различных систем коорд
реферат [46,9 K], добавлен 25.03.2005Астрономия как наука о Вселенной, изучающая расположение, движение, строение, происхождение и развитие небесных тел и образованных ими систем. Знакомство с интересными факторами из мира Астрономии. Общая характеристика планеты Венера, ее особенности.
презентация [2,4 M], добавлен 25.04.2014Космогония как наука, изучающая происхождение и развитие небесных тел. Сущность гипотезы Джинса. Туманность, рождение Солнца. Основные этапы процесса превращения частиц туманности в планеты: слипание частиц; разогревание; вулканическая деятельность.
реферат [12,5 K], добавлен 20.06.2011Древнее представление о Вселенной. Объекты астрономического исследования. Расчеты небесных явлений по теории Птолемея. Особенности влияния астрономии и астрологии. Гелиоцентрическая система мира с Солнцем в центре. Исследование Дж. Бруно в астрономии.
реферат [22,7 K], добавлен 25.01.2010Предмет астрономии. Источники знаний в астрономии. Телескопы. Созвездия. Звездные карты. Небесные координаты. Работа с картой. Определение координат небесных тел. Кульминация светил. Теорема о высоте полюса мира. Измерение времени.
учебное пособие [528,1 K], добавлен 10.04.2007Астрономия - наиболее древняя среди естественных наук, история ее развития. Изучение видимых движений Солнца и Луны в Древнем Китае за 2 тысячи лет до н.э. Система мира Птолемея. Возникновение науки астрофизики. Современные достижения астрономии.
презентация [9,1 M], добавлен 05.11.2013Космогония - научная дисциплина, изучающая происхождение и развитие небесных объектов: галактик, звезд и планет. Гипотезы Лапласа, Шмидта и Джинса о возникновении Солнечной системы. Иоганн Кеплер и его законы о движении планет. Закон всемирного тяготения.
творческая работа [236,0 K], добавлен 23.05.2009Новое естествознание. Жизнь и творчество Николая Коперника. Астрономические открытия в произведении Коперника "О вращениях небесных сфер". Учение Коперника стало к началу XVII столетия преобладающей концепцией о строении Вселенной.
реферат [16,6 K], добавлен 05.10.2006История звездной карты. Созвездия каталога Птолемея. Новая Уранометрия Аргеландера. Современные границы созвездий. Горизонтальная, экваториальная, эклиптическая и галактическая системы небесных координат. Изменения координат при вращении небесной сферы.
реферат [3,4 M], добавлен 01.10.2009Путешествие в космос на уроке астрономии. Природа Вселенной, эволюция и движение небесных тел. Открытие и исследование планет. Николай Коперник, Джордано Бруно, Галилео Галилей о строении Солнечной системы. Движение Солнца и планет по небесной сфере.
творческая работа [1,1 M], добавлен 26.05.2015