Строение Земли

Изучение процесса происхождения Земли, основных этапов научных исследований истории и геофизики ее развития. Анализ строения планеты и ее состава, физические свойства магнитосферы. Функции атмосферы и составляющих ее слоев. Характеристика биосферы.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 26.01.2010
Размер файла 414,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Ленинградский областной институт экономики и финансов.

Кафедра Высшей математики

Дисциплина Концепции современного естествознания

Строение Земли

Реферат выполнил студент

заочного факультета группы

Фамилия

Имя

Отчество

План

1. Происхождение Земли

2. Строение Земли

3. Атмосфера земли

4. Биосфера

Список используемой литературы

1. Происхождение Земли

Согласно современным космогоническим представлениям, Земля образовалась приблизительно 4,7 млрд. лет назад путём гравитационной конденсации из рассеянного в околосолнечном пространстве газопылевого вещества, содержащего все известные в природе химические элементы.

Земля занимает пятое место по размеру и массе среди больших планет, но из планет т. н. земной группы, в которую входят Меркурий, Венера, Земля и Марс, она является самой крупной. Важнейшим отличием Земли от других планет Солнечной системы является существование на ней жизни, достигшей с появлением человека своей высшей, разумной формы. Условия для развития жизни на ближайших к Земле телах Солнечной системы неблагоприятны; обитаемые тела за пределами последней пока также не обнаружены.

Формирование Земли сопровождалось дифференциацией вещества, которой способствовал постепенный разогрев земных недр, в основном за счёт теплоты, выделявшейся при распаде радиоактивных элементов (урана, тория, калия и др.). Результатом этой дифференциации явилось разделение Земли на концентрически расположенные слои -- геосферы, различающиеся химическим составом, агрегатным состоянием и физическими свойствами. В центре образовалось ядро Земли, окруженное мантией. Из наиболее лёгких и легкоплавких компонентов вещества, выделившихся из мантии в процессах выплавления, возникла расположенная над мантией земная кора.

Древнейшая Земля весьма мало напоминала планету, на которой мы сейчас живем. Её атмосфера состояла из водяных паров, углекислого газа и, по одним - из азота, по другим - из метана и аммиака. Кислорода в воздухе безжизненной планеты не было, в атмосфере древней Земли гремели грозы, её пронизывало жёсткое ультрафиолетовое излучение Солнца, на планете извергались вулканы. Исследования показывают, что полюса на Земле менялись, и когда-то Антарктида была вечнозеленой. Вечная мерзлота образовалась 100 тыс. лет назад после великого оледенения.

Р. Декарт и Г. Лейбниц впервые рассмотрели Землю как развивающееся космическое тело, которое первоначально было в расплавленном состоянии, а затем охлаждалось, покрываясь твердой корой. Расплавленная Земля была окутана парами, которые затем сгустились и создали Мировой океан, его воды частично ушли в подземные пустоты, создав сушу. Возникновение гор на Земле Р. Гук, Г.В. Рихман и другие связывали с землетрясениями, либо с вулканической деятельностью. М.В. Ломоносов также объяснял образование гор "подземным жаром". Открытия, исследования и идеи 17 - первой половины 19 вв. подготовили почву для возникновения комплекса наук о Земле. К важнейшим из них относится, в частности, открытие У. Гильберта, заключающееся в том, что Земля в первом приближении является элементарным магнитом. Ломоносов предположил, что значение силы тяжести на земной поверхности определяется внутренним строением планеты. Он же одним из первых предпринял попытку измерить вариации ускорения силы тяжести, а также совместно с Г.В. Рихманом исследовал атмосферное электричество. В этот же период была развита теория маятника, на основе которой стали производиться достаточно точные определения силы тяжести, разработаны метеорологические приборы для измерения скорости ветра, количества осадков, влажности воздуха. А.Гумбольдт установил, что напряженность земного магнетизма меняется с широтой, уменьшаясь от полюса к экватору, разработал представления о закономерном распределении растительности на поверхности Земли (широтная и высотная зональность). Он одним из первых наблюдал магнитную бурю и обобщил накопившиеся к первой четверти 19 в. данные о строении Земли. Для изучения прохождения в земле сейсмических волн Малле в 1851 осуществил первое искусственное землетрясение (взрывая порох и наблюдая распространение колебаний на поверхности ртути в сосуде). В 1897 Э. Вихерт, основываясь на результатах изучения состава метеоритов и распределении плотности в недрах планеты, выделил в Земле металлическое ядро Земли и каменную оболочку. В этот период установлена возможность определения относительного возраста пород по сохранившимся в них остаткам флоры и фауны, что позволило позднее построить геохронологическую шкалу, осуществить палеореконструкции положения материков и океанов в разные геологические эпохи, изучать историю геологического развития Земли. Второй период (середина - конец 19 в.) В это время происходило углубление знаний о строении нашей планеты на основе развивающихся магнитного, гравиметрического, сейсмического, электрического и радиометрического методов геофизики. Среди геологов получила широкое распространение контракционная гипотеза. В 1855 английский астроном Эйри высказал предположение о равновесном состоянии земной коры (изостазии), подтвердившееся в 20 в. при изучении глубинного строения гор, когда было установлено, что более высокие горы имеют более глубокие корни. Третий период (первая половина 20 в.) Начало века было отмечено крупными успехами в исследовании полярных областей Земли. В 1909 Р. Пири достиг Северного полюса, в 1911 Р. Амундсен - Южного. Норвежские, бельгийские, французские и русские путешественники обследовали приполярные области, составили их описания и карты. Позднее начато планомерное изучение этих областей с помощью антарктических научных станций и дрейфующих обсерваторий "Северный полюс". В первой половине 20 в., благодаря дальнейшему усовершенствованию геофизических методов и, особенно, сейсмологии, были получены фундаментальные данные о глубинном строении Земли. В 1909 А. Мохорович выделил планетарную границу раздела, являющуюся подошвой земной коры. В 1916 сейсмолог Б. Б. Голицын зафиксировал границу верхней мантии, а в 1926 Б. Гутенберг установил в ней наличие сейсмического волновода (астеносферы). Этот же ученый определил положение и глубину границы между мантией Земли и ядром. В 1935 Ч. Рихтер ввел понятие магнитуды землетрясения, разработал совместно с Гутенбергом в 1941-45 Рихтера шкалу. Позднее на основе сейсмологических и гравиметрических данных была разработана модель внутреннего строения Земли, которая остается практически неизменной до наших дней. Начало 20 в. ознаменовалось появлением гипотезы, которой в дальнейшем было суждено сыграть ключевую роль в науках о Земле. Ф.Тейлор (1910), а вслед за ним А. Вегенер (1912) высказали идею о горизонтальных перемещениях материков на большие расстояния (дрейфе материков), подтвердившуюся в 1960-х гг. после открытия в океанах глобальной системы срединно-океанических хребтов, опоясывающих весь земной шар и местами выходящих на сушу (см. Рифтов мировая система). Выяснилось также, что земная кора под океанами принципиально отличается от континентальной коры, а мощность осадков на дне увеличивается от гребней хребтов к их периферии. Были закартированы аномалии магнитного поля океанского ложа, которые имеют удивительную, симметричную относительно осей хребтов структуру. Все эти и другие результаты послужили основанием для возврата к идеям дрейфа континентов, но уже в новой форме - тектоники плит, которая остается ведущей теорией в науках о Земле. Значительный объем новой информации, особенно о строении атмосферы, был получен в результате исследований глобальных геофизических процессов во время максимальной солнечной активности, проводившихся в рамках Международного геофизического года (1957-58) учеными 67 стран. Четвертый период (вторая половина 20 в.). Развитие методов радиометрического датирования горных пород во 2-ой половине 20 в. позволило уточнить возраст планеты. Началось интенсивное развитие спутниковой геофизики. На основе измерений с помощью спутников была изучена структура магнитосферы, а также выявлено наличие радиационных поясов вокруг Земли. В конце 1970-х гг. с помощью геодезических спутников (GEOS-3), оснащенных высокоточными радарными альтиметрами, удалось достичь существенного прогресса в изучении геоида. Наряду со спутниковой геодезией широкое развитие получили методы изучения атмосферных процессов со спутников - спутниковая метеорология, что значительно повысило точность метеорологических прогнозов. С 1968 ведется международная программа глубоководного бурения в Мировом океане, пробурено около 2000 скважин, получено более 182 км керна. Это позволило существенно продвинуться в понимании тектонического строения, в палеоокеанографии и осадконаполнении океанских бассейнов. На континентах изучение глубинного строения Земли ведется с помощью сверхглубокого бурения, достигшего в 1984 глубины свыше 12 км (Кольская сверхглубокая скважина).Для изучения максимальных глубин океана стали использоваться обитаемые глубоководные аппараты. В 1960 швейцарец Ж.Пиккар и американец Д. Уолш в батискафе "Триест" достигли дна Марианского желоба - самого глубокого места Мирового океана (11022 м).

Успехи физики XX века способствовали существенному продвижению в познании истории Земли. В 1908 году ирландский ученый Д. Джоли сделал сенсационный доклад о геологическом значении радиоактивности: количество тепла, испущенного радиоактивными элементами, вполне достаточно, чтобы объяснить существование расплавленной магмы и извержение вулканов, а также смещение континентов и горообразование. С его точки зрения, элемент материи - атом - имеет строго определенную длительность существования и неизбежно распадается. В следующем 1909 году русский ученый В. И. Вернадский основывает геохимию - науку об истории атомов Земли и ее химико-физической эволюции.

В соответствии с современными взглядами температура ядра Земли может быть низкой, а процессы в земной коре имеют радиоактивную природу. Сначала Земля была холодной. Атомы радиоактивных элементов, распадаясь, выделяли тепло, и недра разогревались. Это повлекло за собой выделение газов и водяных паров, которые, выходя на поверхность, положили начало воздушной оболочке и океанам.

В 1915 году немецкий геофизик А. Вегенер предположил, исходя из очертаний континентов, что в карбоне (геологический период) существовал единый массив суши, названный им Пангеей (греч. «вся земля»). Пангея раскололась на Лавразию и Гондвану. 135 млн. лет назад Африка отделилась от Южной Америки, а 85 млн. лет назад Северная Америка - от Европы; 40 млн. лет назад Индийский материк столкнулся с Азией и появились Тибет и Гималаи.

Решающим аргументом в пользу принятия данной концепции А.Вегенера стало эмпирическое обнаружение в конце 50-х годов расширения дна океанов, что послужило отправной точкой создания тектоники литосферных плит. В настоящее время считается, что континенты расходятся под влиянием глубинных конвективных течений, направленных вверх и в стороны и тянущих за собой плиты, на которых плавают континенты. Эту теорию подтверждают и биологические данные о распространении животных на нашей планете. Теория дрейфа континентов, основанная на тектонике литосферных плит, ныне общепринята в геологии.

В конце 60-х появилась концепция тектоники плит, или новой глобальной тектоники. Согласно этой концепции, земная кора разбита на несколько огромных литосферных плит, которые постоянно двигаются и продуцируют землетрясения и цунами. В основе глобальной тектоники лежит представление о литосферных плитах, фрагментах земной поверхности, рассматриваемых, как абсолютно жесткие тела, перемещающиеся, словно по воздушной подушке по слою разуплотненной мантии. И дрейф континентов в рамках этой концепции - не более чем их пассивное перемещение вместе с литосферными плитами.

В срединно-океанических хребтах образуется новая разогретая океаническая кора, которая, остывая, снова погружается в недра мантии и рассеивает тепловую энергию, идущую на перемещение плит земной коры.

Гигантские геологические процессы, такие как вздымание горных хребтов, мощные землетрясения, цунами, образование глубоководных впадин, извержение вулканов, -- все они, в конце концов, порождаются движением плит земной коры, при котором происходит постепенное охлаждение мантии нашей планеты.

2. Строение Земли

В результате дифференциации вещества Земли под действием её гравитационного поля, в условиях разогрева земных недр возникли и развились различные по химическому составу, агрегатному состоянию и физическим свойствам оболочки геосферы: ядро (в центре), мантия, земная кора, гидросфера, атмосфера, магнитосфера.

Слой

Толщина

Состав

Кора

0-40 км

Твердые кремниевые породы

Верхняя мантия

40-400 км

Полужидкие кремниевые породы

Переходная область

400-650 км

Жидкие кремниевые породы

Нижняя мантия

650-2890 км

Жидкие кремниевые породы

Внешнее ядро

2890-5150 км

Расплавленные железо и никель

Ядро внутреннее

5150-6378 км

Твердые железо и никель

Землю условно разделяют на три области: кору, мантию и ядро (в центре). Внешний слой - кора - имеет среднюю толщину порядка 35 км. Основные типы земной коры -- континентальный (материковый) и океанический; в переходной зоне от материка к океану развита кора промежуточного типа. Толщина коры меняется в довольно широких пределах: океаническая кора (с учетом слоя воды) имеет толщину порядка 10 км, тогда как толщина материковой коры в десятки раз больше.

От поверхности Земли к центру возрастают давление, плотность и температура: давление в центре Земли - 3,6*1011 Па, плотность ок. 12,5*103 кг/м3, температура 4000-5000°С. Основные типы земной коры - континентальный и океанический; в переходной зоне от материка к океану развита кора промежуточного типа.

Схема строения Земли (без верхней атмосферы и магнитосферы)

Геосферы

Расстояние нижней границы от поверхности Земли, км.

Объём, 1018 м3

Масса, 1021 кг

Доля массы геосферы от массы Земли, %

Атмосфера, до высоты

2000

1320

~0,005

~ 10 -6

Гидросфера

до 11

1,4

1,4

0,02

Земная кора

5-70

10,2

28

0,48

Мантия

до 2900

896,6

4013

67,2

Ядро

6371 (центр З.)

175,2

1934

32,3

Вся Земля (без атмосферы)

1083,4

5976

100,0

За её пределами находятся внешние геосферы -- водная (гидросфера) и воздушная (атмосфера), которые сформировались из паров и газов, выделившихся из недр Земли при дегазации мантии.

Большая часть поверхности Земли занята Мировым ок. (361,1 млн. км2; 70,8%); суша составляет 149,1 млн. км2 (29,2%) и образует шесть материков, континентов и острова. Она поднимается над уровнем Мирового ок. в среднем на 875 м (наибольшая высота 8848 м - г. Джомолунгма (Эверест)); горы занимают св. 1/3 поверхности суши. Пустыни покрывают ок. 20% поверхности суши, саванны и редколесья - ок. 20%, леса - ок. 30%, ледники - св. 10%. Св. 10% суши под сельскохозяйственными угодьями. Средняя глубина океана ок. 3800 м, наибольшая - 11 022 м (Марианский желоб в Тихом ок.), объем воды 1370 млн. км3, средняя соленость 35 г/л. Атмосфера Земли, общая масса которой 5,15·1015 т, состоит из воздуха - смеси в основном азота (78,08%) и кислорода (20,95%), остальное - водяные пары, углекислый газ, благородные и другие газы. Максимальная температура поверхности суши 57-58 °С (в тропических пустынях Африки и Сев. Америки), минимальная - ок. -90 °С (в центральных районах Антарктиды). Распределение по широте и высоте над уровнем моря солнечной энергии, поступающей на Землю, вызывает в пределах географической оболочки закономерную смену климата, растительности, почв, животного мира (см. Пояса физико-географические, Зоны физико-географические, Высотная поясность).

Образование Земли и начальный этап ее развития относятся к догеологической истории. Абсолютный возраст наиболее древних горных пород составляет св. 3,5 млрд. лет. Геологическая история Земли делится на два неравных этапа: докембрий, занимающий ок. 5/6 всего геологического летосчисления (св. 3 млрд. лет), и фанерозой, охватывающий последние 570 млн. лет (см. Геохронология, а также статьи об отдельных периодах и эрах).

Состав Земли

Химический элемент

Содержание в весовых процентах

Химический элемент

Содержание в весовых процентах

Железо

34,63%

Натрий

0,57%

Кислород

29,53%

Хром

0,26%

Кремний

15,20%

Марганец

0,22%

Магний

12,70%

Кобальт

0,13%

Никель

2,39%

Фосфор

0,10%

Сера

1,93%

Калий

0,07%

Кальций

1,13%

Титан

0,05%

Алюминий

1,09%

Земля третья от Солнца планета Солнечной системы, обращающегося вокруг него по эллиптической орбите (близкой к круговой) со ср. скоростью 29,765 км/с на ср. расстоянии 149,6 млн. км. За период равный 365,24 ср. солнечных суток. Имеет спутника - Луну, обращающуюся вокруг Земли на ср. расстоянии 384400 км. Наклон Земной оси к плоскости эклиптики 66о 33' 22”, период вращения вокруг оси 23 ч. 56 мин. 4,1 с. Вращение вокруг оси вызывает смену дня и ночи, наклон оси и обращение вокруг Солнца - смену времен года.

Форма Земли - геоид, приближенно - трехосный эллипсоид, сфероид. Средний радиус 6371,032 км, экваториальный - 6378,160 км, полярный - 6356,777 км.

Геометрические и физические характеристики Земли

Экваториальный радиус

6378,160 км

Полярный радиус

6356,777 км

Сжатие земного эллипсоида

1:298,25

Средний радиус

6371,032 км

Длина окружности экватора

40075,696 км

Площадь поверхность

510,2 млн. км2

Объём

1,083 * 1012 км3

Масса

5976 * 1021 кг

Средняя плотность

5518 кг/м3

Земля обладает магнитным и тесно связанным с ним электрическим полями. Гравитационное поле Земли обуславливает сферическую форму Земли и существование атмосферы.

Магнитосфера

Самой внешней и протяжённой оболочкой Земли является магнитосфера -- область околоземного пространства, физические свойства которой определяются магнитным полем Земли и его взаимодействием с потоками заряженных частиц.

Исследования, проведённые при помощи космических зондов и искусственных спутников Земли, показали, что Земля постоянно находится в потоке корпускулярного излучения Солнца (т. н. солнечный ветер). Он образуется благодаря непрерывному расширению (истечению) плазмы солнечной короны и состоит из заряженных частиц (протонов, ядер и ионов гелия, а также более тяжёлых положительных ионов и электронов). У орбиты Земли скорость направленного движения частиц в потоке колеблется от 300 до 800 км/сек. Солнечная плазма несёт с собой магнитное поле, напряжённость которого в среднем равна 4,8-10а/м (6*10-5 э).

При столкновении потока солнечной плазмы с препятствием -- магнитным полем Земли -- образуется распространяющаяся навстречу потоку ударная волна, фронт которой со стороны Солнца в среднем локализован на расстоянии 13-14 радиусов Земли (R?) от её центра. За фронтом ударной волны следует переходная область толщиной ~ 20 тыс. км, где магнитное поле солнечной плазмы становится неупорядоченным, а движение её частиц -- хаотичным, температура плазмы в этой области повышается примерно с 200 тыс. градусов до ~ 10 млн. градусов.

Переходная область примыкает непосредственно к магнитосфере Земли, граница которой -- магнитопауза -- проходит там, где динамическое давление солнечного ветра уравновешивается давлением магнитного поля Земли; она расположена со стороны Солнца на расстоянии ~ 10-12 R (?) (70-80 тыс. км) от центра З., её толщина ~ 100 км. Напряжённость магнитного поля З. у магнитопаузы ~ 8*10-2а/м (10-3э), т. е. значительно выше напряжённости поля солнечной плазмы на уровне орбиты Земли. Потоки частиц солнечной плазмы обтекают магнитосферу и резко искажают на значительных расстояниях от З. структуру её магнитного поля. Примерно до расстояния 3 R? от центра Земли магнитное поле ещё достаточно близко к полю магнитного диполя (напряжённость поля убывает с высотой ~1/R3?). Регулярность поля здесь нарушают лишь магнитные аномалии (влияние наиболее крупных аномалий сказывается до высот ~0,5R?) над поверхностью Земли. На расстояниях, превышающих 3 R, магнитное поле ослабевает медленнее, чем поле диполя, а его силовые линии с солнечной стороны несколько прижаты к Земле. Линии геомагнитного поля, выходящие из полярных областей Земли, отклоняются солнечным ветром на ночную сторону Земли. Там они образуют «хвост», или «шлейф», магнитосферы протяжённостью более 5 млн. км. Пучки магнитных силовых линий противоположного направления разделены в хвосте областью очень слабого магнитного поля (нейтральным слоем), где концентрируется горячая плазма с температурой в млн. градусов.

Магнитосфера реагирует на проявления солнечной активности, вызывающей заметные изменения в солнечном ветре и его магнитном поле. Возникает сложный комплекс явлений, получивший название магнитной бури. При бурях наблюдается непосредственное вторжение в магнитосферу частиц солнечного ветра, происходит нагрев и усиление ионизации верхних слоев атмосферы, ускорение заряженных частиц, увеличение яркости полярных сияний, возникновение электромагнитных шумов, нарушение радиосвязи на коротких волнах и т.д. В области замкнутых линий геомагнитного поля существует магнитная ловушка для заряженных частиц. Нижняя её граница определяется поглощением захваченных в ловушку частиц атмосферой на высоте несколько сот км., верхняя практически совпадает с границей магнитосферы на дневной стороне Земли, несколько снижаясь на ночной стороне. Потоки захваченных в ловушку частиц высоких энергий (главным образом протонов и электронов) образуют т. н. Радиационный пояс Земли. Частицы радиационного пояса представляют значительную радиационную опасность при полётах в космос.

3. Атмосфера Земли

АТМОСФЕРА ЗЕМЛИ (от греч. atmos -- пар и сфера), воздушная среда вокруг Земли, вращающаяся вместе с нею; масса ок. 5,15·1015 т. По плотности атмосферы она занимает промежуточное место между Венерой и Марсом. Она уникальна в том отношении, что обладает обширными запасами жидкой воды. Сложное взаимодействие между океаном, атмосферой и планетарной поверхностью определяет ее энергетический баланс и температурный режим. Облачный покров обычно закрывает около 50% поверхности, и теплота, остающаяся внутри атмосферы (парниковый эффект), поднимает среднюю температуру более чем на 30 градусов. Состав ее у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента углекислый газ, водород, гелий, неон и другие газы. В нижних 20 км содержится водный пар (у земной поверхности - от 3% в тропиках до 2·10-5% в Антарктиде), количество которого с высотой быстро убывает. Углекислота - наиболее важная следовая компонента атмосферного воздуха. Высокая концентрация кислорода (возникшая примерно 2000 млн. лет назад) является прямым результатом существования растений. Присутствие кислорода позволило сформироваться в верхних слоях атмосферы озонному слою (на высоте 20-25 км), который экранирует поверхность планеты от солнечного ультрафиолетового излучения, вредного для жизни. Выше 100 км растет доля легких газов, и на очень больших высотах преобладают гелий и водород; часть молекул разлагается на атомы и ионы, образуя ионосферу. Давление и плотность воздуха в атмосфере Земли с высотой убывают. В зависимости от распределения температуры атмосферу Земли подразделяют на тропосферу, стратосферу, мезосферу, термосферу, экзосферу. Неравномерность ее нагревания способствует общей циркуляции атмосферы, которая влияет на погоду и климат Земли. Атмосфера Земли обладает электрическим полем.

Все типы свечения, возникающие в верхней атмосфере Земли (ночное свечение атмосферы), исключая тепловое излучение, полярные сияния, молнии и яркие следы метеоров. Спектр ночного свечения лежит в диапазоне от 100 нм до 22,5 мкм. Основная часть свечения возникает в слое толщиной от 30 до 40 км на типичных высотах в 100 км и представляет собой излучение на длине волны кислорода 558 нм. Из космического пространства свечение неба выглядит как зеленоватое светлое кольцо вокруг Земли.

ТРОПОСФЕРА (от греч. tropos -- поворот и сфера), нижний, основной слой атмосферы до высоты 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах. В тропосфере сосредоточено более 1/5 всей массы атмосферного воздуха, сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, развиваются циклоны и антициклоны - все происходящие здесь процессы играют определяющую роль для формирования погоды на планете. Температура в тропосфере падает с увеличением высоты. Тропосфера сверху ограничена тропопаузой, которая соответствует переходу к более устойчивым условиям лежащей выше стратосферы.

СТРАТОСФЕРА (от лат. stratum -- слой и сфера), слой атмосферы, лежащий над тропосферой от 8-10 км в высоких широтах и от 16-18 км вблизи экватора до 50-55 км. Стратосфера характеризуется возрастанием температуры с высотой от -40 °С (-80 °С) до температур, близких к 0 °С, малой турбулентностью, ничтожным содержанием водного пара, повышенным по сравнению с ниже- и вышележащими слоями содержанием озона.

ОЗОН (от греч. ozon -- пахнущий), О3, аллотропная модификация кислорода. Газ синего цвета с резким запахом, tкип -- 112 °С, сильный окислитель. При больших концентрациях разлагается со взрывом. Образуется из О2 при электрическом разряде (например во время грозы) и под действием ультрафиолетового излучения (в стратосфере под действием ультрафиолетового излучения Солнца). Основная масса О3 в атмосфере расположена в виде слоя -- озоносферы -- на высоте от 10 до 50 км с максимумом концентрации на высоте 20-25 км. Этот слой предохраняет живые организмы на Земле от вредного влияния коротковолновой ультрафиолетовой радиации Солнца. Поглощает свет с длиной волны от 240 до 270нм и сильно поглощает в интервале 200-320нм, в то время как кислород в основном поглощает до 170нм. Основная причина появления озона на Земле - молнии. В промышленности О3 получают действием на воздух электрического разряда. Используют для обеззараживания воды и воздуха.

ИОНОСФЕРА, верхние слои атмосферы, начиная от 50- 85 км до 600км, характеризующиеся значительным содержанием атмосферных ионов и свободных электронов. Атомы и молекулы в этом слое интенсивно ионизируются под действием солнечной радиации, в частности, ультрафиолетового излучения. Перемещение заряженных частиц по магнитным силовым линиям к полярным областям на широтах от 60 до 75° приводит к появлению полярных сияний. Верхняя граница ионосферы -- внешняя часть магнитосферы Земли. Причина повышения ионизации воздуха в ионосфере -- разложение молекул атмосферы газов под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения. Ионосфера оказывает большое влияние на распространение радиоволн. Состоит ионосфера из мезосферы и термосферы.

ПОЛЯРНОЕ СИЯНИЕ -быстро изменяющиеся разноцветные картины свечения, наблюдаемые время от времени на ночном или вечернем небе, обычно в высокоширотных областях Земли (как на севере, так и на юге). Зеленый и красный цвета соответствуют эмиссионным линиям атомов кислорода и молекул азота, которые возбуждаются энергичными частицами, приходящими от Солнца. Полярные сияния происходят на высотах порядка 100 км.

Во время полярных сияний в ионосфере протекают многочисленные процессы, такие как возмущения геомагнитного поля, электрические ионосферные токи и рентгеновское излучение. В невидимых частях спектра излучается гораздо больше энергии, чем в видимом диапазоне. Появление полярных сияний связано с солнечным циклом, вращением Солнца, сезонными изменениями и магнитной активностью.

Полярные сияния принимают несколько основных форм. Спокойные дуги или полосы шириной в несколько десятков километров простираются с востока на запад на расстояния до 1000 км. Полосы могут сворачиваться, принимая спиральную или S-образную форму. Можно увидеть и лучи, идущие вдоль магнитного поля. Пятна полярных сияний - это отдельные светящиеся области неба без образования каких-либо форм. Изредка встречаются обширные полярные сияния в форме драпри.

МЕЗОСФЕРА находится примерно до 80-85 км, над которой наблюдаются (обычно на высоте около 85 км) серебристые облака. Здесь температура с высотой уменьшается, достигая -90°C у верхней границы (мезопаузы).

Светлые голубоватые облака в летнем сумеречном небе. Они возникают в верхней атмосфере на высотах около 80 км и по структуре довольно разнообразны.

СЕРЕБРИСТЫЕ облака очень тонки и рассеивают лишь малую часть падающего на них солнечного света, так что с Земли днем или в начале сумерек их нельзя заметить. Так как они появляются только в летнее время, их невозможно наблюдать в самых высоких широтах, где небо никогда не становится достаточно темным. В то же время серебристые облака - явление высокоширотное, т.к. диапазон широт, в которых они практически наблюдаются, весьма узок (от 50°до 65°). Облака образуются в присутствие ядер конденсации, на которых вода превращается в лед. Точно не известно, каковы эти ядра (ионы, возникающие под действием солнечного ультрафиолета, или микрометеоритные частицы). Главное условие возникновения серебристых облаков - достаточно низкая температура, которая на высотах 80-90 км должна быть около 120 K (-150° C). Облака возникают в результате воздушных течений от одного полюса к другому и не зависят от уровня солнечной радиации. Имеются наблюдения, позволяющие предположить, что в течение последних десятилетий серебристые облака возникают чаще. Это связано с возрастанием концентрации водяных паров в верхней атмосфере из-за увеличения количества метана. Частота возникновения серебристых облаков изменяется с циклом солнечной активности по обратному закону.

ТЕРМОСФЕРА, слой атмосферы над мезосферой от высот 80-90 км, температура в котором растет до высот 200-300 км, где достигает значений порядка 1500 К, после чего остается почти постоянной до больших высот.

ЭКЗОСФЕРА (от экзо... и сфера) (сфера рассеяния), внешний слой атмосферы, начинающийся с высоты около 400-500 км, которые граничат с межпланетной средой. В этих слоях плотность настолько низка, что между атомами происходит очень мало столкновений и атомы, движущиеся с большой скоростью, могут выйти из сферы гравитационного притяжения планеты и улетать (ускользать) в космическое пространство.

Наконец, на расстояниях более 1000 км слой холодной плазмы высокой плотности (плазмосфера). Плазмосфера простирается до расстояний в 3 - 7 земных радиусов. Ее верхняя граница (плазмопауза) отмечена резким падением плазменной плотности. Большинство частиц в плазмосфере составляют протоны и электроны. газ настолько разрежен, что столкновения между молекулами перестают играть существенную роль, а атомы ионизированы более чем наполовину. На высоте порядка 1,6 и 3,7 радиусов Земли находятся первый и второй радиационные пояса.

4. Биосфера

Важнейшая особенность Земли как планеты -- наличие биосферы -- оболочки, состав, строение и энергетика которой в существенных чертах обусловлены деятельностью живых организмов. Границы её понимаются различно, в зависимости от подхода к её изучению. Наиболее полно значение этой оболочки выявлено в учении о биосфере, созданном В. И. Вернадским. Биосфера включает в себя не только область приповерхностного сосредоточения современной жизни, но и части др. геосфер, в которые проникает живое вещество и которые преобразованы в результате его былой деятельности. Таким образом биосфера объединяет не только живые организмы, но и всю среду их современного и былого обитания. По В. И. Вернадскому, эта «сфера жизни» объединена биогенной миграцией атомов. Живое вещество реально проявляется в виде отдельных (дискретных) живых организмов, различающихся составом, строением, образом жизни и принадлежащих к различным видам. На Земле существует (по разным данным) от 1,2 до 2 млн. видов животных и растений. Из них на долю растений приходится примерно ј или 1/3 общего числа видов. Из животных по числу описанных видов первое место занимают насекомые (около 750 000), второе -- моллюски (по разным данным, от 40 000 до 100 000), затем идут позвоночные (60 000-70 000 видов). Из растений на первом месте -- покрытосеменные (по разным данным, от 150 000 до 300 000 видов), затем грибы (от 70 000 до 100 000 видов). Числом видов растений и животных измеряется богатство флоры и фауны. Однако обилие видов ещё не означает обилия особей, так же как и бедность флоры и фауны видами может сопровождаться чрезвычайным обилием особей. Поэтому для характеристики растительности и животного мира, в отличие от флоры и фауны, пользуются понятиями биомассы (общей массы организмов) и биологической продуктивности -- способности организмов к воспроизводству биомассы в единицу времени (на единицу площади или объёма местообитания). По биомассе организмы распределяются иначе, чем по числу видов: биомасса растений на суше значительно больше, чем животных.

Биосфера как область наблюдаемой на Земле максимальной изменчивости условий и состояния вещества включает твёрдое, жидкое и газообразное вещество и имеет мозаичное строение, в основе которого лежат различные биогеоценозы -- комплексы живых организмов и неорганических компонентов, взаимосвязанных обменом веществ и энергии. Это -- единая организованная система, способная к саморегулированию.

Вещество биосферы неоднородно по структуре; оно делится на живое (организмы), биогенное (созданное живыми организмами), биокосное (результат совместного действия биологических и неорганических процессов) и косное (неорганическое). Геологическая роль живого вещества проявляется в ряде биогеохимических функций. Через посредство живых организмов (главным образом через фотосинтез) солнечная энергия вводится в физико-химические процессы земной коры, а затем перераспределяется через питание, дыхание и размножение организмов, вовлекая в процесс большие массы косного вещества. Живые организмы распространены во всех доступных им областях Земли, близких к областям термодинамической устойчивости жидкой воды (за исключением, по-видимому, областей перегретых подземных вод), и в ряде областей с температурой ниже 00С. Условия среды, в которых возможно проявление жизнедеятельности организмов, -- поле устойчивости жизни -- расширяется с возрастанием её приспособляемости в ходе эволюции. Границы биосферы расширялись в процессе эволюции Земли не только за счёт прямой приспособляемости организмов к более суровым условиям, но и за счёт создания защитных оболочек, внутри которых возникают особые условия, отличающиеся от условий окружающей среды. Этот процесс наибольший размах принял с появлением человека, который способен существенно расширять сферу своего обитания.

Список использованной литературы

1. Журнал правовых и экономических исследований, 2007, 1: 57-61© ГНУ ИПРЭ РАН; ГОУ ВПО ЛОИЭФ, И.Я. Блехцин, М.И. Троняк интеграционные процессы в сфере охраны окружающей среды.

2. Левитан Е. П. Астрономия: Учебник для 11 кл. общеобразовательной школы. - М.: Просвещение, 1994.

3. Найдыш В. М. Концепции современного естествознания: Учеб. пособие. - М.: Гардарики, 1999.

4. Общая биология. Учебник для средних специальных учебных заведений. С.Г. Мамонтов, В.Б. Захаров, М., Высшая школа 2000 г.

5. Советский энциклопедический словарь /Гл. ред. А.М. Прохоров. - С 56 - 3-е изд. - М.: Сов. Энциклопедия, 1984 - 1600 с., ил.


Подобные документы

  • Изучение строения и места Земли во Вселенной. Действие гравитационного, магнитного и электрического полей планеты. Геодинамические процессы. Физические характеристики и химический состав "твёрдой" Земли. Законы движения искусственных космических тел.

    реферат [43,1 K], добавлен 31.10.2013

  • Форма, размеры и движение Земли. Поверхность Земли. Внутреннее строение Земли. Атмосфера Земли. Поля Земли. История исследований. Научный этап исследования Земли. Общие сведения о Земле. Движение полюсов. Затмение.

    реферат [991,6 K], добавлен 28.03.2007

  • История образования атмосферы планеты. Баланс кислорода, состав атмосферы Земли. Слои атмосферы, тропосфера, облака, стратосфера, средняя атмосфера. Метеоры, метеориты и болиды. Термосфера, полярные сияния, озоносфера. Интересные факты об атмосфере.

    презентация [399,0 K], добавлен 23.07.2016

  • Солнечная система, ее строение и место Земли в ней. Данные исследования метеоритов и лунных пород и возраст Земли: фазы эволюции. Строение Земли: гидросфера, тропосфера, стратосфера, атмосфера и литосфера. Сильно разреженная часть атмосферы – экзосфера.

    дипломная работа [105,0 K], добавлен 02.03.2009

  • Краткая характеристика Земли - планеты Солнечной системы. Античные и современные исследования планеты, ее изучение из космоса при помощи спутников. Возникновение жизни на Земле. Семейства ближайщих астероидов. О движении материков. Луна как спутник Земли.

    реферат [26,5 K], добавлен 25.06.2010

  • Гипотеза о возникновении Луны – естественного спутника Земли, краткая история ее исследования, основные физические данные о ней. Связь фаз Луны с её положением относительно Солнца и Земли. Лунные кратера, моря и океаны. Внутреннее строение спутника.

    презентация [1,8 M], добавлен 07.12.2011

  • Образование Солнечной системы. Теории прошлого. Рождение Солнца. Происхождение планет. Открытие других планетных систем. Планеты и их спутники. Строение планет. Планета земля. Форма, размеры и движение Земли. Внутреннее строение.

    реферат [126,1 K], добавлен 06.10.2006

  • Солнце как рядовая звезда нашей Галактики: физические характеристики и общая структура. Понятия фотосферы, хромосферы и солнечной короны. Плотность и температура протуберанцев. Вариации галактических космических лучей. Структура и динамика магнитосферы.

    контрольная работа [35,7 K], добавлен 07.06.2009

  • Орбитальные, физические, географические характеристики Земли - третьей от Солнца планеты Солнечной системы, крупнейшей по диаметру, массе и плотности среди планет земной группы. Состав атмосферы. Особенности формы, которая близка к сплюснутому эллипсоиду.

    презентация [1,5 M], добавлен 22.10.2011

  • Венера как землеподобная планета, происхождение её имени. Современная модель внутреннего строения Венеры, состав её атмосферы и слабость магнитного поля. Основные различия Земли и Венеры (чего не хватает Венере, чтобы стать второй обитаемой "Землей"?).

    презентация [709,0 K], добавлен 29.11.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.