Проект "Глобалстар". Геодезические спутники ERS-1, ERS-2
Обеспечение абонентов надежной телефонной связью с помощью системы "Глобалстар" и предоставление навигационных услуг. Сравнительный анализ систем "Глобалстар" и "Иридиум". Планирование судоходных маршрутов с использованием спутников ERS-1, ERS-2.
Рубрика | Астрономия и космонавтика |
Вид | реферат |
Язык | русский |
Дата добавления | 05.10.2009 |
Размер файла | 16,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Проект "Глобалстар". Геодезические спутники (ERS-1, ERS-2)
Практически все стороны жизни современного человека прочно связаны со средствами коммуникаций. Постоянно возрастающая миграция населения и условия жизни требуют возможности обеспечения быстрой и надежной связи, которая сегодня устанавливается не между географическими пунктами, а между людьми. Поэтому фирмы-производители систем дальней связи делают все возможное для удовлетворения непрерывно растущих потребностей в данной области, расширяя инфраструктуру проводных, оптоволоконных, спутниковых и радиотелефонных сетей.
Однако до последнего времени не решены проблемы обеспечения абонентов глобальной персональной телефонной связью, а также проблемы совместимости сотовых систем подвижной связи различного типа, что требует создания общедоступной и экономичной глобальной сети связи. Проект "Глобалстар", инициированный известными фирмами в области космических систем и комплексных технологий дальней связи "Loral" и "Qualcomm", предусматривает создание такой сети, используя существующую наземную инфраструктуру проводной и радиотелефонной связи.
Система "Глобалстар" обеспечивает абонентов сравнительно недорогой и надежной телефонной связью, которую можно установить между любыми (кроме полюсов) точками земного шара. Она состоит из космического, наземного и абонентского узлов.
В космический узел войдет созвездие из 48 низкоорбитальных спутников, каждый из которых представляет собой усилитель-ретранслятор высокочастотных сигналов, выведенный на высоту 1406 км. Средний проектный срок службы спутников составляет 7,5 лет.
Спутники находятся на восьми орбитальных плоскостях, по шесть на плоскость, что гарантирует охват практически всей поверхности планеты. Использование низкоорбитальных спутников снижает мощность радиосигнала почти в 100 раз, сокращает задержку в получении сигнала и устраняет эхо, являющееся серьезной проблемой в системах связи на геостационарных спутниках. У каждого спутника имеется шесть сфокусированных лучей, определяющих эллиптические зоны обслуживания абонентов, при этом каждый из них способен обеспечить работу как минимум 2800 дуплексных речевых каналов и каналов передачи данных. В радиоинтерфейсах между спутниками и Землей используется перспективная цифровая технология СДМА (многостанционный доступ с кодовым разделением каналов), имеющая целый ряд преимуществ по сравнению с другими технологиями в части помехозащищенности, меньшего уровня излучаемой мощности, большей пропускной способности, предотвращения несанкционированного доступа в сеть и т.д. Каждый из спутников осуществляет связь как с абонентами, так и напрямую с узловыми станциями. Для линий связи "спутник - абонент" используется диапазон частот 1,61- 1,626 ГГц; для линий связи "спутник - узловая станция" используются диапазоны 5,1995-5,216 ГГц (направление "вниз") и 6,525-6,5415 ГГц(направление "вверх") . Межспутниковый обмен информацией в системе отсутствует.
Спутники для системы "Глобалстар" будут производиться фирмой "Space Systems Loral", которая представляет собой международный конгломерат нескольких фирм, совместно работающих над рядом проектов в области космических исследований, а именно: "Alcater", "Aerospatiale", "Alenia", "Deutche Aerospace".
Наземный узел системы "Глобалстар" состоит из узловых станций; систем слежения, телеметрии и передачи команд; систем управления полетом спутников и центра управления сетью. Каждая узловая станция одновременно поддерживает связь с тремя спутниками и, кроме того, обеспечивает интерфейс для связи сети системы "Глобалстар" с АТС местной телефонной сети региона или с центрами коммутации сотовых радиотелефонных сетей, прежде всего стандартов AMPS и GSM. Оборудование системы "Глобалстар" не влияет на работу наземных сотовых сетей, поскольку в ней используются другие частоты. Каждая страна будет осуществлять независимый контроль над своими узловыми станциями и над доступом к телефонной сети находящихся на ее территории абонентов. В функции системы входит также оперативное обнаружение абонента, посылающего или принимающего вызов.
В функции центра сетевого управления входит регистрация и проверка вызовов, определение длительности и тарификация разговора и т.д., а также управление базой данных о состоянии сети, контроль и распределение сетевых ресурсов (каналов связи, частот, спутников) .
Контроль над эскадрильей спутников осуществляется с помощью систем слежения, телеметрии и передачи команд. Данные контроля орбитальной деятельности спутников посылаются в центры контроля над сетью, откуда направляются в узловые станции для осуществления сопровождения и других функций.
Из-за постоянного движения спутников и изменения территории охвата время от времени возникает необходимость передачи обслуживания абонента от одного спутника к другому. Для этой цели используются возможности технологии СДМА, позволяющие абонентскому терминалу одновременно поддерживать связь с двумя или тремя спутниками, улучшая качество принимаемого суммарного сигнала, и программными средствами, выбирая оптимальные каналы связи. Окончательная передача абонента (незаметная для него) на обслуживание следующему спутнику происходит лишь тогда, когда абонент прочно обосновался- на его территории. Абонентские терминалы оснащены всенаправленными антеннами, что облегчает одновременную связь с несколькими спутниками и снимает необходимость постоянно направлять антенну на спутник для поддержания связи.
На начальной стадии эксплуатации планируется использование двух типов абонентского оборудования, входящего в абонентский узел системы "Глобалстар". Это портативные терминалы для передачи речевых сигналов и навигации, а также передвижные и стационарные навигационные аппараты. В качестве дополнительно оплачиваемой услуги абонент может обслуживаться как в одиночном режиме, когда абонентский терминал позволяет выходить в сеть "Глобалстар", так и в двойном режиме, когда абонент может выходить дополнительно и в другую наземную сотовую радиотелефонную сеть.
Благодаря использованию технологии СДМА уровень излучения абонентского терминала будет установлен ниже официально допустимых пределов, принятых в различных странах. Средняя мощность излучения менее 200 МВт.
Каждому абонентскому терминалу системы присваивается индивидуальный номер, который, в отличие от традиционных телефонов, не зависит от местонахождения абонента (используемая реализация технологии СДМА предполагает наличие до 4,4 млрд. вариантов различных кодов) .
Услуги сети "Глобалстар" направлены на обслуживание четырех групп пользователей:
- проживающих в районах, не охваченных подвижной связью;
- работающих или проживающих в районах, охваченных подвижной связью, но часто выезжающих за пределы территории обслуживания;
- стационарных абонентов, находящихся в районах, не охваченных телефонной связью;
- абонентов, нуждающихся в индивидуальной или особой телефонной связи.
К этим группам потенциальных потребителей относятся различные государственные и частные организации, в том числе: водители сухопутного и водного транспорта, командированные, органы охраны порядка, спасательные отряды и бригады скорой помощи, поисковые экспедиции, туристы. сельские отделения частных организаций. не охваченные местными проводными и сотовыми телефонными сетями, коммунальные службы, которым необходимо периодически снимать показания счетчиков расхода газа, электроэнергии и воды, службы охраны природных ресурсов и т.д. Помимо обычной телефонной связи система "Глобалстар" предоставляет навигационные услуги. Одна из самых простых услуг - определение местонахождения абонента, когда тот с помощью своего терминала рассчитывает свои координаты на основе контрольного тонального сигнала, посылаемого системой.
Еще один вид навигационных услуг - обеспечение двусторонней связи с помощью обмена краткими сообщениями. Такой обмен может использоваться в экстренных случаях, когда абоненту необходимо дать знать о своем местонахождении службам оперативной помощи или семье (несчастный случай, поломка автомобиля и т.п.) .
Третий вид навигационных услуг включает определение местонахождения абонента (расчет координат производится на узловой станции) и передачу координат определенному заранее кругу абонентов. Эти услуги найдут применение в работе диспетчеров транспорта, при поиске украденных автомобилей и т.д.
Структура сети системы "Глобалстар" показана на рисунке. Система разработана таким образом, чтобы наиболее эффективно осуществлять качественную передачу речи и предоставление других информационных услуг при относительной простоте подключения новых абонентов. Для еще более полного охвата обслуживаемых территорий могут быть выведены на орбиту дополнительные спутники. Запуск спутников намечен на 1997 г., ввод системы в эксплуатацию - на 1998 г.
Данный проект - не единственный в мире. однако только он ориентирован на использование технологии СДМА.
В последние годы во многих странах, обладающих космическими технологиями, ведутся работы по созданию подобных систем с высотами орбит космических аппаратов от 700 до 2000 км. Наиболее известен аналогичный проект "Иридиум" (в реализации его принимает участие НПЦ им. Хруничева) , основанный на 66 спутниках, использующий в радиоинтерфейсах технологию СДМА, близкую к стандарту сотовой связи GMM, и планируемый к реализации практически в те же, что и "Глобалстар", сроки. Существуют также аналогичные российские проекты, например, "Гонец" и "Сигнал". Однако на сроки их реализации существенное влияние оказывает дефицит финансирования.
Несмотря на сравнительно небольшую (в масштабах планеты) пропускную способность систем глобальной персональной связи (в предлагаемой начальной конфигурации) , они уже сейчас заочно начинают конкурировать друг с другом за рынки сбыта путем предварительного сравнения спектра предлагаемых услуг их ориентировочной стоимости, перспектив развития, привлечения инвесторов и потенциальных пользователей.
Предварительный сравнительный анализ систем "Глобалстар" и "Иридиум" был приведен в статье Л. Я. Кантора и И. С. Поволоцкого "Системы персональной подвижной связи через низкоорбитальные ИСЗ" ("Вестник связи - № 11,1994 г.) .
Как видно, “Глобалстар” обещает более выгодные условия для абонента. Это связано с тем, что принятая концепция построения этой системы предполагает производить всю обработку сигнала на Земле, опираясь на большое число узловых станций. "Иридиум" же предполагает производить подавляющее число соединений с использованием межспутниковых линий связи, уменьшив до минимума число наземных станций, что приводит к необходимости иметь сложные (содержащие коммутационное оборудование, дополнительные следящие антенны, источники питания и т.д.) и, соответственно, более тяжелые и дорогие спутники, требующие значительных затрат на их запуск. Известно, что увеличение сложности всегда приводит к уменьшению надежности. Более того, малое число наземных узловых станций приведет к необходимости задействования при прохождении вызова большого количества наземных телефонных сетей и каналов межспутникового обмена, что вызовет дополнительные расходы.
В настоящее время проекты "Глобалстар и "Иридиум" получили положительную оценку Министерства связи РФ для проведения подготовительной работы по грядущему их использованию в России, где благодаря необъятным просторам достаточно "белых" пятен в телекоммуникационном обслуживании. По ориентировочным оценкам к 2005 г. в России можно ожидать до 1 млн. пользователей таких систем связи.
Геодезические спутники (ERS-1, ERS-2)
Летом 1991 года тогдашнее советское правительство дало французскому судну "Астролаб" разрешение пройти через закрытое с 1922 года для западного флота Баренцево море на севере Советского Союза. Северовосточный проход через Баренцево море, Карские Ворота и море Лаптевых к Берингову проливу сокращает путь из Европы в Японию на 20 дней по сравнению с торговым путем через Суэцкий канал. Расстояние от Новой Земли до Берингова пролива, равное примерно 5.600 километрам, можно преодолеть только в летнее время, да и то лишь при помощи ледоколов, причем даже летом суда нередко на целые месяцы вмерзают в паковый лед. Северовосточный проход тоже искали около 300 лет: в 1878-79 годах он был впервые покорен А. Э. Норденшельдом.
"Ледовая вахта" судна "Астролаб" располагалась не как при Амундсене, на мачте в так называемом "вороньем гнезде", и не на капитанском мостике, а высоко в небе.
Всего лишь за десять дней до того, то есть 17 июня 1991 года, был выведен на орбиту геодезический спутник ERS-1. Главной задачей спутников, сконструированных по заказу Европейского космического агентства (ESA) и участников консорциума под руководством фирмы Дорниер, дочернего предприятия DASA (Deutsche Aeronautics and Space Administration), должны были стать наблюдения за океанами и покрытыми льдом частями суши, чтобы представить климатологам, океанографам и организациям по охране окружающей среды данные об этих малоисследованных регионах. Спутник был оснащен самой современной микроволновой аппаратурой, благодаря которой он готов к любой погоде: "глаза" его радиолокационных приборов проникают сквозь туман и облака и дают ясное изображение поверхности Земли, через воду, через сушу, и через лед. Теоретически он должен был представить идеальную карту ледовой обстановки. А передвижение судна "Астролаб" должно было перепроверить ее в суровых условиях полярного моря.
Основным инструментом спутника является Synthetic Aperture Radar SAR, который ведет наблюдения по полосе шириной в 100 километров параллельно земной орбите. SAR посылает микроволновые импульсы на Землю. По отраженным эхо-сигналам можно судить о типе и структуре, а также и о степени удаленности земной поверхности.
По данным, которые спутник ERS-1 посылает во время своего полета над полярным морем на Землю, ESA и норвежским NERSC (Nansen Environmental and Remote Sensing Center) были составлены карты ледовой обстановки. Через спутники связи Inmarsat эти карты были отправлены на "Астролаб" по факсу. На них можно различить чистые воды и ледовую поверхность, а кроме того, карты дают сведения о возрасте и толщине льда. Это важно для определения курса, потому что свежий лед легче расколоть, чем многолетний, а тонкий - легче, чем толстый. Судно "Астролаб" и его сопровождающие искали пути по этим картам.
Чтобы данные можно было использовать для определения курса, они должны быть актуальными. Ученым помогло то, что полярная траектория ведет спутники через полюс на небольшом расстоянии: им удавалось за несколько часов обработать представляемые ERS-1 данные и нанести их на карты. Этот спутник в качестве "ледовой вахты" был новым, неиспытанным. Так что команда судна "Астролаб" сверяла данные на картах ледовой обстановки с тем, что было видно при помощи бортового оборудования, - а видно было совсем немного. Потому что видимость на море, нередко покрытом завесой тумана, составляла порой не более 200 метров. Зато спутниковые данные - за немногими исключениями - оказывались точными. ERS-1, едва стартовав, доказал свою способность нести ледовую вахту и выполнять важные задания.
В торговом судоходстве вдали от полярных регионов наблюдения геодезических спутников тоже находят полезное применение. Спутник ERS-1 при помощи своих микроволновых сенсорных устройств замеряет направление и скорость ветра на поверхности воды; метеоспутникам (таким, как Meteosat) удавалось сделать эти замеры только на верхней кромке облаков. Радары-высотомеры и SAR регистрируют высоту, длину и направление волн. И, наконец, ERS может определить температуру на поверхности воды. До сих пор все эти результаты измерений давали только буи, суда и оптические спутниковые системы. Но буи и суда могут проводить только точечные пробы, которые к тому же из-за разных методов измерений надо сравнивать, а оптическим спутниковым системам часто препятствуют образующиеся над поверхностью воды облака и туман. В противоположность этому ERS может за сравнительно короткое время охватить с помощью растров всю поверхность океана. Все эти данные учитываются в системе оптимизации судоходных маршрутов, разработка которой в качестве пилотного проекта началась на предприятии Дорниер летом 1993 года. На первой стадии было разработано программное обеспечение, которое с октября 1994 года выверяется на практике на маршрутах Северной Атлантики.
Партнерами фирмы Дорниер в этом проекте являются Институт Макса Планка, Морская метеослужба в Гамбурге, Метеорологическая служба Германии, Федеральное ведомство морского судоходства и гидрографии, Исследовательский центр Geesthacht и фирма AnschGtz в Киле, в навигационной управляющей системе которой (Nopsy) используется и новое программное обеспечение. Система обрабатывает, с одной стороны, данные метеослужб и данные геодезических спутников относительно волнения моря, направлении и скорости ветра, а с другой - соответствующие характеристики судна (размеры, загрузка, статика и т.д.). На основе этих сведений разрабатывается скорейший и, соответственно самый выгодный с точки зрения расходов маршрут. Потому что в судоходстве кратчайший путь между портом отплытия и портом назначения вовсе не всегда оказывается и самым скорым, в чем на своем печальном опыте убедились еще полярные мореплаватели.
Уже сегодня торговые суда получают указания по поводу курса, в частности, от морской службы погоды, которая разрабатывает центральный план маршрутов и рассылает на суда по факсу. План должен помочь им обойти штормовые зоны и придерживаться надежного и скорого курса. Новая система допускает децентрализованное планирование за счет компьютера и приемной станции на борту того или иного корабля, и благодаря этому быстрее предоставляются данные, которые опять-таки быстрее могут быть актуализированы.
Это - большое преимущество, особенно для долгого плавания и при полученном заранее прогнозе. С помощью новой системы судоходных маршрутов капитан может проверять на бортовом компьютере путь следования своего судна каждый раз, когда поступает новый прогноз о волнении на море. Кроме того, благодаря данным, полученным через ERS, сообщения о волнах и ветре отличаются большей точностью, чем раньше.
Ученые, которые разрабатывают новое программное обеспечение, в своих размышлениях идут уже на шаг вперед: в компьютерные программы может быть введена информация о морских портах и возможностях погрузки и разгрузки судов. Можно контролировать, например, контейнер с помощью спутников связи, проследить и документировать его путь от отправителя до адресата. Дело в том, что сегодня по мировому океану плавают многие тысячи контейнеров, о которых уже вовсе неизвестно, куда они были направлены. Планирование маршрутов при правильной его организации с использованием геодезических спутников и спутников связи может вырасти в регулярную систему управления торговым судоходством.
При всем том, разработка судоходных маршрутов это, говоря образным языком, только верхушка айсберга, если только вспомнить о расшифровке данных ERS об океанах и покрытых льдом пространствах Земли. Нам известны тревожные прогнозы общего потепления Земли, которые приведут к тому, что растают полярные шапки и повысится уровень моря. Затоплены будут все прибрежные зоны, пострадают миллионы людей.
Но нам неизвестно, насколько правильны эти предсказания. Продолжительные наблюдения за полярными областями при помощи ERS-1 и последовавшего за ним в конце осени 1994 года спутника ERS-2 представляют данные, на основании которых можно сделать выводы об этих тенденциях. Они создают систему "раннего обнаружения" в деле о таянии льдов.
Благодаря снимкам, которые спутник ERS-1 передал на Землю, мы знаем, что дно океана с его горами и долинами как бы "отпечатывается" на поверхности вод. Так ученые могут составить представление о том, является ли расстояние от спутника до морской поверхности (с точностью до десяти сантиметров измеренное спутниковыми радарными высотомерами) указанием на повышение уровня моря, или же это "отпечаток" горы на дне.
Хотя первоначально спутник ERS-1 был разработан для наблюдений за океаном и льдами, он очень быстро доказал свою многосторонность и по отношению к суше. В сельском и лесном хозяйстве, в рыболовстве, геологии и картографии специалисты работают с данными, представляемыми спутником. Поскольку ERS-1 после трех лет выполнения своей миссии он все еще работоспособен, ученые имеют шанс эксплуатировать его вместе с ERS-2 для общих заданий, как тандем. И они собираются получать новые сведения о топографии земной поверхности и оказывать помощь, например, в предупреждении о возможных землетрясениях.
Спутник ERS-2 оснащен, кроме того, измерительным прибором Global Ozone Monitoring Experiment Gome который учитывает объем и распределение озона и других газов в атмосфере Земли. С помощью этого прибора можно наблюдать за опасной озоновой дырой и происходящими изменениями. Одновременно по данным ERS-2 можно отводить близкое к земле UV-B излучение.
На фоне множества общих для всего мира проблем окружающей среды, для разрешения которых должны предоставлять основополагающую информацию и ERS-1, и ERS-2, планирование судоходных маршрутов кажется сравнительно незначительным итогом работы этого нового поколения спутников. Но это одна из тех сфер, в которой возможности коммерческого использования спутниковых данных используются особенно интенсивно. Это помогает при финансировании других важных заданий. И это имеет в области охраны окружающей среды эффект, который трудно переоценить: скорые судоходные пути требуют меньшего расхода энергии. Или вспомним о нефтяных танкерах, которые в шторм садились на мель или разбивались и тонули, теряя свой опасный для окружающей среды груз. Надежное планирование маршрутов помогает избежать таких катастроф.
Подобные документы
Решение системы обыкновенных дифференциальных уравнений движения объекта (спутники Фобос и Деймос) относительно неподвижной точки (планета Марс). Описание движения спутников в прямоугольных системах координат и описание их движения в элементах Роя.
курсовая работа [132,6 K], добавлен 22.03.2011Ио - спутник Юпитера, самый близкий к планете из четырёх галилеевых спутников. Отличается бурной вулканической активностью. Европа - наименьший из спутников. Ганимед и Каллисто - размеры примерно с Меркурий (но заметно уступают этой планете по массе).
доклад [22,6 K], добавлен 23.05.2008Состав Солнечной системы: Солнце, окруженное девятью планетами (одна из которых Земля), спутники планет, множество малых планет (или астероидов), метеоритов и комет, чьи появления непредсказуемы. Вращение вокруг Солнца планет, их спутников и астероидов.
презентация [901,6 K], добавлен 11.10.2011Классификация спутников Земли, виды космических кораблей и станций. Порядок вычисления круговой орбитальной скорости. Особенности движения спутников вблизи Земли. Характеристика электромагнитных волн. Принципы работы аппаратуры оптических спутников.
презентация [10,9 M], добавлен 02.10.2013Системы спутниковой навигации. Иллюстрация эффекта Доплера. GPS-спутники, необходимые для полного покрытия земной поверхности. Принцип работы GPS-навигации. Наружные станции контроля. Основные характеристики спутников. Современное применение GPS.
презентация [9,1 M], добавлен 02.01.2012Основные спутники Урана. Присутствие у него слабо выраженной системы колец, состоящей из очень тёмных частиц диаметром от микрометров до долей метр. Сравнение масс спутников Урана. Признаки сильных ветров на планете, дующих параллельно экватору планеты.
презентация [824,0 K], добавлен 21.10.2013Шаг вперёд в развитии метеорологической науки. Оснащение метеорологических искусственных спутников Земли. Орбиты метеорологических искусственных спутников. Использование искусственных спутников Земли в метеорологии и других сферах науки и жизни.
реферат [9,1 K], добавлен 26.07.2003Юпитер: общие сведения о планете и ее атмосфера. Состав юпитерианского океана. Спутники Юпитера и его кольцо. Редкие выбросы в атмосфере Сатурна. Кольца и спутники Сатурна. Состав атмосферы и температура Урана. Строение и состав Нептуна, его спутники.
реферат [27,2 K], добавлен 17.01.2012Спектральный анализ и прогноз данных неравномерности вращения Земли с помощью программы по обработке данных методом сингулярного спектрального анализа. Астрономические и палеонтологические данные. Движение полюсов, природа периодических колебаний.
курсовая работа [1,0 M], добавлен 11.06.2015Первые искусственные спутники. Животные в космосе. Первые полеты человека в космос. Запуски ракет к планетам. Групповые полеты и новое поколение спутников. Новая эра в космонавтике. Космические корабли многоразового использования. история станции "Мир".
реферат [34,9 K], добавлен 23.09.2013