Расширяющаяся Вселенная

Первые модели возникновения мира. Ученые о рождении и гибели Вселенной, прогноз ее развития. Модель расширяющейся Вселенной: эволюция и строение галактик, их многообразие, описание и классификация нашей галактики. Космология и астрономия, космонавтика.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 11.05.2009
Размер файла 54,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Реферат

Расширяющаяся Вселенная

2008 год

Содержание

Введение

1. Первые модели возникновения мира

2. Рождение и гибель Вселенной

3. Модель расширяющейся Вселенной

4. Эволюция и строение галактик

5. Космология и астрономия

6. Космонавтика

Заключение

Список используемой литературы

Введение

Одной из основных концепций современного естествознания является учение о Вселенной как едином целом и обо всей охваченной астрономическими наблюдениями области Вселенной (Метагалактике) как части целого - космология. Выводы космологии основываются и на законах физики, и на данных наблюдательной астрономии. Как любая наука, космология в своей структуре кроме эмпирического и теоретического уровней имеет также уровень философских предпосылок, философских оснований. Так, в основании современной космологии лежит предположение о том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, чаще всего на основе опытов на планете Земля, могут быть экстраполированы на значительно большие области, в конечном счете - на всю Вселенную. Это предположение об устойчивости законов природы в пространстве и времени относится к уровню философских оснований современной космологии.

1. Первые модели возникновения мира

Несмотря на высокий уровень астрономических сведений народов древнего Востока, их взгляды на строение мира ограничивались непосредственными зрительными ощущениями. Поэтому в Вавилоне сложились взгляды, согласно которым Земля имеет вид выпуклого острова, окруженного океаном. Внутри Земли будто бы находится “царство мертвых”. Небо -- это твердый купол, опирающийся на земную поверхность и отделяющий “нижние воды” (океан, обтекающий земной остров) от “верхних” (дождевых) вод. На этом куполе прикреплены небесные светила, над небом будто бы живут боги. Солнце восходит утром, выходя из восточных ворот, и заходит через западные ворота, а ночью оно движется под Землей.

Согласно представлениям древних египтян, Вселенная имеет вид большой долины, вытянутой с севера на юг, в центре ее находится Египет. Небо уподоблялось большой железной крыше, которая поддерживается на столбах, на ней в виде светильников подвешены звезды.

В Древнем Китае существовало представление, согласно которому Земля имеет форму плоского прямоугольника, над которым на столбах поддерживается круглое выпуклое небо. Разъяренный дракон будто бы согнул центральный столб, вследствие чего Земля наклонилась к востоку. Поэтому все реки в Китае текут на восток. Небо же наклонилось на запад, поэтому все небесные светила движутся с востока на запад.

И лишь в греческих колониях на западных берегах Малой Азии (Иония), на юге Италии и в Сицилии в четвертом веке до нашей эры началось бурное развитие науки, в частности, философии, как учения о природе. Именно здесь на смену простому созерцанию явлений природы и их наивному толкованию приходят попытки научно объяснить эти явления, разгадать их истинные причины.

Одним из выдающихся древнегреческих мыслителей был Гераклит Эфесский (ок. 530--470 гг. до н.э.) . Это ему принадлежат слова: “Мир, единый из всего, не создан никем из богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно воспламеняющимся и закономерно угасающим...” Тогда же Пифагор Самосский (ок. 580--500 гг. до н.э.) высказал мысль о том, что Земля, как и другие небесные тела, имеет форму шара. Вселенная представлялась Пифагору в виде концентрических, вложенных друг в друга прозрачных хрустальных сфер, к которым будто бы прикреплены планеты. В центре мира в этой модели помещалась Земля, вокруг нее вращались сферы Луны, Меркурия, Венеры, Солнца, Марса, Юпитера и Сатурна. Дальше всех находилась сфера неподвижных звезд.

Первую теорию строения мира, объясняющую прямое и попятное движение планет, создал греческий философ Евдокс Книдский (ок. 408--355 гг. до н.э.). Он предложил, что у каждой планеты имеется не одна, а несколько сфер, скрепленных друг с другом. Одна из них совершает один оборот в сутки вокруг оси небесной сферы по направлению с востока на запад. Время обращения другой (в обратную сторону) предполагалось равным периоду обращения планеты. Тем самым объяснялось движение планеты вдоль эклиптики. При этом предполагалось, что ось второй сферы наклонена к оси первой под определенным углом. Комбинация с этими сферами еще двух позволяла объяснить попятное движение по отношению к эклиптике. Все особенности движения Солнца и Луны объяснялось с помощью трех сфер. Звезды Евдокс разместил на одной сфере, вмещающей в себя все остальные. Таким образом, все видимое движение небесных светил Евдокс свел к вращению 27 сфер.

Уместно напомнить, что представление о равномерном, круговом, совершенно правильном движении небесных тел высказал философ Платон. Он же высказал предположение, что Земля находится в центре мира, что вокруг нее обращается Луна, Солнце, далее утренняя звезда Венера, звезда Гермеса, звезды Ареса, Зевса и Кроноса. У Платона впервые встречаются названия планет по имени богов, полностью совпадающие с вавилонскими. Платон впервые сформулировал математикам задачу: найти, с помощью каких равномерных и правильных круговых движений можно “спасти явления, представляемые планетами”. Другими словами, Платон ставил задачу построить геометрическую модель мира, в центре которой, безусловно, должна была находиться Земля.

Усовершенствованием системы мира Евдокса занялся ученик Платона Аристотель (384--322 гг. до н.э.). Так как взгляды этого выдающегося философа-энциклопедиста безраздельно господствовали в физике и астрономии в течение почти двух тысяч лет, то остановлюсь на них поподробнее.

Аристотель, вслед за философом Эмпедоклом (ок. 490--430 гг. до н.э.), предположил существование четырех “стихий”: земли, воды, воздуха и огня, из смешения которых будто бы произошли все тела, встречающиеся на Земле. По Аристотелю, стихии вода и земля естественным образом стремятся двигаться к центру мира (“вниз”), тогда как огонь и воздух движутся “вверх” к периферии и то тем быстрее, чем ближе они к своему “естественному” месту. Поэтому в центре мира находится Земля, над ней расположены вода, воздух и огонь. По Аристотелю, Вселенная ограничена в пространстве, хотя ее движение вечно, не имеет ни конца, ни начала. Это возможно как раз потому, что, кроме упомянутых четырех элементов, существует еще и пятая, неуничтожимая материя, которую Аристотель назвал эфиром. Из эфира будто бы и состоят все небесные тела, для которых вечное круговое движение -- это естественное состояние. “Зона эфира” начинается около Луны и простирается вверх, тогда, как ниже Луны находится мир четырех элементов.

Вот как описывает свое понимание мироздания сам Аристотель: “Солнце и планеты обращаются около Земли, находящейся неподвижно в центре мира. Наш огонь, относительно цвета своего, не имеет никакого сходства со светом солнечным, ослепительной белизны. Солнце не состоит из огня; оно есть огромное скопление эфира; теплота Солнца причиняется действием его на эфир во время обращения вокруг Земли. Кометы суть скоропреходящие явления, которые быстро рождаются в атмосфере и столь же быстро исчезают. Млечный Путь есть не что иное, как испарения, воспламененные быстрым вращением звезд около Земли... Движения небесных тел, вообще говоря, происходят гораздо правильнее, чем движения замечаемые на Земле; ибо, так как тела небесные совершеннее любых других тел, то им приличествует самое правильное движение, и, вместе с тем, самое простое, а такое движение может быть только круговым, потому что в этом случае движение бывает вместе с тем и равномерным. Небесные светила движутся свободно подобно богам, к которым они ближе, чем к жителям Земли; поэтому светила при движении своем не нуждаются в отдыхе и причину своего движения заключают в самих себе. Высшие области неба, более совершенные, содержащие в себе неподвижные звезды, имеют, поэтому, наиболее совершенное движение -- всегда вправо. Что же касается части неба, ближайшей к Земле, а поэтому и менее совершенной, то эта часть служит местопребыванием гораздо менее совершенных светил, каковы планеты. Эти последние движутся не только вправо, но и влево, и притом по орбитам, наклоненным к орбитам неподвижных звезд. Все тяжелые тела стремятся к центру Земли, а так как всякое тело стремится к центру Вселенной, то поэтому и Земля должна находиться неподвижно в этом центре”.

При построении своей системы мира Аристотель использовал представления Евдокса о концентрических сферах, на которых расположены планеты и которые вращаются вокруг Земли. По Аристотелю, первопричиной этого движения является “первый двигатель” -- особая вращающаяся сфера, расположенная за сферой “неподвижных звезд”, которая и приводит в движение все остальное. По этой модели лишь одна сфера в каждой из планет вращается с востока на запад, остальные три -- в противоположном направлении. Аристотель считал, что действие этих трех сфер должно компенсироваться дополнительными тремя внутренними сферами, принадлежащими той же планете. Именно в этом случае на каждую последующую (по направлению к Земле) планету действует лишь суточное вращение. Таким образом, в системе мира Аристотеля движение небесных тел описывалось с помощью 55 твердых хрустальных сферических оболочек.

Позже в этой системе мира было выделено восемь концентрических слоев (небес), которые передавали свое движение друг другу. В каждом таком слое насчитывалось семь сфер, движущих данную планету.

Во времена Аристотеля высказывались и другие взгляды на строение мира, в частности, что не Солнце обращается вокруг Земли, а Земля вместе с другими планетами обращается вокруг Солнца. Против этого Аристотель выдвинул серьезный аргумент: если бы Земля двигалась в пространстве, то это движение приводило бы к регулярному видимому перемещению звезд на небе. Как мы знаем, этот эффект (годичное параллактическое смещение звезд) был открыт лишь в середине 19 века, через 2150 лет после Аристотеля...

На склоне своих лет Аристотель был обвинен в безбожии и бежал из Афин. На самом деле в своем понимании мира он колебался между материализмом и идеализм. Его идеалистические взгляды и, в частности, представление о Земле как центре мироздания было приспособлено для защиты религии. Вот почему в середине второго тысячелетия нашей эры борьба против взглядов Аристотеля стала необходимым условием развития науки

2. Рождение и гибель Вселенной

В общей теории относительности Эйнштейна, самой по себе, делается вывод, что пространство-время возникло в сингулярной точке большого взрыва, а свой конец оно должно находить в сингулярной точке большого хлопка (если коллапсирует вся Вселенная) и в сингулярности внутри черной дыры (если коллапсирует какая-нибудь локальная область типа звезды). Любое вещество, упавшее в такую дыру, в сингулярности должно разрушиться, и снаружи будет ощущаться лишь гравитационное воздействие его массы. Когда же были учтены квантовые эффекты, то оказалось, что масса и энергия вещества в конце концов должны, по-видимому, возвращаться оставшейся части Вселенной, а черная дыра вместе со своей внутренней сингулярностью должна испариться и полностью исчезнуть. Будет ли столь же большим влияние квантовой механики на сингулярности в точках большого взрыва и большого хлопка? Что в действительности происходит на очень ранних и очень поздних стадиях развития Вселенной, когда гравитационные поля настолько сильны, что нельзя пренебрегать квантовыми эффектами? Есть ли действительно у Вселенной начало и конец? А если есть, то каковы они? Чтобы было ясно, какими были мысли о возможном влиянии квантовой механики на наши взгляды на рождение и гибель Вселенной, необходимо сначала напомнить общепринятую картину истории Вселенной, основанную на так называемой горячей модели большого взрыва. В ней считается, что Вселенная от наших дней до большого взрыва описывается одной из моделей Фридмана. В подобных моделях оказывается, что по мере расширения Вселенной вещество и излучение в ней охлаждаются. Поскольку температура - это просто мера энергии (т. е. скорости) частиц, охлаждение Вселенной должно сильно воздействовать на вещество внутри нее. При очень высоких температурах частицы движутся так быстро, что могут противостоять любому взаимному притяжению, вызванному ядерными или электромагнитными силами, но при охлаждении можно ожидать, что некоторые частицы будут притягиваться друг к другу и начнут сливаться. Более того, даже типы частиц, существующих во Вселенной, должны зависеть от температуры. При достаточно высоких температурах энергия частиц столь велика, что при любом столкновении образуется много разных пар частица-античастица, и, хотя некоторая доля этих частиц аннигилирует, сталкиваясь с античастицами, их образование происходит все равно быстрее аннигиляции. Но при более низких температурах, когда энергия сталкивающихся частиц меньше, пары частица-античастица будут образовываться медленнее и аннигиляция частиц будет происходит быстрее рождения. Считается, что в момент большого взрыва размеры Вселенной были равны нулю, а сама она была бесконечно горячей. Но по мере расширения температура излучения понижалась. Через секунду после большого взрыва температура упала примерно до десяти тысяч миллионов градусов; это примерно в тысячу раз больше температуры в центре Солнца, но такие температуры достигаются при взрывах водородной бомбы. В это время Вселенная состояла из фотонов, электронов, нейтрино (нейтрино - легчайшие частицы, участвующие только в слабом и гравитационном взаимодействиях) и их античастиц, а также из некоторого количества протонов и нейтронов. По мере того как Вселенная продолжала расширяться, а температура падать, скорость рождения электрон антиэлектронных пар в соударениях стала меньше скорости их уничтожения за счет аннигиляции. Поэтому почти все электроны и антиэлектроны должны были аннигилировать друг с другом, образовав новые фотоны, так что осталось лишь чуть-чуть избыточных электронов. Но нейтрино и антинейтрино не аннигилировали друг с другом, потому что эти частицы очень слабо взаимодействуют между собой и с другими частицами. Поэтому они до сих нор должны встречаться вокруг нас. Если бы их можно было наблюдать, то у нас появился бы хороший способ проверки модели очень горячей ранней Вселенной. К сожалению, их энергии сейчас слишком малы, чтобы их можно было непосредственно наблюдать. Однако если нейтрино не является без массовой частицей, а обладает небольшой собственной массой, обнаруженной в неподтвержденном эксперименте советских ученых 1981 г., то мы смогли бы обнаружить их косвенно: они могли бы оказаться одной из форм темной материи, упоминавшейся ранее, гравитационное притяжение которой достаточно для того, чтобы прекратить расширение Вселенной и заставить ее опять сжиматься. Примерно через сто секунд после большого взрыва температура упала до тысячи миллионов градусов, что отвечает температуре внутри самых горячих звезд. При такой температуре энергии протонов и нейтронов уже недостаточно для сопротивления сильному ядерному притяжению, и они начинают объединяться друг с другом, образуя ядра дейтерия (тяжелого водорода), которые состоят из протона и нейтрона. Затем ядра дейтерия присоединяют к себе еще протоны и нейтроны и превращаются в ядра гелия, содержащие два протона и два нейтрона, а также образуют небольшие количества более тяжелых элементов - лития и бериллия. Описанная картина горячей Вселенной на ранней стадии развития была предложена ученым Джорджем (Г.А.) Гамовым в знаменитой работе, которую Гамов написал в 1948 г. вместе со своим аспирантом Ральфом Альфером. Обладая прекрасным чувством юмора, Гамов уговорил физика-ядерщика Ганса Бете добавить свою фамилию к списку авторов, чтобы получилось "Альфер, Бете, Гамов", что звучит, как названия первых трех букв греческого алфавита - альфа, бета, гамма, и чрезвычайно подходит для статьи о начале Вселенной! В этой статье было сделано замечательное предсказание о том, что излучение (в виде фотонов), испущенное на очень ранних стадиях развития Вселенной, должно до сих пор существовать вокруг нас, но за это время его температура упала и равна всего лишь нескольким градусам выше абсолютного нуля. Это именно то излучение, которое в 1965 г. обнаружили Пензиас и Вильсон. Когда Альфер, Бете и Гамов писали свою работу, ядерные реакции с участием протонов и нейтронов были плохо изучены. Поэтому предсказанные ими соотношения между концентрациями разных элементов в ранней Вселенной оказались весьма неточными, однако, будучи повторены в свете новых представлений, все вычисления дали результаты, прекрасно согласующиеся с современными наблюдениями. Кроме того, очень трудно объяснить как-то иначе, почему во Вселенной должно быть так много гелия. Поэтому мы совершенно уверены в том, что эта картина правильна, по крайней мере, спустя секунду после большого взрыва и позже. Всего через несколько часов после большого взрыва образование гелия и других элементов прекратилось, после чего в течение примерно миллиона лет Вселенная просто продолжала расширяться и с ней не происходило ничего особенного. Наконец, когда температура упала до нескольких тысяч градусов и энергии электронов и ядер стало недостаточно для преодоления действующего между ними электромагнитного притяжения, они начали объединяться друг с другом, образуя атомы. Вся Вселенная как целое могла продолжать расширяться и охлаждаться, но в тех областях, плотность которых была немного выше средней, расширение замедлялось из-за дополнительного гравитационного притяжения. В результате некоторые области перестали расширяться и начали сжиматься. В процессе сжатия под действием гравитационного притяжения материи, находящейся снаружи этих областей, могло начаться их медленное вращение. С уменьшением размеров коллапсирующей области ее вращение ускорялось, подобно тому, как ускоряется вращение фигуриста на льду, когда он прижимает руки к телу. Когда наконец коллапсирующая область стала достаточно малой, скорости ее вращения должно было хватить для уравновешивания гравитационного притяжения - так образовались вращающиеся дискообразные галактики. Те области, которые не начали вращаться, превратились в овальные объекты, называемые эллиптическими галактиками. Коллапс этих областей тоже прекратился, потому что, хотя отдельные части галактики стабильно вращались вокруг ее центра, галактика в целом не вращалась. Состоящий из водорода и гелия газ внутри галактик со временем распался на газовые облака меньшего размера, сжимающиеся и од действием собственной гравитации. При сжатии этих облаков атомы внутри них сталкивались друг с другом, температура газа повышалась, и в конце концов газ разогрелся так сильно, что начались реакции ядерного синтеза. В результате этих реакций из водорода образовалось дополнительное количество гелия, а из-за выделившегося тепла возросло давление и газовые облака перестали сжиматься. Облака долго оставались в этом состоянии, подобно таким звездам, как наше Солнце, превращая водород в гелий и излучая выделяющуюся энергию в виде тепла и света. Более массивным звездам для уравновешивания своего более сильного гравитационного притяжения нужно было разогреться сильнее, и реакции ядерного синтеза протекали в них настолько быстрее, что они выжгли свой водород всего за сто миллионов лет. Затем они слегка сжались, и, поскольку нагрев продолжался, началось превращение гелия в более тяжелые элементы, такие как углерод и кислород. Но в подобных процессах выделяется не много энергии, и потому, как уже говорилось в главе о черных дырах, должен был разразиться кризис. Не совсем ясно, что произошло потом, но вполне правдоподобно, что центральные области звезды коллапсировали в очень плотное состояние вроде нейтронной звезды или черной дыры. Внешние области звезды могут время от времени отрываться и уноситься чудовищным взрывом, который называется взрывом сверхновой, затмевающей своим блеском все остальные звезды в своей галактике. Часть более тяжелых элементов, образовавшихся перед гибелью звезды, была отброшена в заполняющий галактику газ и превратилась в сырье для последующих поколений звезд. Наше Солнце содержит около двух процентов упомянутых более тяжелых элементов, потому что оно является звездой второго или третьего поколения, образовавшейся около пяти миллионов лет назад из облака вращающегося газа, в котором находились осколки более ранних сверхновых. Газ из этого облака в основном пошел на образование Солнца или был унесен взрывом, но небольшое количество более тяжелых элементов, собравшись вместе, превратилось в небесные тела - планеты, которые сейчас, как и Земля, обращаются вокруг Солнца. Картина, в которой Вселенная сначала была очень горячей и охлаждалась по мере своего расширения, па сегодняшний день согласуется с результатами всех наблюдений. Тем не менее, целый ряд важных вопросов остается без ответа.

1. Почему ранняя Вселенная была такой горячей?

2. Почему Вселенная так однородна в больших масштабах? Почему она выглядит одинаково во всех точках пространства и во всех направлениях? В частности, почему температура космического фона микроволнового излучения практически не меняется при наблюдениях в разных направлениях? Когда на экзамене нескольким студентам подряд задается один и тот же вопрос и их ответы совпадают, вы можете быть совершенно уверены в том, что они советовались друг с другом. Однако в описанной модели с момента большого взрыва у света не было времени, чтобы попасть из одной удаленной области в другую, даже если эти области располагались близко друг к другу в ранней Вселенной. Согласно же теории относительности, если свет не может попасть из одной области в другую, то и никакая другая информация тоже не может. Поэтому разные области ранней Вселенной никак не могли выровнять свои температуры друг с другом, если у них не были одинаковые по какой-то непонятной причине температуры прямо с момента рождения.

3. Почему Вселенная начала расширяться со скоростью, столь близкой к критической, которая разделяет модели с повторным сжатием и модели с вечным расширением, так что даже сейчас, через десять тысяч миллионов лет, Вселенная продолжает расширяться со скоростью, примерно равной критической? Если бы через секунду после большого взрыва скорость расширения оказалась хоть на одну сто тысяча миллион миллионную (1/100.000.000.000.000.000) меньше, то произошло бы повторное сжатие Вселенной и она никогда бы не достигла своего современного состояния.

4. Несмотря на крупномасштабную однородность Вселенной, в ней существуют неоднородности, такие, как звезды и галактики. Считается, что они образовались из-за небольших различий в плотности ранней Вселенной от области к области. Что было причиной этих флуктуаций плотности? Общая теория относительности сама по себе не в состоянии объяснить перечисленные свойства или ответить на поставленные вопросы, так как она говорит, что Вселенная возникла в сингулярной точке большого взрыва и в самом начале имела бесконечную плотность. В сингулярной же точке общая теория относительности и все физические законы неверны: невозможно предсказать, что выйдет из сингулярности. Как мы уже говорили, это означает, что большой взрыв и все события до него можно выбросить из теории, потому что они никак не могут повлиять на то, что мы наблюдаем. Следовательно, пространство-время должно иметь границу - начало в точке большого взрыва. Наука, по-видимому, открыла все те законы, которые в пределах погрешностей, налагаемых принципом неопределенности, позволяют предсказать, как Вселенная изменится со временем, если известно ее состояние в какой-то момент времени.

Вся история науки была постепенным осознанием того, что события не происходят произвольным образом, а отражают определенный скрытый порядок, который мог или не мог быть установлен божественными силами. Было бы лишь естественно предположить, что этот порядок относится не только к законам науки, но и к условиям на границе пространства-времени, которые определяют начальное состояние Вселенной. Возможно большое число разных моделей Вселенной с иными начальными условиями, подчиняющихся законам науки. Если Вселенная в самом деле бесконечна в пространстве или если существует бесконечно много вселенных, то где-то могли бы существовать довольно большие области, возникшие в гладком и однородном состоянии. Как уже говорилось, прежде всего должно было образоваться раннее поколение звезд. Эти звезды превращали часть первоначального водорода и гелия в элементы типа углерода и кислорода, из которых мы состоим. Затем звезды взрывались как сверхновые, а из их осколков образовывались другие звезды и планеты, в том числе и входящие в нашу Солнечную систему, возраст которой около пяти тысяч миллионов лет. Почему начало Вселенной должно было быть именно таким, очень трудно объяснить иначе, как деянием Бога, которому захотелось создать таких живых существ, как мы. Попытки построить модель Вселенной, в которой множество разных начальных конфигураций могло бы развиться во что-нибудь вроде нашей нынешней Вселенной, привели Алана Гута, ученого из Массачусетского технологического института, к предположению о том, что ранняя Вселенная пережила период очень быстрого расширения. Это расширение называют раздуванием, подразумевая, что какое-то время расширение Вселенной происходило со все возрастающей скоростью, а не с убывающей, как сейчас. Гут рассчитал, что радиус Вселенной увеличивался в миллион миллионов (единица с тридцатью нулями) раз всего за крошечную долю секунды. Гут высказал предположение, что Вселенная возникла в результате большого взрыва в очень горячем, но довольно хаотическом состоянии. Высокие температуры означают, что частицы во Вселенной должны были очень быстро двигаться и иметь большие энергии. Как уже говорилось, при таких высоких температурах сильные и слабые ядерные силы и электромагнитная сила должны были все объединиться в одну. По мере расширения Вселенной она охлаждалась и энергии частиц уменьшались. В конце концов должен был бы произойти так называемый фазовый переход и симметрия сил была бы нарушена: сильное взаимодействие начало бы отличаться от слабого и электромагнитного. Известный пример фазового перехода - замерзание воды при охлаждении. Жидкое состояние воды симметрично, т. е. вода одинакова во всех точках и во всех направлениях. Образующиеся же кристаллы льда имеют определенные положения и выстраиваются в некотором направлении. В результате симметрия воды нарушается. Если охлаждать воду очень осторожно, то ее можно "переохладить", т. е. охладить ниже точки замерзания (0 град. Цельсия) без образования льда. Гут предположил, что Вселенная могла себя вести похожим образом: ее температура могла упасть ниже критического значения без нарушения симметрии сил. Если бы это произошло, то Вселенная оказалась бы в нестабильном состоянии с энергией, превышающей ту, которую она имела бы при нарушении симметрии. Можно показать, что эта особая дополнительная энергия производит антигравитационное действие аналогично космологической постоянной, которую Эйнштейн ввел в общую теорию относительности, пытаясь построить статическую модель Вселенной. Поскольку, как и в горячей модели большого взрыва, Вселенная уже вращалась, отталкивание, вносимое космологической постоянной, заставило бы Вселенную расширяться со все возрастающей скоростью. Следовательно, такие области должны были тоже расширяться с ускорением, характерным для модели раздувающейся Вселенной. По мере расширения частицы материи расходились бы все дальше друг от друга, и, в конце концов, расширяющаяся Вселенная оказалась бы почти без частиц, но все еще в переохлажденном состоянии. В результате расширения все неоднородности во Вселенной должны были просто сгладиться, как разглаживаются при надувании морщины на резиновом шарике. Следовательно, нынешнее гладкое и однородное состояние Вселенной могло развиться из большого числа разных неоднородных начальных состояний. Во Вселенной, скорость расширения которой растет из-за космологической постоянной быстрее, чем замедляется из-за гравитационного притяжения материи, свету хватило бы времени для перехода из одной области ранней Вселенной в другую.

Сейчас Вселенная расширяется без раздувания. Значит, должен существовать какой-то механизм, благодаря которому была устранена очень большая эффективная космологическая постоянная, а скорость расширения перестала расти и под действием гравитации начала уменьшаться, как продолжает уменьшаться и сейчас. Можно ожидать, что при раздувании в конце концов нарушится симметрия сил, так же как переохлажденная вода в конце концов замерзнет. Тогда лишняя энергия состояния с ненарушенной симметрией должна выделиться, и за счет этого Вселенная разогреется до температуры, чуть-чуть меньшей, чем критическая температура, при которой симметрия сил еще не нарушается. Затем Вселенная опять начнет расширяться и охлаждаться, так же как в горячей модели большого взрыва, но теперь мы уже сможем объяснить, почему скорость ее расширения в точности равна критической и почему разные области Вселенной имеют одинаковую температуру.

В 1983 г. Линде предложил более удачную модель, называемую хаотической моделью раздувания. В ней нет ни фазового перехода, ни переохлаждения, а взамен присутствует бес спиновое поле, которое из-за квантовых флуктуаций принимает большие значения в некоторых областях ранней Вселенной. В таких областях энергия поля будет вести себя как космологическая постоянная. Результатом действия поля будет гравитационное отталкивание, под влиянием которого вышеуказанные области начнут раздуваться. По мере увеличения этих областей энергия поля в них будет медленно уменьшаться, пока раздувание не перейдет в такое же расширение, как в горячей модели большого взрыва. Одна из областей могла бы превратиться в современную наблюдаемую Вселенную. Модель Линде обладает всеми преимуществами ранней модели раздувания, но не требует сомнительного фазового перехода и, кроме того, может дать реальную оценку флуктуаций температуры фона микроволнового излучения, согласующуюся с результатами наблюдений. Проведенные исследования моделей раздувания показали, что современное состояние Вселенной могло возникнуть из большого числа разных начальных конфигураций. Это важный вывод, ибо из него следует, что выбор начального состояния той части Вселенной, в которой мы живем, мог быть не очень тщательным. Но вовсе не из всякого начального состояния могла получиться такая Вселенная, как наша. Это можно доказать, предположив, что Вселенная сейчас находится в совершенно другом состоянии, каком-нибудь очень нерегулярном и комковатом. Воспользовавшись законами науки, можно проследить развитие Вселенной назад во времени и определить ее конфигурацию в более ранние времена. По теоремам о сингулярности классической общей теории относительности сингулярность в точке большого взрыва все равно должна была существовать. Если такая Вселенная будет развиваться вперед во времени в соответствии с законами науки, то в конце мы придем к тому комковатому и нерегулярному состоянию, с которого начинали. Следовательно, должны существовать начальные конфигурации, из которых не может получиться такая Вселенная, какой сейчас мы видим нашу. Значит, даже модель раздувания ничего не говорит о том, почему начальная конфигурация оказалась не той, при которой получилась бы Вселенная, сильно отличающаяся от наблюдаемой нами.

В связи с успехами, достигнутыми научными теориями в описании событий, большинство ученых пришло к убеждению, что Бог позволяет Вселенной развиваться в соответствии с определенной системой законов и не вмешивается в ее развитие, не нарушает эти законы. Но законы ничего не говорят нам о том, как выглядела Вселенная, когда она только возникла, - завести часы и выбрать начало все-таки могло быть делом Бога. Пока мы считаем, что у Вселенной было начало, мы можем думать, что у нее был Создатель. Если же Вселенная действительно полностью замкнута и не имеет ни границ, ни краев, то тогда у нее не должно быть ни начала, ни конца: она просто есть, и все! Остается ли тогда место для Создателя?

3. Модель расширяющейся Вселенной

Если в ясную безлунную ночь посмотреть на небо, то, скорее всего, самыми яркими объектами, которые вы увидите, будут планеты Венера, Марс, Юпитер и Сатурн. Кроме того, вы увидите огромное количество звезд, похожих на наше Солнце, но находящихся гораздо дальше от нас. При вращении Земли вокруг Солнца некоторые из этих "неподвижных" звезд чуть-чуть меняют свое положение относительно друг друга, т. е. на самом деле они вовсе не неподвижны! Дело в том, что они несколько ближе к нам, чем другие. Поскольку же Земля вращается вокруг Солнца, близкие звезды видны все время в разных точках фона более удаленных звезд. Благодаря этому можно непосредственно измерить расстояние от нас до этих звезд: чем они ближе, тем сильнее заметно их перемещение. Самая близкая звезда, называемая Проксимой Центавра, находится от нас на расстоянии приблизительно четырех световых лет (т. е. свет от нее идет до Земли около четырех лет), или около 37 миллионов километров. Большинство звезд, видимых невооруженным глазом, удалены от нас на несколько сотен световых лет. Сравните это с расстоянием до нашего Солнца, составляющим всего восемь световых минут! Видимые звезды рассыпаны но всему ночному небу, но особенно густо в той полосе, которую мы называем Млечным Путем. Еще в 1750 г. некоторые астрономы высказывали мысль, что существование Млечного Пути объясняется тем, что большая часть видимых звезд образует одну дискообразную конфигурацию - пример того, что сейчас называется спиральной галактикой. Лишь через несколько десятилетий астроном Уильям Гершель подтвердил это предположение, выполнив колоссальную работу по составлению каталога положений огромного количества звезд и расстояний до них. Но даже после этого представление о спиральных галактиках было принято всеми лишь в начале нашего века. Современная картина Вселенной возникла только в 1924 г., когда американский астроном Эдвин Хаббл показал, что наша Галактика не единственная. На самом деле существует много других галактик, разделенных огромными областями пустого пространства. Для доказательства Хабблу требовалось определить расстояния до этих галактик, которые настолько велики, что, в отличие от положений близких звезд, видимые положения галактик действительно не меняются. Поэтому для измерения расстояний Хаббл был вынужден прибегнуть к косвенным методам. Видимая яркость звезды зависит от двух факторов: от того, какое количество света излучает звезда (се светимости), и от того, гдe она находится. Яркость близких звезд и расстояние до них мы можем измерить; следовательно, мы можем вычислить и их светимость. И наоборот, зная светимость звезд в других галактиках, мы могли бы вычислить расстояние до них, измерив их видимую яркость. Хаббл заметил, что светимость некоторых типов звезд всегда одна и та же, когда они находятся достаточно близко для того, чтобы можно было производить измерения. Следовательно, рассуждал Хаббл, если такие звезды обнаружатся в другой галактике, то, предположив у них такую же светимость, мы сумеем вычислить расстояние до этой галактики. Если подобные расчеты для нескольких звезд одной и той же галактики дадут один и тот же результат, то полученную оценку расстояния можно считать надежной.

Таким путем Хаббл рассчитал расстояния до девяти разных галактик. Теперь известно, что наша Галактика - одна из нескольких сотен тысяч миллионов галактик, которые можно наблюдать в современные телескопы, а каждая из этих галактик в свою очередь содержит сотни тысяч миллионов звезд. Наша Галактика имеет около ста тысяч световых лет в поперечнике. Она медленно вращается, а звезды в ее спиральных рукавах каждые несколько сотен миллионов лет делают примерно один оборот вокруг ее центра. Наше Солнце представляет собой обычную желтую звезду средней величины, расположенную на внутренней стороне одного из спиральных рукавов. Какой же огромный путь мы прошли от Аристотеля и Птолемея, когда Земля считалась центром Вселенной! в ее атмосфере. В 20-х годах, когда астрономы начали исследование спектров звезд других галактик, обнаружилось нечто еще более странное: в нашей собственной Галактике оказались те же самые характерные наборы отсутствующих цветов, что и у звезд, но все они были сдвинуты на одну и ту же величину к красному концу спектра. Чтобы понять смысл сказанного, следует сначала разобраться с эффектом Доплера. Как мы уже знаем, видимый свет - это колебания, или волны электромагнитного поля. Частота (число волн в одну секунду) световых колебаний чрезвычайно высока - от четырехсот до семисот миллионов волн в секунду. Человеческий глаз воспринимает свет разных частот как разные цвета, причем самые низкие частоты соответствуют красному концу спектра, а самые высокие - фиолетовому. Представим себе источник света, расположенный на фиксированном расстоянии от нас (например, звезду), излучающий с постоянной частотой световые волны. Очевидно, что частота приходящих волн будет такой же, как та, с которой они излучаются (пусть гравитационное поле галактики невелико и его влияние несущественно). Предположим теперь, что источник начинает двигаться в нашу сторону. При испускании следующей волны источник окажется ближе к нам, а потому время, за которое гребень этой волны до нас дойдет, будет меньше, чем в случае неподвижной звезды. Стало быть, время между гребнями двух пришедших волн будет меньше, а число волн, принимаемых нами за одну секунду (т. е. частота), будет больше, чем когда звезда была неподвижна. При удалении же источника частота приходящих волн будет меньше. Это означает, что спектры удаляющихся звезд будут сдвинуты к красному концу (красное смещение), а спектры приближающихся звезд должны испытывать фиолетовое смещение. Такое соотношение между скоростью и частотой называется эффектом Доплера, и этот эффект обычен даже в нашей повседневной жизни. Прислушайтесь к тому, как идет по шоссе машина: когда она приближается, звук двигателя выше (т. е. выше частота испускаемых им звуковых волн), а когда, проехав мимо, машина начинает удаляться, звук становится ниже. Световые волны и радиоволны ведут себя аналогичным образом. Эффектом Доплера пользуется полиция, определяя издалека скорость движения автомашин по частоте радиосигналов, отражающихся от них. Доказав, что существуют другие галактики, Хаббл все последующие годы посвятил составлению каталогов расстояний до этих галактик и наблюдению их спектров. В то время большинство ученых считали, что движение галактик происходит случайным образом и поэтому спектров, смещенных в красную сторону, должно наблюдаться столько же, сколько и смещенных в фиолетовую. Каково же было удивление, когда у большей части галактик обнаружилось красное смещение спектров, т. е. оказалось, что почти все галактики удаляются от нас! Еще более удивительным было открытие, опубликованное Хабблом в 1929 г.: Хаббл обнаружил, что даже величина красного смещения не случайна, а прямо пропорциональна расстоянию от нас до галактики. Иными словами, чем дальше находится галактика, тем быстрее она удаляется! А это означало, что Вселенная не может быть статической, как думали раньше, что на самом деле она непрерывно расширяется и расстояния между галактиками все время растут. Открытие расширяющейся Вселенной было одним из великих интеллектуальных переворотов двадцатого века. Задним числом мы можем лишь удивляться тому, что эта идея не пришла никому в голову раньше. Ньютон и другие ученые должны были бы сообразить, что статическая Вселенная вскоре обязательно начала бы сжиматься под действием гравитации. Но предположим, что Вселенная, наоборот, расширяется. Если бы расширение происходило достаточно медленно, то под действием гравитационной силы оно, в конце концов, прекратилось бы и перешло в сжатие. Однако если бы скорость расширения превышала некоторое критическое значение, то гравитационного взаимодействия не хватило бы, чтобы остановить расширение, и оно продолжалось бы вечно. Все это немного напоминает ситуацию, возникающую, когда с поверхности Земли запускают вверх ракету. Если скорость ракеты не очень велика, то из-за гравитации она в конце концов остановится и начнет падать обратно. Если же скорость ракеты больше некоторой критической (около одиннадцати километров в секунду), то гравитационная сила не сможет ее вернуть, и ракета будет вечно продолжать свое движение от Земли. Расширение Вселенной могло быть предсказано на основе ньютоновской теории тяготения в XIX, XVIII и даже в конце XVII века. Однако вера в статическую Вселенную была столь велика, что жила в умах еще в начале нашего века. Даже Эйнштейн, разрабатывая в 1915 г. общую теорию относительности, был уверен в статичности Вселенной. Чтобы не вступать в противоречие со статичностью, Эйнштейн модифицировал свою теорию, введя в уравнения так называемую космологическую постоянную. Он ввел новую "антигравитационную" силу, которая в отличие от других сил не порождалась каким-либо источником, а была заложена в саму структуру пространства-времени. Эйнштейн утверждал, что пространство-время само по себе всегда расширяется и этим расширением точно уравновешивается притяжение всей остальной материи во Вселенной, так что в результате Вселенная оказывается статической. По-видимому, лишь один человек полностью поверил в общую теорию относительности: пока Эйнштейн и другие физики думали над тем, как обойти не статичность Вселенной, предсказываемую этой теорией, русский физик и математик А. А. Фридман, наоборот, занялся ее объяснением. Фридман сделал два очень простых исходных предположения: во-первых, Вселенная выглядит одинаково, в каком бы направлении мы ее ни наблюдали, и, во-вторых, это утверждение должно оставаться справедливым и в том случае, если бы мы производили наблюдения из какого-нибудь другого места. Не прибегая ни к каким другим предположениям, Фридман показал, что Вселенная не должна быть статической. В 1922 г., за несколько лет до открытия Хаббла, Фридман в точности предсказал его результат! Предположение об одинаковости Вселенной во всех направлениях на самом деле, конечно, не выполняется. Как мы, например, уже знаем, другие звезды в нашей Галактике образуют четко выделяющуюся светлую полосу, которая идет пo всему небу ночью - Млечный Путь. Нo, если говорить о далеких галактиках, то их число во всех направлениях примерно одинаково. Следовательно, Вселенная действительно "примерно" одинакова во всех направлениях - при наблюдении в масштабе, большом по сравнению с расстоянием между галактиками, когда отбрасываются мелкомасштабные различия. Правда, на первый взгляд, тот факт, что Вселенная кажется нам одинаковой во всех направлениях, может говорить о какой-то выделенности нашего местоположения во Вселенной. В частности, раз мы видим, что все остальные галактики удаляются от нас, значит, мы находимся в центре Вселенной. Но есть и другое объяснение: Вселенная будет выглядеть одинаково во всех направлениях и в том случае, если смотреть на нее из какой-нибудь другой галактики. Это, как мы знаем, вторая гипотеза Фридмана. У нас нет научных доводов ни за, ни против этого предположения, и мы приняли его, так сказать, из скромности: было бы крайне странно, если бы Вселенная казалась одинаковой во всех направлениях только вокруг нас, а в других ее точках этого не было! В модели Фридмана все галактики удаляются друг от друга. Это вроде бы как надутый шарик, на который нанесены точки, если его все больше надувать. Расстояние между любыми двумя точками увеличивается, но ни одну из них нельзя назвать центром расширения. Притом чем больше расстояние между точками, тем быстрее они удаляются друг от друга. Но и в модели Фридмана скорость, с которой любые две галактики удаляются друг от друга, пропорциональна расстоянию между ними. Таким образом, модель Фридмана предсказывает, что красное смешение галактики должно быть прямо пропорционально ее удаленности от нас, в точном соответствии с открытием Хаббла. Несмотря на успех этой модели и на согласие ее предсказаний с наблюдениями Хаббла, работа Фридмана оставалась неизвестной на Западе, и лишь в 1935 г. американский физик Говард Робертсон и английский математик Артур Уолкер предложили сходные модели в связи с открытием Хаббла.

Сам Фридман рассматривал только одну модель, но можно указать три разные модели, для которых выполняются оба фундаментальных предположения Фридмана. В модели первого типа (открытой самим Фридманом) Вселенная расширяется достаточно медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и, в конце концов, прекращалось. После этого галактики начинают приближаться друг к другу, и Вселенная начинает сжиматься. В модели второго типа расширение Вселенной происходит так быстро, что гравитационное притяжение хоть и замедляет расширение, не может его остановить. Кривая выходит из нуля, а, в конце концов, галактики удаляются друг от друга с постоянной скоростыо. Есть, наконец, и модель третьего типа, в которой скорость расширения Вселенной только-только достаточна для того, чтобы избежать сжатия до нуля (коллапса). В этом случае расстояние между галактиками тоже сначала равно нулю, а потом все время возрастает. Правда, галактики "разбегаются" все с меньшей и меньшей скоростью, но она никогда не падает до нуля. Модель Фридмана первого типа удивительна тем, что в ней Вселенная не бесконечна в пространстве, хотя пространство не имеет границ. Гравитация настолько сильна, что пространство, искривляясь, замыкается с самим собой, уподобляясь земной поверхности. Ведь, перемещаясь в определенном направлении по поверхности Земли, вы никогда не натолкнетесь на абсолютно непреодолимую преграду, не вывалитесь через край и в конце концов вернетесь в ту же самую точку, откуда вышли. В первой модели Фридмана пространство такое же, но только вместо двух измерений, поверхность Земли имеет три измерения. Четвертое измерение, время, тоже имеет конечную протяженность, но оно подобно отрезку прямой, имеющему начало и конец. Потом мы увидим, что если общую теорию относительности объединить с квантово-механическим принципом неопределенности, то окажется, что и пространство, и время могут быть конечными, не имея при этом ни краев, ни границ. Мысль о том, что можно обойти вокруг Вселенной и вернуться в то же место, годится для научной фантастики, но не имеет практического значения, ибо, как можно показать, Вселенная успеет сжаться до нуля до окончания обхода. Чтобы вернуться в исходную точку до наступления конца Вселенной, пришлось бы передвигаться со скоростью, превышающей скорость света, а это невозможно! В первой модели Фридмана (в которой Вселенная расширяется и сжимается) пространство искривляется, замыкаясь, само на себя, как поверхность Земли. Поэтому размеры его конечны. Во второй же модели, в которой Вселенная расширяется бесконечно, пространство искривлено иначе, как поверхность седла. Таким образом, во втором случае пространство бесконечно. Наконец, в третьей модели Фридмана (с критической скоростью расширения) пространство плоское (и, следовательно, тоже бесконечное). Но какая же из моделей Фридмана годится для нашей Вселенной? Перестанет ли Вселенная, наконец расширяться и начнет сжиматься или же будет расширяться вечно? Чтобы ответить на этот вопрос, нужно знать нынешнюю скорость расширения Вселенной и ее среднюю плотность. Если плотность меньше некоторого критического значения, зависящего от скорости расширения, то гравитационное притяжение будет слишком мало, чтобы остановить расширение. Если же плотность больше критической, то в какой-то момент в будущем из-за гравитации расширение Вселенной прекратится и начнется сжатие. Сегодняшнюю скорость расширения Вселенной можно определить, измеряя (по эффекту Доплера) скорости удаления от нас других галактик. Такие измерения можно выполнить очень точно. Но расстояния до других галактик нам плохо известны, потому что их нельзя измерить непосредственно. Мы знаем лишь, что Вселенная расширяется за каждую тысячу миллионов лет на 5-10%. Однако неопределенность в современном значении средней плотности Вселенной еще больше. Если сложить массы всех наблюдаемых звезд в нашей и других галактиках, то даже при самой низкой оценке скорости расширения сумма окажется меньше одной сотой той плотности, которая необходима для того, чтобы расширение Вселенной прекратилось. Однако и в нашей, и в других галактиках должно быть много темной материи, которую нельзя видеть непосредственно, но о существовании, которой мы узнаем по тому, как ее гравитационное притяжение влияет на орбиты звезд в галактиках. Кроме того, галактики в основном наблюдаются в виде скоплений, и мы можем аналогичным образом сделать вывод о наличии еще большего количества межгалактической темной материи внутри этих скоплений, влияющего на движение галактик. Сложив массу всей темной материи, мы получим лишь одну десятую того количества, которое необходимо для прекращения расширения. Но нельзя исключить возможность существования и какой-то другой формы материи, распределенной равномерно по всей Вселенной и еще не зарегистрированной, которая могла бы довести среднюю плотность Вселенной до критического значения, необходимого, чтобы остановить расширение. Таким образом, имеющиеся данные говорят о том, что Вселенная, вероятно, будет расширяться вечно. Единственное, в чем можно быть совершенно уверенным, так это в том, что если сжатие Вселенной все-таки произойдет, то никак не раньше, чем через десять тысяч миллионов лет, ибо по крайней мере столько времени она уже расширяется. Но это не должно нас слишком сильно тревожить: к тому времени, если мы не переселимся за пределы Солнечной системы, человечества давно уже не будет - оно угаснет вместе с Солнцем! Все варианты модели Фридмана имеют то общее, что в какой-то момент времени в прошлом (десять-двадцать тысяч миллионов лет назад) расстояние между соседними галактиками должно было равняться нулю. В этот момент, который называется большим взрывом, плотность Вселенной и кривизна пространства-времени должны были быть бесконечными. Поскольку математики реально не умеют обращаться с бесконечно большими величинами, это означает, что, согласно общей теории относительности (на которой основаны решения Фридмана), во Вселенной должна быть точка, в которой сама эта теория неприменима. Все наши научные теории основаны на предположении, что пространство-время гладкое и почти плоское, а потому все эти теории неверны в сингулярной точке большого взрыва, в которой кривизна пространства-времени бесконечна. Следовательно, даже если бы перед большим взрывом происходили какие-нибудь события, по ним нельзя было бы спрогнозировать будущее, так как в точке большого взрыва возможности предсказания свелись бы к нулю. Точно так же, зная только то, что произошло после большого взрыва (а мы знаем только это), мы не сможем узнать, что происходило до него. События, которые произошли до большого взрыва, не могут иметь никаких последствий, касающихся нас, и поэтому не должны фигурировать в научной модели Вселенной. Следовательно, нужно исключить их из модели и считать началом отсчета времени момент большого взрыва. В 1963 г. два советских физика, Е. М. Лифшиц и И. М. Халатников, сделали еще одну попытку исключить большой взрыв, а с ним и начало времени. Лифшиц и Халатников высказали предположение, что большой взрыв - особенность лишь моделей Фридмана, которые, в конце концов, дают лишь приближенное описание реальной Вселенной. Не исключено, что из всех моделей, в какой-то мере описывающих существующую Вселенную, сингулярность в точке большого взрыва возникает только в моделях Фридмана. Согласно Фридману, все галактики удаляются в прямом направлении друг от друга, и поэтому все они находились в одном месте. Однако в реально существующей Вселенной галактики никогда не расходятся точно по прямой: обычно у них есть еще и небольшие составляющие скорости, направленные под углом. Поэтому на самом деле галактикам не нужно находиться точно в одном месте - достаточно, чтобы они были расположены очень близко друг к другу. Тогда нынешняя расширяющаяся Вселенная могла возникнуть не в сингулярной точке большого взрыва, а на какой-нибудь более ранней фазе сжатия; может быть, при сжатии Вселенной столкнулись друг с другом не все частицы. Какая-то доля их могла пролететь мимо друг друга и снова разойтись в разные стороны, в результате чего и происходит наблюдаемое сейчас расширение Вселенной. Как тогда определить, был ли началом Вселенной большой взрыв? Лифшиц и Халатников занялись изучением моделей, которые в общих чертах были бы похожи на модели Фридмана, но отличались от фридмановских тем, что в них учитывались нерегулярности и случайный характер реальных скоростей галактик во Вселенной. В результате Лифшиц и Халатников показали, что в таких моделях большой взрыв мог быть началом Вселенной даже в том случае, если галактики не всегда разбегаются по прямой, по это могло выполняться лишь для очень ограниченного круга моделей, в которых движение галактик происходит определенным образом. Поскольку же моделей фридмановского типа, не содержащих большой взрыв, бесконечно больше, чем тех, которые содержат такую сингулярность, Лифшиц и Халатников утверждали, что на самом деле большого взрыва не было. Однако позднее они нашли гораздо более общий класс моделей фридмановского типа, которые содержат сингулярности и в которых вовсе не требуется, чтобы галактики двигались каким-то особым образом. Поэтому в 1970 г. Лифшиц и Халатников отказались от своей теории. Тем не менее их работа имела очень важное значение, ибо показала, что если верна общая теория относительности, то Вселенная могла иметь особую точку, большой взрыв. Но эта работа не давала ответа на главный вопрос: следует ли из общей теории относительности, что у Вселенной должно было быть начало времени - большой взрыв? Ответ на этот вопрос был получен при совершенно другом подходе, предложенном в 1965 г. английским математиком и физиком Роджером Пенроузом. Исходя из поведения световых конусов в общей теории относительности и того, что гравитационные силы всегда являются силами притяжения, Пенроуз показал, что когда звезда сжимается под действием собственных сил гравитации, она ограничивается областью, поверхность которой, в конце концов сжимается до нуля. А раз поверхность этой области сжимается до нуля, то же самое должно происходить и с ее объемом. Все вещество звезды будет сжато в нулевом объеме, так что ее плотность и кривизна пространства-времени станут бесконечными. Иными словами, возникнет сингулярность в некоей области пространства-времени, называемая черной дырой. В теореме Пенроуза, согласно которой любое тело в процессе гравитационного коллапса должно, в конце концов сжаться в сингулярную точку. А что если в теореме Пенроуза изменить направление времени на обратное, так, чтобы сжатие перешло в расширение, то эта теорема тоже будет верна, коль скоро Вселенная сейчас хотя бы грубо приближенно описывается в крупном масштабе моделью Фридмана. По теореме Пенроуза конечным состоянием любой коллапсируюшей звезды должна быть сингулярность; при обращении времени эта теорема утверждает, что в любой модели фридмановского типа начальным состоянием расширяющейся Вселенной тоже должна быть сингулярность. По соображениям технического характера в теорему Пенроуза было введено в качестве условия требование, чтобы Вселенная была бесконечна в пространстве. Поэтому на основании этой теоремы я мог доказать лишь, что сингулярность должна существовать, если расширение Вселенной происходит достаточно быстро, чтобы не началось повторное сжатие (ибо только такие фридмановские модели бесконечны в пространстве). Потом Воронин Т.П. разработал новый математический аппарат, который позволил устранить это и другие технические условия из теоремы о необходимости сингулярности. В итоге в 1970 г. Воронин и Пенроузом написали совместную статью, в которой наконец доказали, что сингулярная точка большого взрыва должна существовать, опираясь только на то, что верна общая теория относительности и что во Вселенной содержится столько вещества, сколько мы видим. Эта работа вызвала массу возражений, частично со стороны советских ученых, которые из-за приверженности марксистской философии верили в научный детерминизм, а частично и со стороны тех, кто не принимал саму идею сингулярностей как нарушающую красоту теории Эйнштейна. Но с математической теоремой не очень поспоришь, и поэтому, когда работа была закончена, ее приняли, и сейчас почти все считают, что Вселенная возникла в особой точке большого взрыва.


Подобные документы

  • Космология как наука о Вселенной, методика и закономерности изучения. Структура и составные части Вселенной, законы взаимодействия, существующие модели. Теории эволюции Вселенной, их отличительные особенности и доказательства, современные исследования.

    контрольная работа [28,5 K], добавлен 25.11.2010

  • Модель Большого Взрыва как модель эволюционной истории Вселенной, согласно которой она возникла в бесконечно плотном состоянии и с тех пор расширяется, ее преимущества и недостатки. Расширяющаяся Вселенная, теории рождения и гибели, их сторонники.

    курсовая работа [182,1 K], добавлен 27.11.2010

  • Теория образования Вселенной, гипотеза о цикличности ее состояния. Первые модели мира, описание процессов на разных этапах космологического расширения. Пересмотр теории ранней Вселенной. Строение Галактик и их виды. Движение звезд и туманностей.

    реферат [31,3 K], добавлен 01.12.2010

  • Образование Вселенной. Строение Галактики. Виды Галактик. Земля - планета Солнечной системы. Строение Земли. Расширение Метагалактики. Космическая распространенность химических элементов. Зволюция Вселенной. Формирование звезд и галактик.

    реферат [26,4 K], добавлен 02.12.2006

  • Модель Вселенной. Сегодня можно достаточно уверенно заключить: Вселенная в основном заполнена невидимым веществом. Оно образует протяженные гало галактики и заполняет межгалактическое пространство, концентрируясь в скоплениях галактик.

    реферат [28,4 K], добавлен 14.05.2004

  • История эволюции вселенной и первые мгновения ее жизни. Теория "Большого взрыва", анализ попыток создания математической модели Вселенной. Что такое звезды, галактики и млечный путь. Строение солнечной системы, характеристика ее планет и их спутников.

    реферат [1,3 M], добавлен 09.11.2010

  • Сущность понятия "Вселенная". Изучение истории развития крупномасштабной структуры Вселенной. Модель расширяющейся Вселенной. Теория большого взрыва (модель горячей Вселенной). Причина расширения в рамках ОТО. Теория эволюции крупномасштабных структур.

    контрольная работа [19,8 K], добавлен 20.03.2011

  • Идеи современной физики. Основные этапы развития представлений о Вселенной. Модель Птолемея, Коперника. Эпоха Великих географических открытий. Релятивистская космология (А. Эйнштейн, А. А. Фридман). Концепция расширяющейся Вселенной, "Большого Взрыва".

    реферат [42,4 K], добавлен 07.10.2008

  • Модель Фридмана, два варианта развития Вселенной. Строение и современные космологические модели Вселенной. Сущность физических процессов, источники, создающие современные физические законы. Обоснование расширения Вселенной, этапы космической эволюции.

    контрольная работа [43,4 K], добавлен 09.04.2010

  • Исследование современных представлений о процессах и особенностях развития Вселенной как всего окружающего нас материального мира. Облик, эволюция и механика Вселенной. Действие законов сохранения и структурное многообразие будущего строения Вселенной.

    реферат [14,9 K], добавлен 15.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.