Effect of high salt stress on germination and growth of some varieties of common beet

Information is provided on soil salinization as the most common abiotic stress that reduces the productivity and quality of agricultural plants. Salt stress is associated with lipid peroxidation in cell membranes, DNA damage, protein denaturation.

Рубрика Сельское, лесное хозяйство и землепользование
Вид статья
Язык английский
Дата добавления 10.10.2024
Размер файла 28,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Effect of high salt stress on germination and growth of some varieties of common beet

Hajiyeva I., Institute of Bioresources, Ganja, Azerbaijan

Abstract

Information is provided on soil salinization as the most common abiotic stress that reduces the productivity and quality of agricultural plants. Salt stress is associated with lipid peroxidation in cell membranes, DNA damage, protein denaturation, carbohydrate oxidation, pigment breakdown and disruption of enzymatic activity, as well as metabolic adaptations, including primarily the accumulation of osmolytes. The growth of higher plants in saline soil depends on the salt tolerance of the plant species. Reduced plant growth due to salinity includes a reduction in plant leaf area. A pot experiment plant materials was carried out based on investigate the effect of salt stress on growth and state stomatal of three sugar beet (Beta vulgaris) cultivars, Cooper, Tarifa and Taltos which import from Denmark. Plants were harvested after 30, 45 and 60 days of salt treatment and were separated into leaf lamina, petioles, stem, and roots.

Keywords: osmolytes, plant growth, soils, salt stress, sugar beet.

Аннотация

ВЛИЯНИЕ ВЫСОКОГО СОЛЕВОГО СТРЕССА НА ВСХОЖЕСТЬ И РОСТ НЕКОТОРЫХ СОРТОВ СВЕКЛЫ ПОСЕВНОЙ

Гаджиева И. Н., Институт биоресурсов,

г. Гянджа, Азербайджан

Приведена информации о засолении почв, как наиболее распространенных абиотических стрессов, снижающих продуктивность и качество сельскохозяйственных растений. Солевой стресс взаимосвязан с перекисным окислением липидов в клеточных мембранах, повреждением ДНК, денатурацией белков, окислением углеводов, распадом пигментов и нарушением ферментативной активности, а также метаболическими адаптациями, включающими преимущественно накопление осмолитов. Рост высших растений в засоленной почве зависит от солеустойчивости видов растений. Снижение роста растений из-за засоления включает уменьшение площади листьев растения. Эксперимент с растительными материалами в горшках был проведен на основе изучения влияния солевого стресса на рост и состояние устьиц трех сортов сахарной свеклы (Beta vulgaris): Cooper, Tarifa и Taltos, которые импортируются из Дании. Растения собирали после 30, 45 и 60 дней обработки солью и разделяли на листовую пластинку, черешки, стебель и корни.

Ключевые слова: осмолиты, рост растений, почва, солевой стресс, сахарная свекла.

Many authors reported that salinity is considered as one of the most common abiotic stresses reducing the productivity and fruit quality of crop plants [1-3].

The major contributing factors to soil salinization include climate change, leading to land degradation and desertification [4], as well as the poor quality of irrigation water and irrational fertilization management, which results in reduced productivity in either irrigated or rain fed farming systems [5].

The compromised crop performance is the result of a combined osmotic and ionic stress that induces complex interactions at morphological, physiological, biochemical and molecular level [6, 7] thus leading to altered photosynthetic activity, detoxification capacity, energy state and plant cellular homeostasis [8-10].

In particular, salt stress is interlinked with lipid peroxidation in cellular membranes, DNA damage, protein denaturation, carbohydrate oxidation, pigment break down and impairment of enzymatic activity, as well as metabolic adaptations, mainly involving the accumulation of osmolytes [11].

Osmolyte accumulation acts in favor of cell water uptake and cell turgor maintenance, stabilization of membranes, enzymes and proteins and the reduction of oxidative damage due to decreased reactive oxygen species (ROS) levels, thereby contributing to redox balance [12].

Well known examples of metabolites with an osmoprotective function under salt stress conditions are certain amino acids, mainly referring to proline, and glycine betaine, belonging to the group of quaternary amines [13].

Growth of higher plants in saline soil depends on salt tolerance of the plant species. The decrease in plant growth due to salinity includes a reduction in the leaf area of the plant. The reduction in growth is a consequence of several physiological responses including modification of ion balance, water status, mineral nutrition, stomatal behavior and photosynthetic efficiency [1416].

Materials and methods

salt stress varieties common beet

A pot experiment plant materials was carried out based on investigate the effect of salt stress on growth and state stomatal of three sugar beet (Beta vulgaris) cultivars, Cooper, Tarifa and Taltos which import from Denmark. Chosen kinds according to preliminary information on their growth under saline conditions.

The growth conditions were temperature of 23-25°C, a photoperiod of 14 hours, a relative humidity of 60-70% and a light intensity of 10-15 klx was created in the green house for planting and cultivation of plant. Seeds were sown deep 15 cm diameter in plastic containers filled with soils which were concentrate with 0,2 and 0,5% Na2SO4 and NaCl. salt stress. Growth was measured as leaf area, weight of leaves.

Plants were harvested after 30,45 and 60 days of salt treatment and were separated into leaf lamina, petioles, stem, and roots.

Results and Discussion

During the observation of the obtained sprouts, it was determined that the Tarifa variety is the first, the Cooper is the second, and the Taltos variety is the last in terms of the germination percentage of the seeds in different concentrations of both salts (Table 1).

Regardless of the variety, the percentage of germination in both concentrations of Na2SO4 was higher compared to NaCl. The highest germination percentage was observed in the Tarifa variety under the influence of 0.2% Na2SO4 salt. Wang found that high concentrations of NaCl inhibited the germination of cucumber seeds [17].

From this point of view, Bybordi [11] found in Canola rape plant that as a result of increasing salinity, seed germination, germination energy, root length and the number of young shoots decrease. Accumulation of mineral nutrients and proline increases height, leaf area, and dry biomass in rape seed. It is known that changes in the development and architecture of roots in halophytic plants depend on the salinity level, type and mineral content of the soil.

T. Pasternak et al. (2005) study the growth and development the roots of Arabidopsis seedlings under salt stress in the agar-agar solution, they concluded that the elongation of the main root due to the effect of stress slows down more than that of the lateral root, and the amount of the lateral root increases [18].

The effect of stress on the organs of plants, on the development of leaves and architecture, depends on the type of stressor, the duration of stress and the mineral content of the soil. Shows the results regarding the dynamics of leaf area (Sw), leaf mass (Ml), leaf length (Ll), plant mass (Mp) and root length (Lr) in sugar beet vegetative organs (Table 2).

Table 1

GERMINATION PERCENTAGE AND GERMINATION INTENSITY OF SUGAR BEET SEEDS

Varieties

Variant

Number of seeds

Germ. energy

Germination, %

Cooper

Control

20.0

20±2.38

90.0

0.2% NaCl

20.0

25±3.67

60.0

0.5% NaCl

20.0

12±1.48

50.0

0.2% Na2SO4

20.0

18±1.76

70.0

0.5% Na2SO4

20.0

16±1.42

55.0

Tarifa

Control

20.0

19±1.82

95.0

0.2% NaCl

20.0

12±1.45

75.0

0.5% NaCl

20.0

10±0.96

60.0

0.2% Na2SO4

20.0

14±1.42

90.0

0.5% Na2SO4

20.0

11±1.0

80.0

Taltos

Control

20.0

15±1.39

75.0

0.2% NaCl

20.0

13±1.52

65.0

0.05% NaCl

20.0

10±0.89

50.0

0.2% Na2SO4

20.0

15±1.43

75.0

0.5% Na2SO4

20.0

12±1.41

60.0

Table 2

CHANGE DYNAMICS OF SOME BIOMETRIC INDICATORS DURING THE ACTIVE DEVELOPMENT PHASES OF SUGAR BEET UNDER SALT STRESS

Variety

Variant

Length leaf, mm

Ll, mm

L/L

Sy, cm2

Mplant, g

30 days

Control

60.0 3.43

40.0±2.46

1.5

10.3±0.99

28.9±2.14

Cooper

0.2% NaCl

45.0±3.14

35.0±2.12

1.3

8.0±0.86

28.8±2.06

0.5% NaCl

35.0±2.11

30.0±2.06

1,2

4.0±0.26

28.6±2.01

0.2%Na2SO4

57.0±3.93

40.0±2.44

1.4

10.1±0.78

28.9±2.05

0.5%Na2SO4

40.0±2.57

33.0±2.11

1,2

7.4±0.69

27.8±2.0

Control

68.0±4.01

42.0±3.0

1.6

14.6±1.35

21.1±1.94

Taltos

0.2% NaCl

52.0±3.66

44.0±3.98

1,2

9.0±0.99

28.8±2.02

0.5%NaCl

45.0±3.03

35.0±2.14

1.3

6.2±0.57

28.7±2.03

0.2%Na2SO4

49.0±3.13

41.0±2.51

1,2

7.3±0.59

29.5±2.12

Variety

Variant

Length leaf, mm

Ll, mm

L/L

Sy, cm2

Mplanb g

0.5%Na2SO4

44.0±2.95

36.0±2.14

1,2

6.1±0.49

29.0±2.15

Control

70.0±4.51

40.0±2.43

1.8

16.1±1.79

32.3±2.18

0.2% NaCl

64.0±4.28

41.0±2.49

1.6

11.8±0.97

31.9±2.19

Tarifa

0.5% NaCl

48.0±3.21

36.0±2.13

1.2

6.8±0.49

30.6±2.49

0.2%Na2SO4

60.0±3.48

45.0±3.16

1.3

11.8±0.97

33.2±2.58

0.5%Na2SO4

58.0±3.22

40.0±2.41

1.5

10.1 ±0.86

29.9 ±2.13

45 days

Control

85.0±6.78

60.0±5.87

1.4

21.0±2.67

81.0±7.34

Cooper

0.2% NaCl

80.0±6.54

50.0±4.33

1.6

11.8±0.98

79.1±6.87

0.5% NaCl

51.0±3.03

43.0±3.11

1,2

7.7±0.56

79.0±6.88

0.2% Na2SO4

72.0±5.93

57.0±4.63

1.3

15.0± 1.21

79.4±8.65

0.5% Na2SO4

55.0±4.32

42.0±3.03

1.3

9.5±0.82

78.9±6.56

Control

81.0±7.13

57.0±4.88

1.4

19.2± 1.45

70.9±6.46

Taltos

0.2% NaCl

69.0±5.14

56.0±4.47

1.2

13.7± 1.03

78.4±6.73

0.5% NaCl

60.0±5.14

55.0±4.44

1.1

9.6±0.86

78.1±6.73

0.2% Na2SO4

62.0±5.15

54.0±4.90

1.2

11.3±1.0

71.4±6.44

0.5% Na2SO4

56.0±4.62

49.0±4.87

1.1

8.5±0.67

79.0±7.0

Control

91.0±7.76

60.0±5.0

1.5

27.0±2.48

84.8±7.47

Tarifa

0.2% NaCl

70.0±6.58

55.0±4.42

1.3

15.1±1.26

82.7±7.22

0.5% NaCl

60.0±4.66

51.0±4.01

1.2

10.5±0.96

80.5±7.12

0.2% Na2SO4

75.0±6.73

62.0±4.99

1.2

17.0± 1.43

82.0±7.13

0.5% Na2SO4

79.0±6.86

52.0±4.02

1.5

21.2±2.01

83.5±7.16

60 days

Control

99.0±8.36

80.0±7.23

1.3

27.4±2.34

113.9±10.1

Cooper

0.2% NaCl

75.0±6.67

64.0±5.67

1.2

13.8± 1.22

111.6±10.0

0.5% NaCl

63.0±5.45

59.0±4.88

1.1

9.3±0.87

109.7±10.0

0.2% Na2SO4

88.0±7.02

72.0±6.84

1.2

18.9± 1.67

110.5±9.99

0.5% Na2SO4

69.0±5.21

57.0±4.68

1.2

11.1±1.00

109.9±9.82

Control

101.0±9.28

72.0±6.66

1.5

30.8±2.89

115.1±10.21

Taltos

0.2% NaCl

96.0±8.01

68.0±5.86

1.4

21.9±2.11

112.9± 10.13

0.5% NaCl

93.0±7.99

70.0±6.22

1.4

18.5± 1.54

112.0±10.1

0.2%Na2SO4

98.0±8.25

65.0±5.03

1.5

19.7± 1.67

113.7± 10.11

0.5%Na2SO4

94.0±7.67

60.0±4.99

1.6

13.6± 1.12

113.0±9.86

Control

95.0±7.87

71.0±6.74

1.4

24.7±2.23

112.8±9.98

Tarifa

0.2% NaCl

94.0±7.91

71.0±6.83

1.3

18.0± 1.67

111.1±9.94

0.5% NaCl

72.0±6.73

63.0±5.42

1.2

11.1±1.01

110.0±9.78

0.2% Na2SO4

91.0±8.44

83.0±7.64

1.1

19.0± 1.89

112.5±9.85

0.5%Na2SO4

92.0±8.56

67.0±5.81

1.3

20.0±2.0

111.9±9.79

As can be seen from the table, NaCl and Na2SO4 salts have different effects on the sugar beet plant, depending on their concentration. So, although all the parameters in the control options of all three varieties received high values compared to the experimental options, there were certain differences:

1) Biometric indicators gradually increase during the 60 days of active plant development in all three varieties;

2) Tarifa ranks first, Cooper second, and Taltos variety third in terms of salt resistance;

3) Na2SO4 salt at concentrations of 0.2% and 0.5% had a more effective effect compared to those concentrations of NaCl.

In addition, in the first 45 days of plant development, 0.2% concentrations of both salts (NaCl and Na2SO4) stimulated the development of the studied parameters, and in the later stages, such growth was accelerated by the effect of 0.5% Na2SO4 salt. was carried out. The analysis of the Ll /Lr ratio shows that this ratio is close to each other in all options, except for the control option, and ranges from 1.2 to 1.6. The obtained results show that the stress has a similar effect on the root and leaf of the plant [19]. As can be seen from the table, Sy and Mb increase similarly in both options. It can be said that the obtained results are related to the energetic exchange going on in the cell.

The obtained results show that the change of biometric parameters of the plant also depends on the nature of the stressor. So, our results and literature data show that NaCl salt has a higher toxic effect than Na2SO4. That is why the biometric indicators of the plant are not seriously damaged by the effect of Na2SO4 salt.

References:

1. Rouphael, Y, Petropoulos, S. A., Cardarelli, M., & Colla, G. (2018). Salinity as eustressor for enhancing quality of vegetables. Scientia horticulturae, 234, 361-369. https://doi.org/10.1016/j.scienta.2018.02.048

2. Shahid, M. A., Sarkhosh, A., Khan, N., Balal, R. M., Ali, S., Rossi, L., ... & Garcia- Sanchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10(7), 938. https://doi.org/10.3390/agronomy10070938

3. Ahmed, S., Ahmed, S., Roy, S. K., Woo, S. H., Sonawane, K. D., & Shohael, A. M. (2019). Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agriculture, 4(1), 361-373. https://doi.org/10.1515/opag- 2019-0033

4. Rogel, J. A., Ariza, F. A., & Silla, R. O. (2000). Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands, 20(2), 357-372. https://doi.org/10.1672/0277-5212(2000)020[0357:SSAMGA]2.0.CO;2

5. Rubio, J. S., Garcia-Sanchez, F., Rubio, F., & Martinez, V (2009). Yield, blossom-end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ fertilization. Scientia Horticulturae, 119(2), 79-87. https://doi.org/10.1016/j.scienta.2008.07.009

6. Giordano, M., Petropoulos, S. A., & Rouphael, Y (2021). Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture, 11(5), 463. https://doi.org/10.3390/agriculture11050463

7. Soltabayeva, A., Ongaltay, A., Omondi, J. O., & Srivastava, S. (2021). Morphological, physiological and molecular markers for salt-stressed plants. Plants, 10(2), 243. https://doi.org/10.3390/plants10020243

8. Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual review of plant biology, 49(1), 249-279.

https://doi .org/ 10.1146/annurev.arplant.49.1.249

9. Saibi, W., Feki, K., Ben Mahmoud, R., & Brini, F. (2015). Durum wheat dehydrin (DHN- 5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system. Planta, 242, 1187-1194. https://doi.org/10.1007/s00425- 015-2351-z

10. Hossain, M. S., Persicke, M., ElSayed, A. I., Kalinowski, J., & Dietz, K. J. (2017).

Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. Journal of Experimental Botany, 68(21-22), 5961-5976. https://doi.org/10.1093/jxb/erx388

11. Bybordi, A. (2010). The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 128-133. https://doi.org/10.15835/nbha3813572

12. Chaves, M. M., & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of experimental botany, 55(407), 2365-2384. https://doi.org/10.1093/jxb/erh269

13. Kaur, G., & Asthir, B. J. B. P. (2015). Proline: a key player in plant abiotic stress tolerance. Biologiaplantarum, 59, 609-619. https://doi.org/10.1007/s10535-015-0549-3

14. Al-Khateeb, S. A. (2006). Effect of salinity and temperature on germination, growth and ion relations of Panicum turgidum Forssk. Bioresource Technology, 97(2), 292-298. https://doi.org/10.1016/j.biortech.2005.02.041

15. De Herralde, F., Biel, C., Save, R., Morales, M. A., Torrecillas, A., Alarcon, J. J., & Sanchez-Blanco, M. J. (1998). Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Science, 139(1), 9-17. https://doi.org/10.1016/S0168-9452(98)00174-5

16. Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and experimental Botany, 47(1), 39-50. https://doi.org/10.1016/S0098-8472(01)00109-5

17. Fan, H. F., Du, C. X., Ding, L., & Xu, Y. L. (2013). Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity stress. Acta physiologiae plantarum, 35(9), 2707-2719. https://doi.org/10.1007/s11738-013-1303-0

18. Pasternak, T., Rudas, V., Potters, G., & Jansen, M. A. (2005). Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environmental and Experimental Botany, 53(3), 299-314. https://doi.org/10.1016Zj.envexpbot.2004.04.009

19. Hester, M. W., Mendelssohn, I. A., & McKee, K. L. (2001). Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints. Environmental and Experimental Botany, 46(3), 277297. https://doi.org/10.1016/S0098-8472(01)00100-9

Список литературы:

1. Rouphael Y, Petropoulos S. A., Cardarelli M., Colla G. Salinity as eustressor for enhancing quality of vegetables // Scientia horticulturae. 2018. V. 234. P. 361-369. https://doi.org/10.1016/j.scienta.2018.02.048

2. Shahid M. A., Sarkhosh A., Khan N., Balal R. M., Ali S., Rossi L., Garcia-Sanchez F. Insights into the physiological and biochemical impacts of salt stress on plant growth and development // Agronomy. 2020. V. 10. №7. P. 938. https://doi.org/10.3390/agronomy10070938

3. Ahmed S., Ahmed S., Roy S. K., Woo S. H., Sonawane K. D., Shohael A. M. Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh // Open Agriculture. 2019. V 4. №1. P. 361-373. https://doi.org/10.1515/opag- 2019-0033

4. Rogel J. A., Ariza F. A., Silla R. O. Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain // Wetlands. 2000. V 20. №2. P. 357-372. https://doi.org/10.1672/0277-5212(2000)020[0357:SSAMGA]2.0.CO;2

5. Rubio J. S., Garcia-Sanchez F., Rubio F., Martinez V Yield, blossom-end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ fertilization // Scientia Horticulturae. 2009. V. 119. №2. P. 79-87. https://doi.org/10.1016/j.scienta.2008.07.009

6. Giordano M., Petropoulos S. A., Rouphael Y. Response and defence mechanisms of vegetable crops against drought, heat and salinity stress // Agriculture. 2021. V. 11. №5. P. 463. https://doi.org/10.3390/agriculturen050463

7. Soltabayeva A., Ongaltay A., Omondi J. O., Srivastava S. Morphological, physiological and molecular markers for salt-stressed plants // Plants. 2021. V 10. №2. P. 243. https://doi.org/10.3390/plants10020243

8. Noctor G., Foyer C. H. Ascorbate and glutathione: keeping active oxygen under control //Annual review of plant biology. 1998. V 49. №1. P. 249-279.

https://doi.org/10.1146/annurev.arplant.49.1.249

9. Saibi W., Feki K., Ben Mahmoud R., Brini F. Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system // Planta. 2015. V. 242. P. 1187-1194. https://doi.org/10.1007/s00425-015- 2351-z

10. Hossain M. S., Persicke M., ElSayed A. I., Kalinowski J., Dietz K. J. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet // Journal of Experimental Botany. 2017. V. 68. №21-22. P. 5961-5976. https://doi.org/10.1093/jxb/erx388

11. Bybordi A. The influence of salt stress on seed germination, growth and yield of canola cultivars // Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2010. V 38. №1. P. 128-133. https://doi.org/10.15835/nbha3813572

12. Chaves M. M., Oliveira M. M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture // Journal of experimental botany. 2004. V. 55. №407. P. 2365-2384. https://doi.org/10.1093/jxb/erh269

13. Kaur G., Asthir B. Proline: a key player in plant abiotic stress tolerance // Biologia plantarum. 2015. V. 59. P. 609-619. https://doi.org/10.1007/s10535-015-0549-3

14. Al-Khateeb S. A. Effect of salinity and temperature on germination, growth and ion relations of Panicum turgidum Forssk // Bioresource Technology. 2006. V. 97. №2. P. 292-298. https://doi.org/10.1016/j.biortech.2005.02.041

15. De Herralde F., Biel C., Save R., Morales M. A., Torrecillas A., Alarcon J. J., & Sanchez- Blanco, M. J.Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants // Plant Science. 1998. V 139. №1. P. 9-17. https://doi.org/10.1016/S0168-9452(98)00174-5

16. Ghoulam C., Foursy A., Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars // Environmental and experimental Botany. 2002. V 47. №1. P. 39-50. https://doi.org/10.1016/S0098-8472(01)00109- 5

17. Fan H. F., Du C. X., Ding L., Xu Y L. Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity stress // Acta physiologiae plantarum. 2013. V. 35. №9. P. 2707-2719. https://doi.org/10.1007/s11738-013-1303-0

Размещено на Allbest.ru


Подобные документы

  • The nature and terms of the specialization of agricultural enterprises. The dynamics of the production of corn for grain. Deepening of specialization and improve production efficiency. The introduction of mechanization and advanced technologies.

    курсовая работа [67,7 K], добавлен 13.05.2015

  • A mini-history of New Zealand agriculture. How the farmer was impacted by lack of government assistance: evaluation of policy developments. Agrarian policy of New Zealand for support of the farmers dealing with adverse events, such as climatic disasters.

    реферат [23,2 K], добавлен 05.12.2011

  • World forest region map. Deforestation as the conversion of forest land to non-forest land for use (arable land, pasture). Effect of destruction of large areas of forest cover on the environment and reduce biodiversity. The methods of forest management.

    презентация [1,4 M], добавлен 06.05.2012

  • General guidelines on word stress: one word has only one stress; stress vowels, not consonants. Origins of the word stress and the notion of accent. English accentuation tendencies. Typical patterns of stress of nouns, verbs, adjectives and adverbs.

    курсовая работа [275,8 K], добавлен 12.04.2014

  • The nature of English word stress. Consideration of the degree of stress as the force which gives an idea of the volume, pitch change in voice quality and quantity accented sounds. Examine the extent, trends and features of the English word stress.

    презентация [1,1 M], добавлен 18.10.2015

  • The definition of stress as the body's way of responding to any kind of stimuli. Consideration of positive and negative emotions, which may cause stress. External and internal causes of stress. The role of consciousness in the assessment of events.

    презентация [1,1 M], добавлен 22.09.2015

  • English stress is as a phenomenon. The nature of word stress and prominence. The placement of word stress. The questions of typology of accentual structure. Degrees of stress and rhythmical tendency. Practical analysis showing the types of stress.

    курсовая работа [48,8 K], добавлен 03.05.2015

  • Induction of stress adaptive response: practical considerations. Detecting and quantifying stress response. Perspectives and areas for future work. Mechanisms of microorganism adaptation to stress factors: heat, cold, acid, osmotic pressure and so on.

    курсовая работа [313,2 K], добавлен 18.11.2014

  • The nature of English word stress - the key to excellent pronunciation and understanding of English. English speakers use word stress to communicate rapidly and accurately, even in difficult conditions. Word stress tendencies and functions, variation.

    реферат [22,6 K], добавлен 06.02.2010

  • Discussion of organizational culture. The major theories of personality. Social perception, its elements and common barriers. Individual and organizational influences on ethical behavior. The psychophysiology of the stress response.

    контрольная работа [27,7 K], добавлен 19.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.