Inheritance of growth habit in einkorn wheat hao fu, R.L. bohuslavskyi

The nature of inheritance of the trait "winter-hardiness" in hybrids between representatives of wheat species. Crossing by the "single cross" method. The nature of the inheritance of the developmental type was determined using hybridological analysis.

Рубрика Сельское, лесное хозяйство и землепользование
Вид статья
Язык английский
Дата добавления 20.07.2024
Размер файла 28,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Inheritance of growth habit in einkorn wheat hao fu, R.L. bohuslavskyi

V.N. Karazin Kharkiv Nacional University

Plant Production Instytute named after V. Ya. Yuryev of Natl. Acad. Agr. Sci. of Ukraine

Aim

Find out the inheritance patterns of the trait "winterness / springness" in hybrids between representatives of einkorn wheat species. Methods. Crossings were carried out using the "single cross" method. The nature of inheritance of the growth habit was determined using hybridological analysis. Results. It has been shown that in the hybrids of wild wheat forms T. boeoticum and T. urartu with cultivated T monococcum and T. sinskajae, the winter growth habit of wild forms dominates over the spring one of cultivated forms. Differences in "winterness / springness" phenotype between parental forms in crosses of T. monococcum var. macedonicum with T. urartu var. spontaneorubrum and T. boeoticum var. bicolor; T. sinskajae var. sinskajae with T. urartu var. spontaneorubrum and T. boeoticum var. thaoudar; T. boeoticum var. thaoudar with T. monococcum var. monococcum, T. sinskajae var. sinskajae and T.monococcum var. macedonicum; T. boeoticum var. kurbagalensense with T. sinskajae var. sinskajae and T.monococcum var. monococcum are controlled by a single gene. The difference between the two wild forms in crossing T. boeoticum var. thaoudar x T. boeoticum var. kurbagalensense is controlled by two genes. In the crosses T. boeoticum var. thaoudar with T. monococcum var. monococcum, T. sinskajae var. sinskajae and T. monococcum var. macedonicum;

T. boeoticum var. kurbagalensense x t. sinskajae var. sinskajae, the parental forms also differ digenously. Conclusions. Winterness of einkorn wheat wild forms dominates over the springness of cultivated forms. The difference in the growth habit between the studied einkorn forms is due to differences in 1-2 pairs of genes.

Keywords: einkorn wheat, growth habit, winterness, springness, inheritance.

УСПАДКУВАННЯ ТИПУ РОЗВИТКУ У ПШЕНИЦЬ ОДНОЗЕРНЯНОК

Хао Фу 1, Р.Л. Богуславський 2

1 Харківський національний університет імені В.Н. Каразіна

2 Інститут рослинництва імені В.Я. Юр'єва НААН Україна

Мета. З'ясувати характер успадкування ознаки "озимість / ярість" у гібридів між представниками видів пшениць однозернянок. Методи. Схрещування проводили методом "single cross". Характер успадкування типу розвитку визначали за допомогою гібридологічного аналізу. Результати. Показано, що при гібридизації диких форм пшениці T. boeoticum та T. urartu з культурними T. monococcum та T. sinskajae озимий тип розвитку диких форм домінує над ярим, властивим культурним формам. Відмінність за фенотипом "озимість / ярість" між зразками у схрещуваннях T. monococcum var. macedonicum з T. urartu var. spontaneorubrum та T. boeoticum var. bicolor; T. sinskajae var. sinskajae з T. urartu var. spontaneorubrum та T. boeoticum var. thaoudar, T.boeoticum var. thaoudar з T. monococcum var. monococcum, T. sinskajae var. sinskajae та T. monococcum var. macedonicum; T. boeoticum var. kurbagalensense з T. sinskajae var. sinskajae та T. monococcum var. monococcum контролюється одним геном. Відмінність між двома дикими формами у схрещуванні T. boeoticum var. thaoudar x T. boeoticum var. kurbagalensense контролюється двома генами. Дигенно відрізняються також батьківські форми у схрещуваннях T. boeoticum var. thaoudar з T.monococcum var. monococcum, T. sinskajae var. sinskajae та T. monococcum var. macedonicum; T. boeoticum var. Kurbagalen- sense x T. sinskajae var. sinskajae. Висновки. Озимість диких форм пшениці однозернянки домінує над ярістю культурних її форм. Відмінності за типом розвитку "озимість / ярість" між вивченими формами однозернянки обумовлені 1-2 парами генів.

Ключові слова: пшениця однозернянка, тип розвитку, озимість, ярість, успадкування.Introduction

A number of studies have proven the value of einkorn wheat for a healthy diet (Di Stasio et al., 2020; Picascia et al., 2020). This ancient crop is little affected by "industrial" breeding and therefore low productive. Increasing yield is the main task of its genetic improvement. An important factor in stable yields is adaptability to growing conditions, among which is growth habit which is determined by the need for low temperatures in early development phases, response to day length and development rate (Yang, 2012). Spring wheats go through the whole development cycle during one spring-summer season. Winter wheats are sown in the autumn, they remain in the vegetative phase during the winter and move on to generative development in following year. In intermedial ("semi- winter") forms, generative shoots can be obtained both during autumn and spring sowing. Winter wheat has a longer period of accumulation of plastic substances than spring wheat as a result of which it is more productive.

To increase einkorn productivity in the southern latitudes, it is grown in a winter crop. In temperate latitudes, the risk factor is the nonresistance of spring forms to overwintering factors, and this necessitates creation of truly winter forms. In diploid and polyploid wheats, a number of genes have been identified that determine the growth habit: Vrn1, Vrn2, Vrn3, Vrn4 (Muterko et al.,

2015) .

In order to carry out breeding work to create einkorn varieties with desired properties, it is necessary to expand the circle of involved initial forms with information about inheritance of the "winterness / springness" trait in them.

All of the above determined the purpose of the study: to find out how winterness and springness are inherited in a representatives of einkorn wheat species. hybridological winter hardiness

Materials and methods

Seven einkorn accessions were used for the crosses, (table 1), with the participation of which 10 hybrids were obtained (table 2).

Table 1. Einkorn wheat accessions used in the study

Variety

NNCU

OC

Abbreviation

GH

HD

T. monococcum var. macedonicum

UA0300113

SYR

T.mon.v.mac

spring

14.06

T. monococcum var. monococcum

UA0300221

AZE

T.mon.v.mon

spring

18.06

T. sinskajae var. sinskajae

UA0300224

RUS

T.sin.v.sin

spring

18.06

T. boeoticum var. thaoudar

UA0300400

ARM

T.boe.v.tha

int

29.06*

T. boeoticum var. kurbagalensense

UA0300401

UKR

T.boe.v.kur

winter

--

T.boeoticum var. bicolor

UA0300336

LBN

T.boe.v.bic

winter

--

T. urartu var. spontaneorubrum

UA0300253

ARM

T.ura.v.spon

winter

--

Note: NNCU - Number of the National Catalog of Ukraine, OC - origin country, GH - Growth habit, HD - Heading date at spring sowing, int - intermediate ("semi-winter"), * - headed single plants, "--" - the value is missing.

Table 2. Hybrid combinations obtained in the experiment

Cross No.

Hybrid combinations

Abbreviation

1

T. monococcum var. macedonicum * T. urartu var. spontaneorubrum

T.mon.v.mac * T.ura.v.spon

2

T. monococcum var. macedonicum * T. boeoticum var. bicolor

T.mon.v.mac * T.boe.v.bic

3

T. sinskajae var. sinskajae * T. urartu var. spontaneorubrum

T.sin.v.sin * T.ura.v.spon

4

T. sinskajae var. sinskajae * T. boeoticum var. thaoudar

T.sin.v.sin * T.boe.v.tha

5

T. boeoticum var. thaoudar * T. monococcum var. monococcum

T.boe.v.tha * T.mon.v.mon

6

T. boeoticum var. thaoudar * T. sinskajae var. sinskajae

T.boe.v.tha * T.sin.v.sin

7

T. boeoticum var. thaoudar * T. boeoticum var. kurbagalensense

T.boe.v.tha * T.boe.v.kur

8

T. boeoticum var. thaoudar * T. monococcum var. macedonicum

T.boe.v.tha * T.mon.v.mac

9

T. boeoticum var. kurbagalensense * T. sinskajae var. sinskajae

T.boe.v.kur * T.sin.v.sin

10

T. boeoticum var. kurbagalensense * T. monococcum var. monococcum

T.boe.v.kur * T.mon.v.mon

The research was conducted at the experimental field of the Plant Production Institute named after V. Ya. Yuryev of the National Academy of Agrarian Sciences of Ukraine. To create hybrids, the "single cross" method was used. The accessions were sown on plots placed on strips 1 m wide, in transverse rows with intervals of 15 cm, according to the scheme: mother - father - F1 - F2 - mother - father. There were six rows on the plots of the parental forms. The rows number of hybrids depended on the seed number.

To obtain seeds, parental forms and F1 hybrids were sown in the fall of 2020 and 2021 years. To determine growth habit of the plants of F1 and F2 hybrids and parental forms, they were sown in the spring 2022 what excluded influence of low temperatures as a vernalization factor. The F1 and F2 hybrid generations were evaluated by the growth habit at the end of the growing season (Goncharov, 2012). The plant that move to the shooting phase was classified as spring type, the one that did not come out was classified as winter (Goncharov, 2012). The segregation analysis was performed by the X method with the Yates' correction.

Results and discussion

The table 3 shows that the accessions UA0300401 (T.boe.v.kur), UA0300336 (T.boe.v.bic) and UA0300253 (T.ura.v.spon) developed a rosette of leaves during spring sowing and did not proceed to heading. In the sample UA0300400 (T.boe.v.tha), at the end of the growing season, 1 % of plants headed, they developed sterile anthers and grains did not set. Both accessions of T. monococcum and the accession of T. sinskajae were headed during spring sowing, developed normally and produced complete seeds. Thus, the parental forms of the hybrids were characterized by an alternative manifestation of the growth habit.

In the vast majority of cases, in hybrids between wild einkorns T. boeoticum and T. urartu, which have a winter growth habit, on the one hand, and cultivated einkorns T. monococcum and T. sinskajae, headed during spring sowing, on the other hand, F1 plants do not go to generative development. The number of headed plants did not exceed 13.8 % (table 3). Moreover, they headed at the end of the growing season, developed sterile anthers and did not set grains. Thus, the winter growth habit dominated in F1.

A growth habit is a complex trait which is determined by at least two genetical systems - Vrn and Ppd, there are others with a weaker effect (Xiao, He, 2020; Bloomfield et al., 2018). V. V. Zhmurko (2020) showed that the Vrn and Ppd genes interact in the regulation of wheat development. It is believed that heading of wheat is determined by a complex of genetic and environmental factors, in which the genes responsible for vernalization and photoperiodism play a decisive role (Kiss et al., 2014).

Wild species including T. boeoticum and T. urartu, are of winter phenotype, but exist as populations in which both systems can be represented by different alleles. At the same time, the dominance of the winter growth habit, characteristic of the above-mentioned wild species, over the spring growth habit, characteristic of the cultivated species T. monococcum and T. sinskajae, is obvious, despite single late-headed plants in F1. It should be noted that when crossing the winter and spring forms within the cultural species T. monococcum, the springiness dominates (Goncharov, 2012).

Table 3. Growth habit of F1 plants

Cross No.

Crossing combination

PN

% h

Growth habit

N

h

1

T.mon.v.mac * T.ura.v.spon

42

4

9,5

w

2

T.mon.v.mac * T.boe.v.bic

39

3

7,7

w

3

T.sin.v.sin * T.ura.v.spon

21

1

4,8

w

4

T.sin.v.sin * T.boe.v.tha

29

4

13,8

s-w + w

5

T.boe.v.tha * T.mon.v.mon

28

0

0,0

--

6

T.boe.v.tha * T.sin.v.sin

33

1

3,0

s-w

7

T.boe.v.tha * T.boe.v.kur

20

2

10,0

w

8

T.boe.v.tha * T.mon.v.mac

29

0

0,0

w

9

T.boe.v.kur * T.sin.v.sin

22

0

0,0

--

10

T.boe.v.kur * T.mon.v.mon

20

2

10,0

s-w

Note: PN - The plant number, n - total, h --headed plants, w. - winter, s-w - intermediate ("semi-winter").

The results of the hybridological analysis of F2 plants according to the growth habit are presented in the table 4. In F2 of the hybrids between wild and cultivated forms, the segregation according to the trait "winterness / springness" corresponds to 3 : 1 (X2{3:1} < 3.84), i.e. the "springness" trait is inherited in a recessive manner, and the difference between the parental forms is monogenic.

In the seventh combination T.boe.v.tha x T.boe.v.kur, the ratio "winterness / springness" did not differ statistically significantly from the 15 : 1 ratio (X2{15:1} = 3.84; factual. = 3.55). It can be assumed that the differences in the growth habit in this combination are controlled by two gene pairs according to the polymer type while winterness is inherited as a dominant trait.

In the fifth (T.boe.v.tha x T.mon.v.mon), sixth (T.boe.v.tha x T.sin.v.sin), eighth (T.boe.v.tha x T.mon.v.mac) and ninth (T.boe.v.kur x T.sin.v.sin) combinations segregation corresponds to 13 : 3. This means that the growth habit in these hybrids is controlled by two pairs of genes according to the type of dominant epistasis; in this case, winterness is also a dominant trait.

Table 4. Segregation in F2 hybrids between einkorn accessions

Cross No.

Crossing combination

Plant number in F2 hybrids

X2 (X2 critical = 3.84)

Winter

Spring

3:1

15:1

9:7

13:3

1

T.mon.v.mac xT.ura.v.spon

134

55

1.69

168.42

16.48

13.29

2

T.mon.v.mac x T.boe.v.bic

137

58

2.34

183.69

15.54

15.47

3

T.sin.v.sin x T.ura.v.spon

160

55

0.04

137.12

28.84

6.59

4

T.sin.v.sin x T.boe.v.tha

145

60

1.99

185.37

17.47

14.89

5

T.boe.v.tha x T.mon.v.mon

140

44

0.12

97.97

29.42

3.22

6

T.boe.v.tha x T.sin.v.sin

157

43

1.31

79.38

40.23

0.99

7

T.boe.v.tha x T.boe.v.kur

193

6

51.30

3.55

134.18

32.34

8

T.boe.v.tha x T.mon.v.mac

161

48

0.46

99.67

36.68

2.44

9

T.boe.v.kur x T.sin.v.sin

151

45

0.44

93.39

34.43

2.28

10

T.boe.v.kur x T.mon.v.mon

156

55

0.13

141.41

26.81

7.41

Dominance and monogenic control of springness in diploid wheat Triticum monococ- cum L. has been shown by a number of authors (Kuspira et al., 1989; Golovnina et al., 2010). According to Goncharov (1999), in tetraploid wheats, springiness dominates over winterness. A similar result was obtained in hexaploid wheats (Davydova et al., 2016).

It is believed that the ancestral wild forms of wheat are of winter growth habit. The recessive allele vrn 1 is considered to be older than the dominant allele Vrn 1 (Goncharov et al., 2018). It is assumed that spring einkorns originated in wild populations and were later selected for cultivation This gave reason to believe that in the evolution of wheat there was a transition from recessive winter forms to dominant spring ones. The results of our study indicate that in hybrids between wild and cultivated accessions of einkorn wheat, winterness characteristic of wild forms dominates and the ability to head during spring sowing of cultivated samples is recessive. This gives grounds to reconsider the ways in which the growth habit was formed during the domestication of one of the first cultivated cereals - einkorn wheat.

Vrn1 and Vrn2 are the main genes that control the growth habit of wheat and other temperate cereals. These two genes create a strong epistatic effect, probably being part of the same regulatory chain. In diploid wheat (Triticum monococcum L.), Vrn1 dominates as a springiness factor while Vrn2 dominates as a winterness factor (Yan, 2004). On the other hand, it was found that the Vrn-A1b and Vrn-A1h alleles, previously described as dominant, either have no or weak association with the spring habit while in some diploid accessions this habit was associated with the recessive Vrn-A1 allele (Shcherban et al. 2015). Thus, there is reason to consider an alter- ?ative path of evolution: from winterness to the ability to heading at spring sowing.

In the F2 hybrid T.boe.v.tha x T.boe.v.kur, segregation meet not to a monogenic control model but rather to a digenic one, where one of the genes of each pair is represented by the dominant allele that determines winterness. It can be supposed that one of the genes is Vrn-A1 (Shcherban et al., 2015) and the other is Vrn2 (Distelfeld et al., 2008). It is also possible that the gene controlling the photoperiodic reaction is involved.

Conclusions

1. In the crossings of einkorn wheat wild forms T. boeoticum and T. urartu with cultivated T. monococcum and T. sinskajae, the winter growth habit of wild forms dominates over the spring growth habit characteristic for cultivated forms.

2. Differences in "winterness / springness" pheno type between parental forms in crosses of T. monococcum var. macedonicum with T. urartu var. spontaneorubrum and T.boeo- ticum var. bicolor; T. sinskajae var. sinskajae with T. urartu var. spontaneorubrum and T. boeoticum var. thaoudar; T. boeoticum var. thaoudar with T. monococcum var. monococ- cum, T. sinskajae var. sinskajae and T. mono- coccum var. macedonicum; T. boeoticum var. kurbagalensense with T. sinskajae var. sinska-jae and T. monococcum var. monococcum are controlled by a single gene (monogenically). The difference between the two wild forms in crossing T. boeoticum var. thaoudar x t. boeo- ticum var. kurbagalensense is controlled by two genes. In the crosses T. boeoticum var. thaoudar with T. monococcum var. monococ- cum, T. sinskajae var. sinskajae and T. monococcum var. macedonicum; T. boeo- ticum var. kurbagalensense x T. sinskajae var. sinskajae, the parental forms also differ digenously.

3. When domesticating einkorns, the transition from winter to spring forms is associated with a change in the regulation of the genes' action, their manifestation in a heterozygote from a dominant state to a recessive one.

References

1. Bloomfield M. T., Hunt J. R., Trevaskis B., Ramm K., Hyles J. Ability of alleles of PPD1 and VRN1 genes to predict flowering time in diverse Australian wheat (Triticum aestivum) cultivars in controlled environments. Crop Pasture Sci. 2018. Vol. 69, P.1061-1075. doi: 10.1071/CP18102.

2. Di Stasio L., Picascia S., Auricchio R., Vitale S., Gazza L., Picariello G., Gianfrani C., Mamone

3. Comparative Analysis of in vitro Digestibility and Immunogenicity of Gliadin Proteins From Durum and Einkorn Wheat. Front Nutr. 2020. Vol. 7, P. 1-7. doi: 10.3389/fnut.2020.00056.

4. Distelfeld A., Tranquilli G., Li C., Yan L., Dub-covsky J. Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol. 2008. Vol. 149, № 1. P. 245-257. doi:10.1104/pp.108.129353.

5. Davydova N. V., Kazachenko A. O., Malkina T. P., Sharoshkina E. E. Peculiarities of usage of winter forms in Breeding of Soft Spring Wheat. Dostizheniya nauki i tekhniki APK. 2016. Vol. 30, № 9. P. 23-25. (in Russian)

6. Golovnina K. A., Kondratenko E. Y., Blinov A. G., Goncharov N. P. Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats. BMC Plant Biology.

7. Vol. 10, № 1. P. 1-15. doi:10.1186/1471- 2229-10-168.

8. Goncharov N. P. Genetics of growth habit (spring vs. winter) in tetraploid wheats: production and analysis of near-isogenic lines. Hereditas. 1999. Vol. 130, P. 125-130.

9. Goncharov N. P., Kondratenko E. Ya., Vavilova V. Yu. Genetics of adaptability and architectonics of wheat. Mechanisms of resistance of plants and microorganisms to adverse environmental conditions: Collection of materials from the Annual Meeting of the Society of Plant Physiologists of Russia, the All-Russian Scientific Conference with International Participation and the School of Young Scientists, Irkutsk, July 1015, 2018 - Irkutsk: Izd. V.B. Sochavy SB RAS, 2018. - In 2 parts. Part I. P.13-16. doi: 10.31 255/978-5-94797-319-8-13-16. [in Russian] I Гончаров Н.П., Кондратенко Е.Я., Вавилова В.Ю. Генетика адаптивности и архитектоника пшеницы. Механизмы устойчивости растений и микроорганизмов к неблагоприятным условиям внешней среды: Сборник материалов Ежегодного собрания Общества физиологов растений России, Всероссийской научной конференции с международным участием и Школы молодых ученых, Иркутск, 10-15июля, 2018. Иркутск: Изд. В.Б. Сочавы СО РАН, 2018. - В 2-х частях. Часть I. С. 1316.

10. Goncharov N. P. Comparative Genetics of Wheats and their Related Species. Geo Publ., Novosibirsk. 2012. P. 1-523. [In Russian] I Гончаров Н.П. Сравнительная генетика пшениц и родственных им видов. Издательство "Гео", Новосибирск. 2012. С. 1-523.

11. Kiss T., Balla K., Veisz O., Lang L., Bedo Z., Griffiths S., Isaac P., Karsai I. Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.). Mol Breed. 2014. Vol. 34, № 2. P. 297-310. doi: 10.1007/s11032-014-0034-2.

12. Kuspira J., Maclagan J., Bhambhani R. N., Sadasivaiah R. S., Kim N-S. Genetic and cytogenetic analyses of the A genome of Triticum monococcum L. V. Inheritance and linkage relationships of genes determining the expression of 12 quantitative characters. Genome. 1989. Vol. 32, № 5. P. 869-881.

13. Konopatskaia I., Vavilova V., Kondratenko E. Ya., Blinov A., Goncharov N. P. VRN1 genes variability in tetraploid wheat species with a spring growth habit. BMC Plant Biol. 2016. Vol. 16, S 3. P. 93-106. doi:10.1186/s12870-016- 0924-z.

14. Muterko A. F., Balashova I. A., Fayt V. I., Sivolap Yu. M. Molecular-genetic mechanisms of regulation of growth habit in wheat. Cytol. Genet. 2015. Vol. 49, P. 58-71. doi:10.3103I S0095452715010089.

15. Picascia S., Camarca A., Malamisura M., Mandile R., Galatola M., Cielo D., Gazza L., Mamone G., Auricchio S., Troncone R., Greco L., Auricchio R., Gianfrani C. In celiac disease patients the in vivo challenge with the diploid triticum monococcum elicits a reduced immune response compared to hexaploid wheat. Mol Nutr Food Res. 2020. Vol. 66, № 11. P. 1-9. doi: 10.1002/mnfr.201901032.

16. Shcherban A. B., Strygina K. V., Salina E. A. VRN-1 gene- associated prerequisites of spring growth habit in wild tetraploid wheat T. dicoc- coides and the diploid A genome species. BMC Plant Biol. 2015. Vol. 15, № 1. P. 1-13. doi: 10.1186/s12870-015-0473-x.

17. Xiao L., He Y. Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization. Journal of Integrative Plant Biology. 2020. Vol. 62, № 1. P. 104-117. doi:10.1111/jipb.12896.

18. Yan L., Loukoianov A., Blechl A., Tranquilli G., Ramakrishna W., SanMiguel P., Benne-tzen J. L., Echenique V., Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science.

19. Vol. 303, № 5664. P. 1640-1644. doi: 10.1126/science.1094305.

20. Yang F-P., Xia X-C., Zhang Y., Zhang X-K., Liu J-J., Tang J-W., Yang X-M., Zhang J-R., Liu Q., Li S-Z., He Z-H. Distribution of allelic variation for vernalization, photoperiod, and dwarfing genes and their effects on growth period and plant height among cultivars from major wheat producing countries. Acta Agronomica Sinica. 2012. Vol. 38, № 7. P. 1155-1166. doi: 10.3724/SP.J.1006.2012.01155.

21. Zhmurko V. V. Interaction of VRN and PPD genes in the regulation of the development of winter wheat (Triticum aestivum L.). Faktors Eksperimental Evol. Organisms. 2020. Vol. 27. P. 71-76. [In Russian] / Жмурко В.В. Взаимодействие генов VRN и PPD в регуляции развития озимой пшеницы (Triticum aestivum L.). Фактори Експериментальної еволюції організмів. 2020. Том. 27. С. 71-76. doi:10.7124/ FEEO.v27.1305.

Размещено на Allbest.ru


Подобные документы

  • The nature and terms of the specialization of agricultural enterprises. The dynamics of the production of corn for grain. Deepening of specialization and improve production efficiency. The introduction of mechanization and advanced technologies.

    курсовая работа [67,7 K], добавлен 13.05.2015

  • The Nature is our sister. Result of games with nature is suffering of the Nature. The earthquake in Crimea in 1927. The tornado in 1934. The flood in the July in 2008. During May and June of 2007 the terrible drought in South and South-Eastern Ukraine.

    презентация [361,7 K], добавлен 20.12.2010

  • Nature of infrared analysis and nature of mass spectrometry. Summary of the uses in forensic analysis. Critical comparison of infrared analysis and spectrometry. Gathering of the information about positional isomers with the help of infrared analysis.

    эссе [21,8 K], добавлен 08.12.2011

  • The process of scientific investigation. Contrastive Analysis. Statistical Methods of Analysis. Immediate Constituents Analysis. Distributional Analysis and Co-occurrence. Transformational Analysis. Method of Semantic Differential. Contextual Analysis.

    реферат [26,5 K], добавлен 31.07.2008

  • Definition of Leadership. Trait theory. How this theory works. Origin and Analysis and basics Pre-conditions for effective use of Trait theory. Inborn leadership characteristics. Process of impact and interaction among the leader and his followers.

    реферат [436,9 K], добавлен 24.09.2014

  • Problem of contamination of nature in connection with activity of man. Air's and water's pollution. Garbage as the main reason of pollution of cities. Influence of radiating radiations on people and animals. Value of preservation of the environment.

    презентация [1,4 M], добавлен 13.12.2011

  • Description the introductions between man and nature, polluting of the air, oceans. Analyzes problems of cities: the wastes from factories, chemical plants, electric and atomic power stations. Studying the antipollution campaigns of car corporation’s.

    эссе [10,1 K], добавлен 21.03.2012

  • Finland is a wonderful Nordic country and a priority of tourists which can estimate the nature. Progress of eco-tourism in Finland. The unique lakes and wildelife are objectives of travelers. New Year in Finland, which is the home of Santa Claus.

    презентация [1,5 M], добавлен 17.06.2013

  • Landscape design - an independent trade and the art tradition which has been carried out by Landscape designers, combining the nature and culture. Features of landscape planning of district, basic elements of design of gardens, pools, avenues and parks.

    презентация [3,2 M], добавлен 18.12.2010

  • Formation of courts to protect constitutions. The nature of the Constitutional Court, its functions, structure, the order of formation and updating, the nature and the mechanism of execution of acts, a place and a role of the Constitutional Court.

    реферат [21,1 K], добавлен 14.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.