Recent advances on stability of anthocyanins

Enzymatic degradation of anthocyanins: the role of sweet cherry polyphenol oxidase. Tuning color variation in grape anthocyanins at the molecular scale. Effect of non thermal processing technologies on the anthocyanin content of fruit berry juices.

Рубрика Сельское, лесное хозяйство и землепользование
Вид статья
Язык английский
Дата добавления 23.03.2021
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Ultrasound, as relatively low-cost, non-hazardous and environmental friendly technology, is commonly utilized in food industry [57, 58]. Studies have been conducted on the use of ultrasound as a simple and rapid extraction method for the anthocyanins colour pigment. The advantages of using over other extraction techniques are higher reproducibility and possibility of simultaneous extraction of several samples, which makes the ultrasonic-assisted extraction an interesting alternative for the analysis of the anthocyanins colour compounds.

List of ultrasound assisted extraction studies from the literatureon various food anthocyanin components

Table 5

Product / anthocyanins

Ultrasoun Process

Processing

conditions

Performance

References

blackberry cultivar “Ca~ canska ' Be- strna”

Rectangular ultrasonic cleaner bath (Bandelin Sonorex RK 52, BAN- DELON electronic,

35 kHz, 60 W, volume of 1.8 L, internal dimensions: 150 mm x 140 mm x 100 mm) with a useful

Absolute ethanol with 0.01% (v/v) of HCl (solvent-to- solid ratio of

2.5 ml/g of the purйe at for

15 min or 30 min at 25 °C and 40 °C

Increase of 5.3--6.3% of anthocyanins content (15--30 min

Increase of anthocyanins content with increasing of temperature from room at 40 °C.

Increase of the antioxidant activity with sonication time and temperature. Increase of cyanidin content with increasing a sonication and temperature

Ivanovic et al. (2014)

wine lees

An ultrasonic bath system (MC300, Elma Hans Schmidbauer GmbH & Co. KG, Singen, Germany)

60 mL of Ethanol 51.5%, 36.3 min at 59.9 °C

High stability of total anthocyanins, monomeric anthocyanins and polymeric anthocyanins at 4 °C.

Less stability of total anthocyanins, monomeric anthocyanins and polymeric anthocyanins at 20 °C

Tao et al. (2014)

jussara pulp

(Euterpe

edulis)

Ultrasonic cleaning bath (USC-2800-A model, Thorton, Sao Paulo, Brazil)

Different ethanol concentrations (0, 30, 50, 70 and 90) and adjust to a pH of 3.0 with 0.35%. Citric acid (w/v), temperature (25, 35, 45 and 55) and ratio liq/sol of 5, 10, 15, 20, 25 and 30

Increase of anthocyanins from 7.12 to 15.72 mg anthocyanin/g dry pulp with time increasing (5 to 20min). Increase of the antioxidant activities (FRAP and DPPH).

Use of a 30--70% (v/v) ethanol solution promoted the biggest anthocyanin yields.

The anthocyanins are not sensitive to heat tested 15 mL/g pulp is the best for anthocyanins extraction

Vieira,

Cavalcanti,

Meireles,

& Hubinger (2013)

Aronia mela- nocarpa (black chokeberry) wastes

Ultrasounds generator (SinapTec, France)

Ethanol--water (25--50%), ratio liquid-to-solid (40: 1), Temperature at 20, 45 and

70 °C, frequency of 30.8 kHz and power of 50 or 100 W and time of 5, 10, 15, 25, 45, 60, 120, 180 and 240 min

Increase of extraction yields using 50% ethanol were about 3-fold higher than aqueous extractions. Anthocyanins are not stable at high temperatures.

Decrease of the anthocyanins at 20 °C.

Yields of 90% of the extractable anthocyanins under 70 °C, 34% ethanol, 17 min and 100 W

Galvan D'Alessandr o, Dimitrov, Vauchel,

& Nikov

red raspberry puree

A 400 W capacity batch sonication system (Branson Sonifier, S-450A, Danbury, CT) with a 7 cm vibrating titanium tip with the probe immersed half way in the liquid.

50% output power, 20 kHz, time of 0, 10, 20, 30 min.

12.6% at 20 kHz increase.

Maximum increase of anthocyanins yield (40 °C, 20 min).

Time saving of ultrasound methods compared to conventional techniques.

Golmoha- madi et al. (2013)

Custom-made ultrasound generator (APC-841, American Piezo Ceramics, Mackeyville, PA)

490 and 986 kHz, time of 0, 10, 20,

30 min

6.7% at 490 kHz after 10 min soni- cation increase

Delonixregia tree flowers

PEX 3 Sonifier (R.E.U.S., Contes, France)

Water--sulphuric (0.01 N), acid, water--citric acid (0.01 N) or methanol--water acidified with HCl, ratio liquid- to-solid (100: 1), for 1 h and power of 150 W

More stability of total anthocyanins in citric acidified-water than sulphuric acid-water.

More stability of anthocyanins in water acidified than less polar solvent (methanol)

Adjй et al. (2010)

Red grape juice

A 1500 W ultrasonic processor (VC 1500, Sonics and Materials Inc., Newtown, USA)

80 mL water at 32 to 45 °C, Amplitude level (24.4--61 |jm), time (2--10 min) and pulse durations of 5 s on and 5 s off

Stability of cyanidin-3-O-glucosides (97.5%), malvanidin-3-O-glucosides (48.2%) and delphinidin-3-O-glucosi- des (80.9%) during sonication. Significant effects of sonication colour values and colour index (CI)

Tiwari,

Patras, Brunton, Cullen, & O'Donnell (2010)

Jabuticaba

(Myrciaria

cauliflora)

skins

ultrasonicator bath

40 kHz (81 W) (model

T 1440, Thornton, Sao Paulo, Brazil)

10 mL ethanol 99.5% at room temperature for

2 hours

Ultrasound method resulted higher extraction efficiency than agitated bed technique and soxhlet

Veggi, Santos, & Meireles (2011)

Canna indica flower

The ultrasound chamber (35 kHz, JULABO, USR3)

50 ml 0.1% HCl (v/v) in methanol for 2 h at room temperature

Efficiency of ultrasonication method to extracting the anthocyanins. Stability of total anthocyanins content. Increase of the antioxidant activity

Srivastava & Vankar (2010)

fruit pulp of Euterpe edulis

Unique 1400A ultrasonic bath (Unique, Sao Paulo, Brazil)

Methanol/1.5 M HCl, solid to liquid ratio (1: 30) and (1: 50) and extraction time of 24 h

Stability of total anthocyanins extracted during ultrasonication

Borges, Vieira, Copetti, Gonzaga, & Fett (2011)

Nephelium lappaceum L. fruit peel

Ultrasonic bath (Power sonic, Korea) equipped with digital sonication power, time and temperature controller with a useful volume of 10 L (internal dimensions:

30 ¦ 24 ¦ 15 cm)

Water 18.6: 1 mL/g, 50 °C, ultrasound power of 20 W, time of 20 min

Stability of anthocyanins content (30 to 50 °C).

Increase of anthocyanins with solvent-to-solid ratio from 1: 10 to

1: 20 (g/ml).

Adequacy of ultrasonication method for anthocyanins extraction

Prakash

Maran,

Manikandan,

Vigna

Nivetha, &

Dinesh

Grapes

Ultrasonic UP200S sonifier (200W, 24 kHz) (Hielscher Ultrasonics, Teltow, Germany)

Water--ethanol acidified (50: 50) (HCl, pH: 2.0), (0-- 75 °C), output amplitude (20, 50 and 100%), duty cycle (0.2 s, 0.6 s and

1 s), the quantity of sample (0.5--2 g) and the extraction time (3--15 min)

High recovery of anthocyanins obtained with ultrasound at 6 min. Anthocyanins more sensitive to ultrasonication time.

Increase and high stability of antho- cyanins 10 °C.

Decrease of anthocyanins at 30-- 40 °C

Carrera, Ruiz-Rodriguez, Palma, & Barroso (2012)

Garcinia

indica

UP 200S from Dr. Hielscher GmbH (Teltow, Germany)

Water-to-powder ratio 10 (v/g), 35 min, cycle ranging from 0.44 to 0.48 s-1, amplitude from 10 to 14%

Stability of total anthocyanins. Increase of antioxidant activity with ultrasound irradiation

Nayak &

Rastogi

(2013)

4.4 Micellar effect (Colloidal Gaz Aphron)

In these last years, considerable interest in replacing synthetic colorants with natural pigments as like anthocyanins has developed, nevertheless the main problem related to their utilisation is the very low stability in aqueous media at pH values above 2.0 [69, 70].

Nowadays, only a few researches have been made to verify the ability of micellar systems to stabilise anthocyanins compounds. Micellar solutions are widely used as host systems for synthetic and natural organic compounds and basically three differently charged surfactants can be used to produce micelles, anionic, cationic and non-ionic.

The outer surface of the micro bubble may be positively charged, negatively charged or neutral, to which oppositely charged or non-charged molecules will adsorb, resulting in their effective separation from the bulk liquid, and consequently the selectivity of adsorption can be controlled [71]. The use of surfactant-based methods for the treatment of aqueous streams and solid matrices to remove organic and inorganic contaminants, and for the recovery of natural pigment products, are promising new areas of great environmental and technological importance. In particular, colloidal gas aphrons (CGA) are surfactant-stabilized microbubbles (10--100 pm) generated by intense stirring of a surfactant solution at high speeds (> 8.000 rpm). They were firstly postulated by Sebba (1987) to consist of a microbubble encapsulated in a thin aqueous film (“soapy shell”). CGA have been used for many separation processes of bio-products such as protein, enzyme, carotenoids and dyes recovery [72]. The most striking feature of CGA is their stability, which lets them generated externally to their point of use, and then to be transported by pumping. Generally, the stability of aqueous foam is determined by two different phenomena: the rate at which liquid drains from foam, and the rate at which the body of the foam breaks down. In the case of CGA, there is no perceptible breakdown of the microbubble until the great majority of the liquid has drained. Spigno et al. (2010), first put forward a recovery of gallic acid with colloidal gas aphrons generated from a cationic surfactant to explain the possibility of CGA to separate the gallic acid from aqueous solution [71].

Dahmounea et al. (2013) demonstrated that an equilibrium colour stabilization of extract rich in anthocyanins occurred in micellar solution of non-ionic surfactant Tween 20 [46]. It was hypothesized that the presence a surfactant could increase the stability of natural pigment (anthocyanins) (Fig. 10). Further research is also required to get an insight into the type and stability of the molecular association between the phenolic compounds and the surfactants.

Fig. 10. Picture of agglomerates formed in the aphron phase recovered from the separation trials carried out with undiluted extract [46]

Summary

Anthocyanins are the most noticeable group among coloured flavonoids, widely existing in the roots, stems and leaves as well as flowers and fruits of the vascular plants. They have a high potential for use as natural colorants instead of synthetic pigments because of their attractive colour and pharmacological properties. Considerable studies have been done on the effects of the most important chemical and physical factors involved in the stability of anthocyanins (temperature, light, pH, SO2, metal, sugar, ascorbic acid and oxygen), their concentrations, chemical structures, and matrix food compositions. Furthermore, the effects of separation technologies including microwave/ ultrasound assisted extraction (MAE, UAE), and Colloidal GazAphron (CGA) fractionation on the stability of anthocyanins are reviewed.

References

1. Pifferi PG, Cultrera R. Enzymatic degradation of anthocyanins: the role of sweet cherry polyphenol oxidase. Journal of Food Science. 1974; 39(4):786--791. Available from: doi: 10.1111/j. 1365-2621.1974.tb17980.x.

2. Rustioni L, Di Meo F, Guillaume M., Failla O, Trouillas P. Tuning color variation in grape anthocyanins at the molecular scale. Food Chemistry. 2013; 141(4):4349--4357. Available from: doi: 10.1016/j.foodchem.2013.07.006

3. Sari P, Wijaya CH, Sajuthi D, Supratman U. Colour properties, stability, and free radical scavenging activity of jambolan (Syzygium cumini) fruit anthocyanins in a beverage model system: Natural and copigmented anthocyanins. Food Chemistry. (2012); 132(4): 1908--1914. Available from: doi: 10.1016/j.foodchem.2011.12.025

4. Simoes C, Brasil CHB, da Silva Cordeiro L, de Castro TC, Coutada LCM, da Silva AJR, Albarello N, Mansur E. Anthocyanin production in callus cultures of Cleome rosea: Modulation by culture conditions and characterization of pigments by means of HPLCDAD/ESIMS. Plant Physiology and Biochemistry. 2009; 47(10):895--903. Available from: doi: 10.1016/j.plaphy.2009.06.005.

5. Reque PM, Steffens RS, Jablonski A, Flores SH, Rios ADO, de Jong EV. Cold storage of blueberry (Vaccinium spp.) fruits and juice: Anthocyanin stability and antioxidant activity. Journal of Food Composition and Analysis. 2014; 33(1):111--116. Available from: doi: 10.1016/j.jfca.2013.11.007.

6. Hellstrom J, Mattila P, Kaijalainen R. Stability of anthocyanins in berry juices stored at different temperatures. Journal of Food Composition and Analysis. 2013; 31(1):12--19. Available from: doi: 10.1016/j.jfca.2013.02.010

7. Tiwari BK, O'Donnell CP, Cullen PJ. Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends in Food Science & Technology. 2009; 20(3--4):137-- 145.

8. Dahmoune F, Madani K, Jauregi P, De Faveri DM, Spigno G. Fractionation of a red grape marc extract by colloidal gas aphrons. Chemical Engineering. 2013; 32. Available from: doi: 10.3303/CET1332318.

9. Wrolstad RE, Durst RW, Lee J. Tracking color and pigment changes in anthocyanin products. Trends in Food Science & Technology. 2005; 16(9): 423--428. Available from: doi: 10.1016/j.tifs.2005.03.019.

10. Soliva-Fortuny R, Balasa A, Knorr D, Martin-Belloso O. Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends in Food Science & Technology. 2009; 20(11--12):544--556. Available from: doi: 10.1016/j.tifs.2009.07.003.

11. Zhang HF, Yang XH, Wang Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends in Food Science & Technology. 2011; 22(12):672--688. Available from: doi: 10.1016/j.tifs.2011.07.003.

12. Van Duynhoven JPM, Van Velzen EJJ, Westerhuis JA, Foltz M, Jacobs DM, Smilde AK. Nutrikinetics: Concept, technologies, applications, perspectives. Trends in Food Science & Technology. 2012; 26(1):4--13. Available from: doi: 10.1016/j.tifs.2012.01.004.

13. Andersen 0M, Jordheim M. The anthocyanins. In: Andersen 0M, Markham KR. (eds.) Chemistry, biochemistry and applications. 2nd ed. Boca Raton, FL: CRC Press; 2006. p. 452--471.

14. Chandrapala J, Oliver C, Kentish S, Ashokkumar M. Ultrasonics in food processing -- Food quality assurance and food safety. Trends in Food Science & Technology. 2012; 26(2):88--98. Available from: doi: 10.1016/j.tifs.2012.01.010.

15. Huang HW, Hsu CP, Yang BB, Wang CY. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends in Food Science & Technology. 2013; 33(1):54-- Available from: doi: 10.1016/j.tifs.2013.07.001.

16. Troise AD, Fogliano V. Reactants encapsulation and Maillard reaction. Trends in Food Science & Technology. 2013; 33(1):63--74. Available from: doi: 10.1016/j.tifs.2013.07.002.

17. Mateus N, De Freitas V. Anthocyanins as food colorants. In: Gould K, Davies K, Winefield C. (eds.) Anthocyanins: Biosyntheis, Functions, and Applications. New York: Springer; 2009. p. 238--304.

18. Skrede C, Wrolstad RE. Flavonoids from berries and grapes. In: Shi J, Mazza G, Le Maguer M, and Boca R. (eds.) Functional foods: Biochemical and processing aspects. Boca Raton, Florida: CRC Press; 2002. 2:71--133.

19. Ducamp-Collin MN, Lebrun M, Ramarson H, Self G. Anthocyanins and anthocyanin-degrading enzymes in Kwai May and Wai Chee cultivars of litchis grown in Reunion Island and Spain. Fruits. 2007; 62(6):353--359. Available from: doi: 10.1051/fruits:2007033.

20. Lee YK, Khng HP. Natural color additives. In: Branen AL, Davidson PM, Salminen S, Thorngate III JH. (eds.) Food Science And Technology. New York: Marcel Dekker; 2002. p. 501--522.

21. Linden G, Lorient D. New ingredients in food processing: Biochemistry and agriculture. Boca Raton: CRC Press; 1999. Available from: doi: 10.1201/9781439822760.

22. Brat P, Tourniaire F, Amiot-Carlin MJ. Stability and Analysis of Phenolic Pigments. In: Socaciu C. (ed.) Food Colorants, Chemical and functional properties. USA: Taylor & Francis Group; 2008. p. 71--86.

23. Andersen 0M, Daayf F, Lattanzio V. Recent advances in the field of anthocyanins -- Main focus on structures. In: Daayf F, Lattanzio V. (eds.) Recent advances in polyphenol research. Singapore: Blackwell Publishing; 2008. 1:167--201.

24. Gonzalez-Aguilar GA, Ayala-Zavala JF, de la Rosa LA, Alvarez-Parrilla E. Phytochemical changes in the postharvest and minimal processing of fresh fruits and vegetables. In: de la Rosa LA, Alvarez-Parrilla E, Gonzalez-Aguilar GA. (eds.) Fruit and vegetable phytochemicals: chemistry, nutritional value and stability. Singapore: Blackwell Publishing; 2010. p. 309--311.

25. Giusti MM, Wallace TC. Flavonoids as Natural Pigments. In: Bechtold T, Mussak R. (eds.) Handbook of Natural Colorants. Chichester, West Sussex, UK: John Wiley & Sons; 2009. p. 255--275.

26. Ribйreau-Gayon P, Glories Y, Maujean A, Dubourdieu D. Phenolic compounds. In: Ribereau- Gayon P, Glories Y, Maujean A, Dubourdieu D. (eds.) Handbook of Enology: The Chemistry of Wine Stabilization and Treatments. Chichester, West Sussex, UK: John Wiley & Sons; 2006. p. 141--203.

27. Vermerris W, Nicholson R. Chemical properties of phenolic compounds. In: Phenolic Compound Biochemistry. Dordrecht, Netherlands: Springer; 2006. p. 35--62. Available from: doi: 10.1007/978-1-4020-5164-7.

28. Belitz HD, Grosch W, Schieberle P. Food chemistry. 4th ed. Germany: Springer Berlin Heidelberg; 2009. doi: 10.1007/978-3-540-69934-7.

29. Dangles O, Dufour C. Flavonoid-protein binding processes and their potential impact on human health. In: Daayf F, Lattanzio V. (eds.) Recent advances in polyphenol research. Oxford, UK: Wiley-Blackwell; 2008. 1:67--87.

30. Leonelli C, Veronesi P, Cravotto G. Microwave-assisted extraction: an introduction to dielectric heating. In: Chemat F, Cravotto G. (eds.) Microwave-assisted extraction for bioactive compounds. Boston, MA: Springer; 2013. p. 1--14. Available from: doi: 10.1007/978-1-4614- 4830-3_1.

31. Motasemi F, Ani FN. A review on microwave-assisted production of biodiesel. Renewable and Sustainable Energy Reviews. 2012; 16(7):4719--4733. Available from: doi: 10.1016/j.rser.2012.03.069.

32. Chandrasekaran S, Ramanathan S, Basak T. Microwave food processing -- A review. Food Research International. 2013; 52(1):243--261. Available from: doi: 10.1016/j.foodres.2013.02.033.

33. Sonobe T, Hachiya K, Mitani T, Shinohara N, Ohgaki H. Microwave material processing for distributed energy system. In: Yao T. (ed.) Zero-Carbon Energy Kyoto 2011. Tokyo: Springer; 2012. p. 111--117.

34. Ballard TS, Mallikarjunan P, Zhou K. Q, O'Keefe S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chemistry. 2010; 120(4): 1185--1192. Available from: doi: 10.1016/j.foodchem.2009.11.063.

35. Gude VG, Patil P, Martinez-Guerra E, Deng S, Nirmalakhandan N. Microwave energy potential for biodiesel production. Sustainable Chemical Processes. 2013; 1(1):5. Available from: doi: 10.1186/2043-7129-1-5.

36. Chandrasekhar J, Madhusudhan MC, Raghavarao KSMS. Extraction of anthocyanins from red cabbage and purification using adsorption. Food and Bioproducts Processing. 2012; 90(4): 615--623. Available from: doi: 10.1016/j.fbp.2012.07.004.

37. Wu XY, Liang LH, Zou Y, Zhao T, Zhao JL, Li F, Yang LQ. Aqueous two-phase extraction, identification and antioxidant activity of anthocyanins from mulberry (Morus atro- purpurea Roxb.). Food Chemistry. 2011; 129(2):443--453. Available from: doi: 10.1016/j.foodchem.2011.04.097.

38. Paula JT, Paviani LC, Foglio MA, Sousa IMO, Cabral FA. Extraction of anthocyanins from Arrabidaea chica in fixed bed using CO2 and CO2/ethanol/water mixtures as solvents. The Journal of Supercritical Fluids. 2013; 81:33--41. Available from: doi: 10.1016/j.supflu.2013.04.009.

39. Paula JT, Paviani LC, Foglio MA, Sousa IMO, Duarte GHB, Jorge MP, Eberlin MN, Cabral FA. Extraction of anthocyanins and luteolin from Arrabidaea chica by sequential extraction in fixed bed using supercritical CO2, ethanol and water as solvents. The Journal of Supercritical Fluids. 2014; 86:100--107. Available from: doi: 10.1016/j.supflu.2013.12.008.

40. Santos DT, Albarelli JQ, Beppu MM, Meireles MAA. Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent. Food Research International. 2013; 50(2):617--624. Available from: doi: 10.1016/j.foodres.2011.04.019.

41. Seabra IJ, Braga MEM, Batista MT, de Sousa HC. Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace. The Journal of Supercritical Fluids. 2010; 54(2):145--152. Available from: doi: 10.1016/j.supflu.2010.05.001.

42. Adje F, Lozano YF, Lozano P, Adima A, Chemat F, Gaydou EM. Optimization of anthocyanin, flavonol and phenolic acid extractions from Delonix regia tree flowers using ultrasound-assisted water extraction. Industrial Crops and Products. 2010; 32(3):439--444. Available from: doi: 10.1016/j.indcrop.2010.06.011.

43. Golmohamadi A, Mцller G, Powers J, Nindo C. Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrasonics Sonochemistry. 2013; 20(5): 1316--1323. Available from: doi: 10.1016/j.ultsonch.2013.01.020.

44. Liazid A, Guerrero RF, Cantos E, Palma M, Barroso CG. Microwave assisted extraction of anthocyanins from grape skins. Food Chemistry. 2011; 124(3): 1238--1243. Available from: doi: 10.1016/j.foodchem.2010.07.053.

45. Yang Z, Zhai W. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC--MS. Innovative Food Science & Emerging Technologies. 2010; 11(3):470--476. Available from: doi: 10.1016/j.ifset.2010.03.003.

46. Dahmoune F, Boulekbache L, Moussi K, Aoun O, Spigno G, Madani K. (2013). Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Industrial Crops and Products. 50:77--87. Available from: doi: 10.1016/j.indcrop.2013.07.013.

47. Garofulic IE, Dragovic-Uzelac V, Jambrak AR, Jukic M. The effect of microwave assisted extraction on the isolation of anthocyanins and phenolic acids from sour cherry Marasca (Prunus cerasus var. Marasca). Journal of Food Engineering. 2013; 117(4):437--442. Available from: doi: 10.1016/j.jfoodeng.2012.12.043.

48. Zheng X, Xu X, Liu C, Sun Y, Lin Z, Liu H. Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Separation and Purification Technology. 2013; 104:17--25. Available from: doi: 10.1016/j. seppur.2012.11.011.

49. Li Y, Han L, Ma R, Xu X, Zhao C, Wang Z, Chen F, Hu X. Effect of energy density and citric acid concentration on anthocyanins yield and solution temperature of grape peel in microwave- assisted extraction process. Journal of Food Engineering. 2012; 109(2):274--280. Available from: doi: 10.1016/j.jfoodeng.2011.09.021.

50. Grigoras CG, Destandau E, Zubrzycki S, Elfakir C. Sweet cherries anthocyanins: An environmental friendly extraction and purification method. Separation and Purification Technology. 2012; 100:51--58. Available from: doi: 10.1016/j.seppur.2012.08.032.

51. Svarc-Gajic J, Stojanovic Z, Carretero AS, Roman DA, Borras I, Vasiljevic I. Development of a microwave-assisted extraction for the analysis of phenolic compounds from Rosmarinus officinalis. Journal of Food Engineering. 2013; 119(3):525--532. Available from: doi: 10.1016/j.jfoodeng.2013.06.030.

52. Al Bittar S, Perino-Issartier S, Dangles O, Chemat F. An innovative grape juice enriched in polyphenols by microwave-assisted extraction. Food Chemistry. 2013; 141(3):3268--3272. Available from: doi: 10.1016/j.foodchem.2013.05.134.

53. Shirsath SR, Sonawane SH, Gogate PR. Intensification of extraction of natural products using ultrasonic irradiations -- A review of current status. Chemical Engineering and Processing: Process Intensification. 2012; 53:10--23. Available from: doi: 10.1016/j.cep.2012.01.003.

54. Chandrapala J, Oliver C, Kentish S, Ashokkumar M. Ultrasonics in food processing. Ultrasonics Sonochemistry. 2012; 19(5):975--983. Available from: doi: 10.1016/j.ultsonch.2012.01.010.

55. Paniwnyk L, Cai H, Albu S, Mason TJ, Cole R. The enhancement and scale up of the extraction of anti-oxidants from Rosmarinus officinalis using ultrasound. Ultrasonics Sonochemistry. 2009; 16(2):287--292. Available from: doi: 10.1016/j.ultsonch.2008.06.007.

56. Chemat F, Khan MK. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry. 2011; 18(4):813--835. Available from: doi: 10.1016/j.ultsonch.2010.11.023.

57. Tao Y, Garda JF, Sun DW. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Critical Reviews in Food Science and Nutrition. 2013; 54(6):817--835.

58. Tao Y, Wu D, Zhang QA, Sun DW. Ultrasound-assisted extraction of phenolics from wine lees: Modeling, optimization and stability of extracts during storage. Ultrasonics Sonochemistry. 2014; 21(2):706--715. Available from: doi: 10.1016/j.ultsonch.2013.09.005.

59. Ivanovic J, Tadic V, Dimitrijevic S, Stamenic M, Petrovic S, Zizovic I. Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar “Cacanska Bestrna”. Industrial Crops and Products. 2014; 53:274--281. Available from: doi: 10.1016/j.indcrop.2013.12.048.

60. Vieira GS, Cavalcanti RN, Meireles MAA, Hubinger MD. Chemical and economic evaluation of natural antioxidant extracts obtained by ultrasound-assisted and agitated bed extraction from jussara pulp (Euterpe edulis). Journal of Food Engineering. 2013; 119(2): 196--204. Available from: doi: 10.1016/j.jfoodeng.2013.05.030.

61. D'Alessandro LG, Dimitrov K, Vauchel P, Nikov I. Kinetics of ultrasound assisted extraction of anthocyanins from Aronia melanocarpa (black chokeberry) wastes. Chemical Engineering Research and Design. 2014; 92(10):1818--1826. Available from: doi: 10.1016/j.cherd.2013.11.020.

62. Tiwari BK, Patras A, Brunton N, Cullen PJ, O'Donnell CP. Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrasonics Sonochemistry. 2010; 17(3):598--604. Available from: doi: 10.1016/j.ultsonch.2009.10.009.

63. Veggi PC, Santos DT, Meireles MAA. Anthocyanin extraction from Jabuticaba (Myrciaria cauliflora) skins by different techniques: economic evaluation. Procedia Food Science. (2011). 1:1725--1731. Available from: doi: 10.1016/j.profoo.2011.09.254.

64. Srivastava J, Vankar PS. Canna indica flower: New source of anthocyanins. Plant Physiology and Biochemistry. 2010; 48(12):1015--1019. Available from: doi: 10.1016/j.plaphy.2010.08.011.

65. Borges GDSC, Vieira FGK., Copetti C, Gonzaga LV, Fett R. Optimization of the extraction of flavanols and anthocyanins from the fruit pulp of Euterpe edulis using the response surface methodology. Food Research International. 2011; 44(3):708--715. Available from: doi: 10.1016/j.foodres.2010.12.025.

66. Maran JP, Manikandan S, Nivetha CV, Dinesh R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arabian Journal of Chemistry. 2017; 10:S1145--S1157.

67. Carrera C, Ruiz-Rodriguez A, Palma M, Barroso CG. Ultrasound assisted extraction of phenolic compounds from grapes. Analytica Chimica Acta. 2012; 732:100--104. Available from: doi: 10.1016/j.aca.2011.11.032.

68. Nayak CA, Rastogi NK. Optimization of solid--liquid extraction of phytochemicals from Garcinia indica Choisy by response surface methodology. Food Research International. 2013; 50(2):550--556. Available from: doi: 10.1016/j.foodres.2011.02.033.

69. Hurtado NH, Morales AL, Gonzalez-Miret ML, Escudero-Gilete ML, Heredia FJ. Colour, pH stability and antioxidant activity of anthocyanin rutinosides isolated from tamarillo fruit (Solanum betaceum Cav.). Food Chemistry. 2009; 117(1):88--93. Available from: doi: 10.1016/j.foodchem.2009.03.081.

70. Li J, Li XD, Zhang Y, Zheng ZD, Qu ZY, Liu M, Zhu SH, Liu S, Wang M, Qu L. Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chemistry. 2013; 136(3--4):1429-- 1434.

71. Spigno GIORGIA, Dermiki M, Pastori CHIARA, Casanova F, Jauregi P. Recovery of gallic acid with colloidal gas aphrons generated from a cationic surfactant. Separation and Purification Technology. 2010; 71(1):56--62. Available from: doi: 10.1016/j.seppur.2009.11.002.

72. Dermiki M, Gordon MH, Jauregi P. Recovery of astaxanthin using colloidal gas aphrons (CGA): A mechanistic study. Separation and Purification Technology. 2009; 65(1):54--64. Available from: doi: 10.1016/j.seppur.2007.12.023.

73. Leonelli C, Veronesi P, Cravotto G. Microwave-assisted extraction: An introduction to dielectric heating. In: Chemat F, Cravotto G. (eds.) Microwave-assisted Extraction for Bioactive Compounds. Boston, MA: Springer; 2013. p. 1--14. Available from: doi: 10.1007/978-1-4614-4830-3_1.

Размещено на Allbest.ru


Подобные документы

  • World forest region map. Deforestation as the conversion of forest land to non-forest land for use (arable land, pasture). Effect of destruction of large areas of forest cover on the environment and reduce biodiversity. The methods of forest management.

    презентация [1,4 M], добавлен 06.05.2012

  • The nature and terms of the specialization of agricultural enterprises. The dynamics of the production of corn for grain. Deepening of specialization and improve production efficiency. The introduction of mechanization and advanced technologies.

    курсовая работа [67,7 K], добавлен 13.05.2015

  • The thermal cracking method. The process by which hydrocarbons with relatively high molecular mass are chemically converted to hydrocarbons with lower molecular mass. Thermal and catalytic cracking, hydrocracking, steam cracking. Scheme of catalytic.

    презентация [684,8 K], добавлен 02.03.2013

  • The role of deuterium in molecular evolution is most interesting question of nowdays science comprises two points mainly: the evolution of deuterium itself as well as the chemical processes going with participation of deuterium.

    статья [426,3 K], добавлен 23.10.2006

  • Високовольтний імпульсний драйвер MOSFET з синхронним випрямлянням від фірми Intersil. Ключові властивості драйверів SCALE. Концепція захисту драйверів SCALE. Технологія та характеристики драйверів SCALE для IGBT-модулів. Режими роботи драйверів SCALE.

    реферат [180,3 K], добавлен 08.11.2010

  • Palm oil is a form of edible vegetable oil obtained from the fruit of the oil palm tree. Chemistry and processing. Environmental, social and cultural impact. Biofuels and bioproducts. Regional production. Health. Blood cholesterol controversy.

    реферат [23,8 K], добавлен 12.05.2008

  • Concept and characteristics of focal pneumonia, her clinical picture and background. The approaches to the diagnosis and treatment of this disease, used drugs and techniques. Recent advances in the study of focal pneumonia. The forecast for recovery.

    презентация [1,5 M], добавлен 10.11.2015

  • Связь кондитерского бизнеса и технологий упаковки. Обзор рынка пластиковых контейнеров для кондитерских изделий. Расчёты эффективности внедрения инновации для пирожного "Fruit Basket". Расчет коэффициентов финансовой оценки. Функции пластиковой упаковки.

    контрольная работа [885,7 K], добавлен 16.01.2013

  • Semantics as the search for meaning in the language and character values in their combinations. Principles of color semantics. Linguistic and theological studies color categories in the poem J. Milton's "Paradise Lost." Semantic analysis of color terms.

    курсовая работа [36,8 K], добавлен 12.03.2015

  • Principles of asr teсhnology. Performance and designissues in speech applications. Current trends in voise-interactive call. Difining and acquiring literacy in the age of information. Content-based instruction and literacy development.

    курсовая работа [107,9 K], добавлен 21.01.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.