Моделирование распределения давления гусеничного трактора на почву с применением языка С#
Разработка математической модели распределения давлений под опорной части гусеничного движителя с учетом влияния геометрии и параметров его конструкции, расположения центра масс, величины и точки приложения тяговых сопротивлений, действующих на трактор.
Рубрика | Сельское, лесное хозяйство и землепользование |
Вид | статья |
Язык | русский |
Дата добавления | 31.08.2020 |
Размер файла | 1012,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Моделирование распределения давления гусеничного трактора на почву с применением языка С#
Гайнуллин И.А., Загирова Р.Ю., Нургатина С.О. Уфимский государственный авиационный технический университет
Аннотация
В статье представлены результаты разработки математической модели и программного обеспечения для моделирования распределения давления гусеничного трактора на почву на языке С#. На основе контактной задачи теории упругости разработана модель распределения давлений под опорной части движителя с учетом влияния геометрии и параметров конструкции движителя, расположения центра масс, величины и точки приложения тяговых сопротивлений, действующих на трактор. А также математическая модель учитывает параметры почвы, включает описание граничных условий и поправочный коэффициент. Созданная математическая модель и программа обеспечивают высокую скорость расчета, достоверность и точность результатов, что подтверждается экспериментальными данными.
Ключевые слова: гусеничный трактор, давление, почва, математическая модель, программное обеспечение, язык С#.
Abstract
The paper presents the results of the development of a mathematical model and software for modeling the pressure distribution of a track-type tractor on a soil in C#. Based on the contact problem of the theory of elasticity, the authors developed a pressure distribution model under the support part of a track mover, taking into account the influence of the geometry and design parameters of a track mover, the location of the center of mass, the magnitude and the point of application of draught resistance acting on a tractor. And this mathematical model considers soil parameters, includes the description of boundary conditions and a correction factor. The created mathematical model and program provide a high calculation speed, reliability, and accuracy of the results, which is confirmed by experimental data.
Keywords: track-type tractor, pressure, soil, mathematical model, software, C# programming language.
В настоящее время большое внимание уделяется вопросам повышения технического уровня и проходимости движителей машин, снижения их металлоемкости и уплотняющего воздействия на почву [1], [6]. С учетом результатов углубленного анализа проблемы воздействия движителей на почву разработаны новые методы определения максимальных нормируемых давлений колесных и гусеничных движителей на почву, расчетные методы определения показателей колесного и металлогусеничного движителей, обеспечивающих допустимое воздействие техники на почву, и напряженно-деформированного состояния почвогрунтов [7]. При реализации ресурсосберегающих технологий установлено положительное влияние комбинированной системы обработки почвы и посева, короткоротационных севооборотов на продуктивность сельскохозяйственных культур и снижения уплотнения почвы движителями [8], [9].
При оценке эффективности машинно-тракторных агрегатов (МТА) при выполнении технологических операций значимо соответствие их движителей требованиям обеспечивающих допустимое по воздействию на почву.
Для исследования процессов взаимодействия движителей тракторов с почвой и ее уплотнения используются различные теоретические подходы и экспериментальные методы [10], [11], [12].
Степень уплотнения почвы зависит от массы трактора, типа движителя, типа почвы и технологии производства полевых работ [13]. Одно из основных направлений снижения уплотняющего воздействия на почву является совершенствование движителей МТА [14].
Исследования авторов Sh. Taheri, C. Sandu, S. Taheri, E. Pinto, D. Gorsich охватывает наиболее часто используемые модели взаимодействия колес с деформируемыми грунтами, разработанные для колесных транспортных средств [15]. Авторы Algirdas JanulevicЎius, Vidas Damanauskas, Gediminas Pupinis исследовали влияние давления воздуха в переднем и заднем колесе на коэффициент перекатыванию колесного трактора и расход топлива при возделывании пшеницы [16]. В работе [17] авторами Zeinab El-Sayegh, Moustafa El-Gindy, Inge Johansson, Fredrik Цijer представлена усовершенствованная модель взаимодействия шины с грунтом на основе моделирования FEA-SPH. В исследованиях авторов Payam Farhadi, Abdollah Golmohammadi, Ahmad Sharifi, Gholamhossein Shahgholi разработан метод оценки трехмерного (3D) следа пневматических сельскохозяйственных шин на основе формования следа шины жидкой штукатуркой и преобразования этих форм к трехмерным моделям с помощью 3D сканера [18]. В работе Shamrao, Chandramouli Padmanabhan, Sayan Gupta, Annadurai Mylswamy предложена модель с использованием фильтрации частиц для оценки терромеханических параметров взаимодействия колеса с грунтом [19].
Предложенные модели взаимодействия колеса с почвой и результаты исследований авторов Sh. Taheri, C. Sandu, S. Taheri, E. Pinto, D. Gorsich, Algirdas JanulevicЎius, Vidas Damanauskas, Gediminas Pupinis, Zeinab El-Sayegh, Moustafa El-Gindy, Inge Johansson, Fredrik Цijer, Payam Farhadi, Abdollah Golmohammadi, Ahmad Sharifi, Gholamhossein Shahgholi, Shamrao, Chandramouli Padmanabhan, Sayan Gupta, Annadurai Mylswamy, можно использовать для моделирования взаимодействия резиноармированных гусениц с почвой [15], [16], [19].
Беккер М.Г. предложил методы анализа «местность-машина» применительно к оценке проходимости машин по местности [20]. Вонгом Дж рассмотрены основы теории и конструкции колесных и гусеничных транспортных машин, а также аппаратов на воздушной подушке [21]. Congbin Yang, Ligang Cai, Zhifeng Liu, Yang Tian, Caixia Zhang предложили способ расчета тяги гусеничного трака на мягком грунте [22]. В исследованиях Wang M., Wang X., Sun Y., Gu Z. произведена оценка тяговых характеристик морских гусеничных машин на основе лабораторных механических испытаний [23].
В исследованиях Беккера М.Г., Вонга Дж, Congbin Yang, Ligang Cai, Zhifeng Liu, Yang Tian, Caixia Zhang., Wang M., Wang X., Sun Y., Gu Z. рассмотрены взаимодействие металлогусеничного движителя с почвой, неравномерность распределения реакций почвы на опорную поверхность движителя, тяговые характеристики и расчеты. Однако не рассмотрены влияние геометрии опорной части гусеничного трактора на уплотнение почвы и тягово-сцепные показатели.
Установлено, что давление на почву тракторов Т-150К, Т-170М1.03-55, К-701 соответственно в 1,8; 2,6 и 3,5 раза выше, чем у гусеничного трактора Т-150 [1]. Обосновано, что дальнейшее снижение уплотнения почвы и износа гусениц трактора Т-170М1.03-55 возможно за счет оптимизации геометрии опорной части гусеничного движителя [24], [25], [26].
Таким образом, проблема снижения уплотнения почвы требует поиска новых конструктивно-компоновочных схем движителей тракторов, обеспечивающих снижение уплотнения почвы и повышению тягово-сцепных показателей. Разработка и совершенствование движителей требуют наличия сложной экспериментальной аппаратуры. Поэтому применение имитационных моделей, исполненных в среде программного обеспечения, снижают сроки, расчетные и материальные затраты на стадии проектирования.
Цель исследования - разработать математическую модель и программное обеспечение для моделирования распределения давления гусеничного трактора на почву на языке С#.
Материалы и методы исследования
При разработке математической модели и программного обеспечения использовался объектно-ориентированный подход. Для разработки программного обеспечения применялся язык программирования С# [27]. На рис. 1 показан внешний вид окно задания исходных данных. Объектом исследований являлся гусеничный трактор Т-170М1.03-55.
Результаты исследования и их обсуждение
На основе контактной задачи теории упругости получено уравнение геометрии опорной части гусеничного трактора с полужесткой подвеской, обеспечивающей равномерное распределение давления вдоль опорной поверхности [24],[28]:
Рис. 1 - Исходные данные
(1)
где, рср- среднее давление трактора на почву, кПа; рср= Gэ/(2bL); Gэ - эксплуатационный вес трактора, Н; L -длина опорной поверхности трактора, м; b - ширина гусеницы; ; Е1 -модуль упругости почвы, Па; м1 - коэффициент Пуассона почвы; Е2 - модуль упругости стали звена гусеницы, Па; м2 - коэффициент Пуассона стали звена гусеницы; а=L/2- полуширина контакта, м; х - горизонтальная координата точки опорной поверхности, м; В=Р[e+цкр(hкрcosг+csinг)+fhf] ; Р=Gэ+Ркрсоsг - нагрузка приходящий на единичный движитель, кН; Ркр - усилие на крюке, Н; г - угол между усилием на крюке и горизонтальной плоскостью; цкр=Ркр/P - коэффициент использования сцепного веса; е - продольная координата центра тяжести трактора относительно середины опорной длины гусеницы, м; hкр - высота прицепа относительно опорной поверхности, м; f - коэффициент сопротивления передвижению трактора, f = 0,07…0,15; hf - смещение продольной составляющей силы перекатывания от реакции почвы, hf = 0,015…0,029 м; с = -0,027±0,003, м - коэффициент, равный начальный деформации почвы, определялся опытным путем.
Уравнения распределения давления р(х) при плоской (2) и эллипсной (3) геометрии опорной части вдоль линии контакта определены следующими зависимостями:
(2)
(3)
Построение кривой распределения давлений по уравнениям 2, 3 осуществлялось на основе предположения о несоответствии длины пятна контакта и длины самого контактируемого тела: b= k·a, где b - полудлина пятна контакта, b =1,5 м; а - половина длины тела (опорной части движителя), а =1,44 м, k - поправочный коэффициент, k=1,041.
Расчетные данные распределения давления, найденные с помощью уравнения (2) и экспериментальные данные представлены на рис. 2. Данные расчета в модели в созданной программе совпали с экспериментальными данными в пределах допустимой погрешности.
При геометрии опорной части, в продольном сечении описываемой уравнением (1), характер распределения давления вдоль опорной поверхности изменяется (рис. 3), но не превышает максимальных давлений, чем при плоской опорной части трактора (рис.2).
Рис. 2 - Распределение давления плоской опорной частью трактора Т-170М1.03-55
Рис. 3 - Распределение давления эллипсной опорной частью трактора Т-170М1.03-55
Основные достоинства созданного ПО: достоверность, точность и функциональные возможности, достаточные для выполнения текущих и перспективных опытно конструкторских работ.
Таким образом, разработана математическая модель и программное обеспечение на языке С#, которые позволяют производить моделирование распределения давления движителей на почву с различными входными показателями. Была проверена адекватность модели и программы моделирования, внесен поправочный коэффициент в модель. Проверка адекватности модели и программы показала сходимость расчетных и экспериментальных данных.
движитель давление трактор математический
Список литературы
1. Гайнуллин И.А. Влияние конструктивных параметров движителей и нагрузочных режимов тракторов на почву / И.А. Гайнуллин, А.Р. Зайнуллин // Фундаментальные исследования. - 2017. - № 2. - С. 31-36.
2. Mudarisov S. Soil compaction management: reduce soil compaction using a chain-track tractor / S. Mudarisov, I. Gainullin, I. Gabitov and others // Journal of Terramechanics. 2020. - V. 89. - Р. 1-12.
3. Гайнуллин И.А. Экспериментальное исследование влияния скорости движения гусеничного трактора на уплотнение почвы / И.А. Гайнуллин // Международный научно-исследовательский журнал. -2017. - № 3(57). - С. 29-31.
4. Hamza M.A. Soil compaction in cropping systems A review of the nature, causes and possible solutions / M.A. Hamza, W.K. Anderson // Soil & Tillage Research. - 82 (2005), Р. 121-145.
5. Holtkemeyer V. Messung der Reifenverformung bei verschiedenen Radlasten und Luftdrucken / Holtkemeyer // Landtechnik. - 2005. - Jg. 60. - № 2. - S. 76-79.
6. Ксеневич И.П. Наземные тягово-транспортные системы / И.П. Ксеневич, В.А. Гоберман, Л.А. Гоберман. - М., 2003 - 743 с.
7. Ксеневич И.П. Проблема воздействия на почву: некоторые результаты исследований / И.П. Ксеневич, В.А. Русанов // Тракторы и сельскохозяйственные машины. - 2000. - № 1. - С. 15-20.
8. Гайнуллин, И.А. Эффективность работы посевных комбинированных агрегатов / И.А. Гайнуллин, Р.Р. Хисаметдинов, А.В. Ефимов // Механизация и электрификация сельского хозяйства. - 2010. - № 3. - С. 10-12.
9. Халиуллин К.З. Ресурсосберегающие технологии возделывания зерновых культур в степных агроландшафтах Республики Башкортостан / К.З. Халиуллин, Т.И. Киекбаев, С.А. Лукъянов, И.А. Гайнуллин //Достижения науки и техники АПК. - 2010.- № 1.- С. 34-35.
10. Omar Gonzalez Cueto. Modelling in FEM the soil pressures distribution caused by a type on a Rhodic Ferralsol soil. / Gonzalez Cueto Omar, E. Iglesias Coronel Ciro, Lopes Bravo Elvis and others //Journal of Terramechanics. - 2016. - V. 63. - P. 61-67.
11. Ian W.P. Paulson. Development of a dynamic simulation model of a towed seeding implement / W.P. Paulson Ian, T. Dolovich Allan, D. Noble Scott. // Journal of Terramechanics. - 2018. - V. 75. - P. 25-35.
12. Edwin P. Soft soil track interaction modeling in single rigid body tracked vehicle models / P. Edwin, K. Shankar, K. Kannan. //Journal of Terramechanics. - 2018. - V. 77. - P. 1-14.
13. Гайнуллин И.А. Снижение уплотняющего воздействия гусеничного трактора на почву: дис. … канд. техн. наук: 05.20.01: защищена 19.04.02: утв. 06.09.02 / Гайнуллин Ильшат Анварович. - Челябинск, 2002. - 159 с.
14. Исследование влияния расположения опорных катков гусеничной тележки (эллипсный обвод) на тягово-динамические показатели трактора Б 10.01.01.7В (Т-170М1.03-53) : отчет о НИР: 148 / рук. И.А. Гайнуллин; исп. И.А. Гайнуллин [и др.].- Челябинск, 2001. - 63 с.
15. Taheri. A technical survey on Terramechanics models for tire-terrain interaction used in modeling and simulation of wheeled vehicles / Sh. Taheri, C. Sandu, S. Taheri and others // Journal of Terramechanics. 2015- V. 57 - Р. 1-22.
16. Algirdas JanulevicЎius. Effect of variations in front wheels driving lead on performance of a farm tractor with mechanical front-wheel-drive / Algirdas JanulevicЎius, Vidas Damanauskas, Gediminas Pupinis // Journal of Terramechanics. - 2018 - V. 77 - Р. 23-30.
17. Zeinab El-Sayegh. Improved tire-soil interaction model using FEA-SPH simulation / Zeinab El-Sayegh, Moustafa El-Gindy, Inge Johansson and others // Journal of Terramechanics. - 2018 - V. 78. - Р. 53-62.
18. Payam Farhadi. Potential of three-dimensional footprint mold in investigating the effect of tractor tire contact volume changes on rolling resistance / Payam Farhadi, Abdollah Golmohammadi, Ahmad Sharifi, Gholamhossein Shahgholi. //Journal of Terramechanics. - 2018. - V. 78. - Р. 63-72.
19. Estimation of terramechanics parameters of wheel-soil interaction model using particle filtering / Shamrao, Chandramouli Padmanabhan, Sayan Gupta and others // Journal of Terramechanics. - 2018. - V. 79. - Р. 79-95.
20. Беккер М.Г. Введение в теорию систем местность-машина. / М.Г. Беккер. пер. с анг - М.: Машиностроение, 1973 - 520 с.
21. Вонг Дж. Теория наземных транспортных средств. / Вонг. Дж. Пер. с анг. - М.: Машиностроение, 1982. - 284 с.
22. Congbin Yang. A calculation method of track shoe thrust on soft ground for splayed grouser / Congbin Yang, Ligang Cai, Zhifeng Liu and others // Journal of Terramechanics.- 2016. - V. 65. - Р. 38-48.
23. Wang M. Tractive performance evaluation of seafloor tracked trencher based on laboratory mechanical measurements. / Wang, M., Wang, X., Sun and others // Int. J. Nav. Archit. Ocean. - 2016. - Eng. 8 (2). - Р. 177-187.
24. Гайнуллин И.А. Улучшение энергетических и экологических показателей гусеничного движителя трактора Т-170М1.03-55 / И.А. Гайнуллин, А.Р. Зайнуллин // Достижения науки и техники АПК. - 2017. - Т. 31. - № 2. - С. 69-72.
25. Гайнуллин И.А. Методы оценки распределения давления и показателей эффективности снижения уплотняющего воздействия движителей МТА на почву / И.А. Гайнуллин // Вестник ЧГАУ. - Челябинск, 2004. - Т. 43. - С. 31-38.
26. Гайнуллин И.А. Влияние условий эксплуатации на интенсивность износа гусеницы трактора Т-170М1.03-53 / И.А. Гайнуллин // Вестник Башкирского государственного аграрного университета. - Уфа, 2019. - № 1(49) - С. 121-126.
27. Шилдт, Герберт. C# 4.0: полное руководство./ Шилдт, Герберт: Пер. с англ. -- М.: ООО «И.Д. Вильямс», 2011. -- 1056 с.
28. Гайнуллин И.А. Обоснование геометрии опорной поверхности гусеничного движителя и центра тяжести трактора с полужесткой подвеской / И.А. Гайнуллин // Вестник ЧГАУ. - Челябинск, 2001. - Т. 34. - С. 42-47.
Размещено на Allbest.ru
Подобные документы
Ознакомление с агротехническими требованиями к выполнению операции сплошного боронования. Расчет тягового усилия с учетом уклона местности, удельного сопротивления бороны, ширины захвата с целью выбора гусеничного трактора. Подготовка агрегатов к работе.
задача [666,6 K], добавлен 05.07.2010Разработка проекта колесного тягового трактора сельскохозяйственного назначения. Определение эксплуатационного веса тяговый расчет трактора. Обоснование параметров ходовой части машины и подбор двигателя. Выбор передаточных чисел трансмиссии трактора.
курсовая работа [481,5 K], добавлен 27.09.2014Общее устройство гусеничного трактора и назначение его основных частей. Влияние использования тяговой мощности на производительность машинно-тракторного агрегата и себестоимость тракторных работ. Устройство и технологический процесс туковых сеялок.
контрольная работа [44,3 K], добавлен 07.01.2011Исследование путей повышения производительности сельскохозяйственных машинно-тракторных агрегатов. Выбор их оптимальных режимов. Конструкторская разработка, расчет и построение тяговых характеристик трактора МТЗ-82 с использованием энергетического модуля.
курсовая работа [144,4 K], добавлен 28.10.2010Характеристика трактора, параметры и технические данные. Сельскохозяйственные машины для использования с данным классом трактора. Техническое обслуживание тракторов. Расчет коэффициента использования тягового усилия, расчет годовой загрузки трактора.
контрольная работа [31,2 K], добавлен 17.11.2009Назначение, принцип работы и устройство разбрасывателя минеральных удобрений. Техника безопасности при подготовке разбрасывателя трактора. Основные настройки и регулировки разбрасывателя. Проверка надежности прицепной или навесной системы трактора.
отчет по практике [1,4 M], добавлен 12.09.2019Агротехнологические требования, предъявляемые к обработке почвы в ходе предпосевной культивации. Характеристика технологического процесса предпосевной обработки почвы культивацией агрегатом с трактором ДТ-75. Технологический процесс ремонта ходовой части.
контрольная работа [1,1 M], добавлен 20.06.2012Расчет рабочих скоростей и пределы, тягового усилия, часового расхода топлива для трех передач трактора. Определение кинематических параметров агрегата, составляющих баланса времени смены, производительности МТА и эксплуатационных затрат при его работе.
курсовая работа [250,6 K], добавлен 06.04.2014Структура та організаційна система технічного сервісу за машинами. Вибір та розрахунок технологічного обладнання, оснастки, приладів та інструментів для дільниці технічного обслуговування та діагностування машин. Виконання змащувальних робіт трактора.
курсовая работа [129,2 K], добавлен 19.02.2013Выбор трактора, сельскохозяйственной машины и требования, предъявляемые МТА. Расчет состава МТА. Технико-экономические показатели агрегатов. Определение основных экономических показателей МТА. Анализ эффективности и выбор альтернативного варианта.
курсовая работа [31,8 K], добавлен 06.05.2012