Гипотеза о внешнем искусственном низкоамперном положительном воздействии на тепличные растения
Оценка внешнего положительного низкоамперного воздействия на растительные клетки сельскохозяйственных культур. Обоснование необходимости разработки недорогого оборудования, повышающего скорость прорастания семян тепличных сельскохозяйственных растений.
| Рубрика | Сельское, лесное хозяйство и землепользование |
| Вид | статья |
| Язык | русский |
| Дата добавления | 24.05.2020 |
| Размер файла | 21,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
2
Гипотеза о внешнем искусственном низкоамперном положительном воздействии на тепличные растения
О.А. Пустовая, канд. с.-х. наук, доцент
С.Л. Сафонов, магистрант
Дальневосточный государственный
аграрный университет
(Россия, г. Благовещенск)
Аннотация. в статье поднимается проблема дорогого оборудования для малого сельскохозяйственного бизнеса и о необходимости разработки эффективного недорогого оборудования, способного повысить скорость прорастания семян тепличных сельскохозяйственных растений с помощью внешнего низкоамперного положительного воздействия на семена и корни растения. Так же выдвигается гипотеза объясняющая процесс внешнего положительного низкоамперного воздействия на растительные клетки.
Ключевые слова: растительная клетка, ток, митохондрии, гипотеза, низкоамперный, положительный, АТФ.
прорастание клетка семя тепличная культура
С недавнего времени в сельском хозяйстве замечена тенденция развития и внедрения современных технологий. Но проблема внедрения до сих пор остается актуальной. Так если инновации возникают повсеместно, то к их внедрению относятся достаточно скептически. Только малое количество инноваций получают финансирование и внедряются в производственный процесс. Проблема внедрения заключается в финансировании и скептицизме владельцев малого сельскохозяйственного бизнеса. Возникает проблема в создании эффективного инструмента, повышающего эффективность сельскохозяйственного производства, не требующий больших капиталовложений.
В какой-то степени инновации легко проникают в тепличное хозяйство, так как способы выращивания значительно отличаются от полевых. К таким инновациям можно отнести, например, выращивание тепличных культур в высококонцентрированном полезными веществами жидком субстрате, который находится в специальном трубопроводе. Корни растения поглощают из субстрата полезные вещества в течении всего жизненного цикла и не испытывают недостатка в веществах необходимых для полноценной жизнедеятельности растения. Также применяются особенности освещения, которое предоставляет большое количество ультрафиолета для растений. Адаптируемый климат под любой сорт культуры, уже достаточно давно используется в больших тепличных хозяйствах. Все новшества в значительной степени повысили урожайность и получили признание в тепличном хозяйстве.
Полезность всех внешних искусственных воздействий таких как ультрафиолет, тепло, субстрат, легко объяснимы с точки зрения биофизических, физико-химических и физиологических механизмов растений. Но оборудование, позволяющее искусственно повысить темпы роста растений требует значительных финансовых затрат, на что не может пойти любой тепличный комплекс, в особенности из ниши малого бизнеса. Отсюда исходит проблема, которую можно решить путем создания устройства электростимуляции растений, которое не потребует больших капиталовложений и будет доступна для малого бизнеса.
В основе существующих методов обработки, использующих энергию электромагнитного поля, лежат магнитная или электрическая составляющая последнего, а также комплексные способы воздействия электромагнитного поля в сочетании с термическим нагревом, изменением давления и т.д. [1].
Известны эксперименты положительной электростимуляции сельскохозяйственных растений.
Известно, что обработка черенков перед посадкой путем их введения в находящийся под действием переменного магнитного поля субстрат в виде размешенных в емкости из немагнитного материала гранул из ферромагнитного материала и раствора питательных веществ приводила к улучшению укоренения черенков по сравнению с контролем [2].
Изменение общего электромагнитного фона также существенным образом сказывается на растениях. В настоящее время достоверно установлено, что экранирование растений от геомагнитного поля существенно изменяет ряд физиологических и биохимических показателей. Так, при ослаблении геомагнитного поля в 102 раза происходит торможение роста проростков семян гороха, чечевицы и льна. Установлено также, что при неспокойной магнитной обстановке в первые сутки после замачивания семян льна имеет место более быстрый их ”старт” в обычных условиях, чем при экранировании геомагнитного поля [3].
На растительные объекты оказывает влияние также электрическая компонента электромагнитного поля. Так, в опытах с тепличными растениями установлено положительное влияние электрических полей, создаваемых электродами, на рост, урожайность и сроки их созревания [4].
Воздействие электрического тока (2, 4 и 7 мкА) на каллюс эмбриогенной кукурузы в течение 1 мес оказывало существенное влияние на рост и формирование побегов корней. Ток 2 мкА стимулировал все процессы, особенно стеблевой морфогенез: число апексов возрастало после обработки в 19 раз, значительно увеличивалось число апексов, резвившихся в побеги, митотическая активность клеток возрастала в 4 раза. Ток 4 мкА оказывал слабое стимулирующее действие, а ток 7 мкА ингибировал рост каллюса и морфогенез [5].
Используется сочетание обработки семян раствором микроэлементов и электромагнитным полем напряженностью 1*106 - 1,5*108 А/м, которое накладывают импульсами с одновременным воздействием гидравлического удара энергией 1,5-2,5 кДж при частоте 5-6 импульсов в минуту [6].
Нами была выдвинута гипотеза, объясняющая положительную электростимуляцию растений.
В соответствии с нашей гипотезой, водные каналы растительных клеток раскрываются под воздействием электростимуляции в независимости от защитных и регулировочных механизмов. В результате полезные вещества вместе с водой закачиваются в клетки корней растений в огромных количествах. В результате митохондрии получают огромный ресурс веществ, которые используются для получения большого количества АТФ, а значит и больших запасов энергии, в результате клетки ускоряют биохимические, физико-химические и физиологические процессы, из-за отсутствия нехватки энергии и постоянной генерации АТФ и растения развиваются значительно быстрее.
Известно, что внутри клетки присутствует градиент заряда в несколько млВ. А значит для электростимуляции эффективней будет выбрать токи, исчисляемые в млА.
Частичное и косвенное подтверждение своей гипотезы мы получили из научных статей.
Электрическое поле способно улучшать работу водного канала, особенно в стрессовых условиях. Аквапорины функционируют благодаря наличию электрических зарядов. Если имеются положительные заряды, скопление которых обусловлено протонным барьером, к ним будут стремиться отрицательно заряженные ионы, которые, не имея возможности попасть в канал, будут скапливаться на проходах к нему и также препятствовать свободному продвижению диполей молекул воды. Направленное вдоль ризосферы поле будет оттягивать ионы от водного канала и обеспечивать поток воды в корневые клетки. Описанный механизм влияния протонного барьера на транспорт воды по водному каналу обнаруживает в системе водно-солевого обмена растений недостающее до сих пор звено: прямое, непосредственное влияние электрических зарядов в клетке на поступление в протопласт электрически нейтральных молекул воды [7].
Объяснить улучшение посевных качеств семян при их предпосевной обработке физическими факторами можно тем, что у семян возрастает интенсивность водопоглощения, что приводит к сокращению продолжительности микрофенологических фазтпрорастания семян. Так семена различных культуртнаклевываются на 3-4 часа раньше, чем семена контрольных вариантов. Под действием сил электрического поля происходит деформация клеточных мембран, приводящая к изменению их проницаемости, как для воды, так и ионов. Кроме этого импульсное электрическое поле обладает, наряду со стимулирующим и выраженным бактерицидным воздействием на патогенную микофлору, вызывающую различные болезни семян сельскохозяйственных культур [8].
Поскольку вода является проводником электрического тока и одновременно питательной средой для клеток, заполняем ею пространство между обкладками конденсатора. Молекулы воды представляют собой диполи. Под действием разности потенциалов они ускоренно накачиваются в клетку с обеих сторон через поры мембраны (диаметр пор 0,4 нм, диаметр молекулы воды 0,24 нм). Попав в клетку и подвергаясь в ней ионизации направленными электронами, эта вода служит дополнительным источником дыхания клетки (при естественном проникании ее в клетку), а также дополнительным источником образования АТФ. В клетке происходят усиленные разностью потенциалов на электродах ионный и водный обмены, а также увеличиваются запасы энергии клетки-АТФ [9].
Мы наметили испытания на 20.11.2016. Будет собрана установка, вырабатывающая 0,0001 - 0,1 млА. В качестве сельскохозяйственной тепличной культуры выбран томат. Семена разделят на три группы 0,0001; 0,001; 0,01 мА. Семена томата помещаются в калиево-натриевый субстрат, через который пропускается низкоамперный ток. В результате семена окажутся под воздействием низкоамперного тока, что создаст градиент зарядов внутри и снаружи семени, в результате поры семени расширятся и в семена начнет активно накачиваться субстрат необходимый для быстрого прорастания семени. Данная стимуляция проводится каждый день по два раза в течении 10, 20, 30 минут соответственно. После проращивания семени корень оставляют в субстрате. Электростимуляцию проводят три раза в день по 30, 60, 90 минут соответственно.
Результаты эксперимента будут опубликованы после обработки и систематизации данных.
В результате будет разработана установка для тепличных хозяйств способная повысить урожайность томата и не требующая больших капиталовложений. Так же будет предпринята попытка доказать высказанную гипотезу.
Библиографический список
1. Воздействие ЭМП на биохимические процессы в семенах растений / М.Г. Барышев, Г.И. Касьянов // Кубанский государственный университет, Кубанский государственный технологический университет. - 2002.
2. Способ обработки черенков перед посадкой на укоренение / Ф.Я. Поликарпова, Л.Н. Свиридов, В.Г. Трушечкин и др. // Научн. -- исслед. зон. ин-т садоводства нечернозёмной полосы. - 1985.
3. Влияние флуктуаций геомагнитного поля и его экранирования на ранние фазы развития высших растений / Р.Д. Говорун, В.И. Данилов., В.М. Фомичева и др. // Биофизика. - 1992.
4. Заявка 2687041 Франция ЛЖИ 5 ЛОШ7/О4. Предносевная обработка семян. Пер. Ргосеd de culture еn masse de vegetaux et dispositif associe / De la Goublaye De Nantois, De la Goublaye De Nantois. Tanneguve Heiene - № 9201421 Заявл. 07.02.92; Опубл. - 1993.
5. 3-й съезд Всерос. об-ва физиологов: растений (24-29 июня, 1993. Санкт-Петербург): Тез. докл. - С. 126. / Китлаев Г.Л, Долгих Ю.И., Бутенко Р.Г.
6. Способ обработки семян / Г.С. Гикало, , Р.Л. Гиш. - 1980.
7. Механизм действия протонного барьера на транспорт воды по водным каналам при нормализации водно - солевого обмен растений электровоздействием в стрессовых условиях окружающей среды - 2014;
8. Предпосевная обработка семян сельскохозяйственных культур экологически чистым способом (импульсным электрическим полем) Конторина И.С., Рубцова Е.И.
9. Способ электрофизической стимуляции семян растений / Федеральное государственное образовательное учреждение высшего профессионального образования «Московский государственный агроинженерный университет имени В.П. Горячкина // Л.В. Навроцкая, канд. техн. наук, доцент.
Размещено на Allbest.ru
Подобные документы
Превращения органических веществ в семенах масличных культур при их созревании. Биохимические процессы, происходящие при послеуборочном дозревании семян. Устойчивость растений к затоплению. Физиология растений при воздействии на них стресс-факторов.
контрольная работа [41,8 K], добавлен 22.06.2012Оценка пригодности агроландшафта для возделывания сельскохозяйственных культур и их рационального использования. Сорняки, болезни, вредители растений, меры борьбы с ними. Первичная обработка урожая и хранение продукции. Сортовые и посевные качества семян.
отчет по практике [64,7 K], добавлен 02.02.2015Значение в защите растений пространственной изоляции и подбора устойчивых к вредителям сортов сельскохозяйственных культур. Капустная совка и капустная белянка: меры борьбы. Группы животных, в которых есть вредители сельскохозяйственных культур.
контрольная работа [2,7 M], добавлен 27.09.2009Классификация факторов, влияющих на урожайность сельскохозяйственных культур. Роль антропогенного воздействия на развитие растений. Специфика трудностей выращивания культур при избытке или недостатке влаги. Действие засоления почвы. Биотические факторы.
реферат [24,3 K], добавлен 24.05.2015Грибы из рода Fusarium как возбудители заболеваний более 200 видов культурных растений. Источники первичной инфекции: семена, почва, растительные остатки. Особенности методики проращивания семян. Значение микоризных грибов в питании высших растений.
дипломная работа [278,1 K], добавлен 11.04.2012Урожайность сельскохозяйственных культур. Агрохимическое обоснование применения удобрений и средств мелиорации. Расчет накопления, хранения и применения органических удобрений. Определение потребности растений в элементах питания. Расчет норм удобрений.
курсовая работа [84,1 K], добавлен 17.03.2014- Система применения удобрений в полевом севообороте СПК "Юг Руси" Сальского района Ростовской области
Разработка и обоснование системы удобрения сельскохозяйственных культур в СПК "Юг Руси". Описание климатических и почвенных условий хозяйства, особенности питания сельскохозяйственных растений, свойств удобрений и содержания в них действующих веществ.
курсовая работа [61,0 K], добавлен 08.05.2012 Система семеноводства многолетних трав в Республике Беларусь. Морфологические и биолого-экологические особенности мятлика лугового. Влияние обработки семян регуляторами роста на полевую всхожесть и выживаемость семян, на семенную продуктивность.
дипломная работа [1007,1 K], добавлен 07.10.2013Агроэкологическая характеристика геоморфологических условий. Агроэкологическая оценка литологических условий. Главные требования сельскохозяйственных культур, агроэкологическая оценка сельскохозяйственных культур, предполагаемых для возделывания.
курсовая работа [35,2 K], добавлен 20.03.2014Агрохимическая характеристика почв Забайкалья. Динамика содержания азота в почвах, его роль в питании растений. Влияние азотных удобрений на урожайность и качество сельскохозяйственных культур. Экологические аспекты применения различных удобрений.
курсовая работа [127,4 K], добавлен 21.12.2014


