Цистерна для перевозки сжиженных газов 02-ВМ

Описание конструкции железнодорожного вагона-цистерны для перевозки сжиженных углеводородных газов. Расчет технико-экономических параметров. Вписывание вагона в габарит. Расчет нагрузок, действующих на вагон и его части. Устойчивость колесной пары.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 04.12.2021
Размер файла 3,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ОПИСАНИЕ КОНСТРУКЦИИ ВАГОНА

2. РАСЧЕТ ТЕХНИКО-ЭКОНОМИЧЕСКИХ ПАРАМЕТРОВ

3. ВПИСЫВАНИЕ ВАГОНА В ГАБАРИТ

4. РАСЧЕТ НАГРУЗОК, ДЕЙСТВУЮЩИХ НА ВАГОН И ЕГО ЧАСТИ

5. УСТОЙЧИВОСТЬ КОЛЕСНОЙ ПАРЫ ПРОТИВ СХОДА С РЕЛЬСА

6. РАСЧЕТ ОСИ КОЛЕСНОЙ ПАРЫ НА ПРОЧНОСТЬ УСЛОВНЫМ МЕТОДОМ

7. РАСЧЕТ ДВУХРЯДНОЙ ЦИЛИНДРИЧЕСКОЙ ПРУЖИНЫ

8. РАСЧЕТ ПОДШИПНИКА НА ДОЛГОВЕЧНОСТЬ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Курсовая работа выполнена по цистерне для перевозки сжиженных газов 02-ВМ

В курсовой работе рассчитано и изложено:

1. Описание конструкции вагона.

2. Выбор основных параметров вагона.

3. Вписывание вагона в габарит.

4. Расчет нагрузок, действующих на вагон и его части.

5. Устойчивость колесной пары против схода с рельсов.

6. Расчет оси колесной пары условным методом (методом ЦНИИ-МПС).

7. Расчет двухрядной цилиндрической пружины.

8. Расчет подшипника на долговечность.

В курсовой работе по порядку подшиты:

Титульный лист

Содержание

Введение

Разделы пояснительной записки

Библиографический список

1. ОПИСАНИЕ КОНСТРУКЦИИ ВАГОНА

Цистерна представляет собой сварной цилиндрический сосуд со сферическими днищами 2, расположенный на четырехосной платформе 1. В верхней части цистерны по вертикальной оси симметрии имеется люк-лаз с внутренним диаметром 450 мм. Крышка люка выполнена в виде плоского фланца, на котором расположены сливо-наливная и предохранительная арматура и арматура для контроля сливо-наливных операций.

Люк вместе с арматурой закрывается предохранительным колпаком 3 диаметром 685 мм, высотой 426 мм с отверстием для выпуска газа в случае срабатывания предохранительного клапана.

Для обслуживания арматуры при сливе и наливе и для проверки ее состояния на цистерне укреплена площадка с поручнями 4 и лестницами 6 по обе стороны цистерны. Сосуд цистерны крепится к раме железнодорожной платформы стяжными хомутами 5 и к хребтовой балке лапами 8. Платформа оборудована автосцепкой, стояночным тормозом и автотормозом с рычажной передачей.

вагон цистерна газ колесный

Рис. 1 - Железнодорожный вагон-цистерна для перевозки сжиженных углеводородных газов: 1 - четырехосная платформа, 2 - сосуд со сферическими днищами, 3 - предохранительный колпак, 4 - площадка с поручнями, 5 - стяжные хомуты, 6 - лестницы, 7 - узел манометродержателя, 8 - лапы крепления

В центре крышки люка смонтирован пружинный предохранительный клапан 7 (рис. 2), предназначенный для сброса паров сжиженного газа в атмосферу при давлении в цистерне, превышающем рабочее более чем на 15%.

По обе стороны предохранительного клапана по продольной оси цистерны установлены два угловых сливо-наливных вентиля 4 и 9 (см. рис. 2), которые через скоростные клапаны 1 (рис. 3) соединены со сливо-наливными трубами.

Для отбора из цистерны и подачи в нее паров сжиженного газа служит угловой уравнительный вентиль 6 (см. рис. 2), соединенный через скоростной клапан с паровым пространством сосуда цистерны. Сливо-наливные и уравнительный вентили снабжены заглушками, имеющими и резьбе предохранительное отверстие, через которое и случае неисправности вентиля при отворачивании заглушки выходит сжиженный газ: боковые штуцеры вентилей имеют левую резьбу.

Рис. 2 - Расположение арматуры на крышке люка железнодорожной цистерны: 1 и 10 - вентили для контроля опорожнения, 2 и 3 - вентили для контроля уровня наполнения, 4 и 9 - угловые вентили для наполнения и слива сжиженного газа, 5 - карман для термометра, 6 - угловой вентиль для отбора и подачи паровой фазы сжиженного газа, 7 - предохранительный клапан, 3 - дренажный вентиль

Рис. 3 - Схема расположения сливо-наливных и уравнительного вентилей на крышке люка железнодорожной цистерны: 1 - скоростные клапаны, 2 и 4 - сливо-наливные угловые вентили, 3 - угловой уравнительный вентиль, 5 - крышка люка, 6 - патрубок люка, 7 - труба для отбора и подачи паров сжиженного газа, 8 - сливо-наливные трубы, 9 - поддон сосуда цистерны, 10 - труба дренажная, 11 - карман для термометра

Рис. 4 - Схема расположения вентилей для контроля уровня налива и слива сжиженного газа в железнодорожной цистерне: 1 - вентиль предельного уровня налива с маховиком красного цвета, 2 - вентиль контроля уровня верхнего налива с маховиком зеленого цвета, 3 - вентиль газовый для опорожнения трубки вентиля контроля слива, 4 - вентиль контроля слива, 5 - дренажный вентиль, 6 - крышка люка, 7 - патрубок люка, 8 - предельный уровень налива сжиженного газа, 9 - нижний уровень слива, 10 - низ сосуда цистерны

Для контроля за уровнем наполнения цистерны сжиженными газами служат вентили 2 и 3 (см. рис. 2). Трубка вентиля 2, маховик которого окрашен в зеленый цвет, заканчивается на уровне верхнего налива цистерны, а трубка вентиля 3, маховик которого окрашен в красный цвет, - на предельном уровне налива, т. е. на 30 мм выше ( рис. 4).

Контроль за сливом цистерны осуществляется вентилем 10 (см. рис. 2), трубка которого заканчивается на уровне нижней плоскости сливо-наливных труб. Для уравновешивания столба жидкости в трубке вентиля 10 с уровнем жидкости и емкости цистерны предназначен вентиль 1 (см. рис. 2).

Вентиль 8 (см. рис. 2) служит для удаления из сосуда цистерны воды и тяжелых неиспаряющихся остатков сжиженных газов. Конец трубки этого вентиля заканчивается на расстоянии 5 мм от низа поддона сосуда цистерны.

Вентили для контроля уровня налива и слива и дренажный вентиль снабжены заглушками.

Для автоматического перекрытия сливо-наливных и уравнительной линий цистерны в случае разрыва соединительных шлангов на сливо-наливных и уравнительной трубах установлены скоростные клапаны 1 (см. рис. 3).

Термометр для измерения температуры сжиженных газов помещается в карман 5 (см. рис. 2) длиной 2796 мм, верхний конец которого заглушается пробкой.

В верхней части цистерны по продольной оси установлен узел манометродержателя 7 (см. рис. 1) на расстоянии 1170 мм от вертикальной оси симметрии. Манометродержатель состоит из штуцера, вваренного в корпус сосуда, ниппеля, игольчатого вентиля, муфты и пробки. Манометродержатель закрывается колпаком.

Все вагоны независимо от назначения и конструкции состоят из элементов (узлов), общих для вагонов любого типа. К этим элементам относятся ходовые части, кузов, ударно-тяговые приборы и тормозное оборудование.

К ходовым частям относятся колесные пары, буксы и рессорное подвешивание. В современных вагонах ходовые части объединяются в самостоятельные узлы, называемые тележками. Кроме перечисленных элементов, тележки имеют раму, на которой крепятся детали рессорного подвешивания, тормозного оборудования и предохранительные скобы, а для передачи нагрузки от кузова на тележку - надрессорные балки с подпятниками и скользунами.

Рис. 5 - Тележка модели 18-100

Тележка (рис. 5) состоит из двух колесных пар 7, четырех букс 5, двух литых боковых рам 2, двух комплектов центрального рессорного подвешивания литой надрессорной балки 4 и тормозной рычажной передачи 6. Тормоз тележки -- колодочный с односторонним нажатием колодок. Связь рамы с буксами -- непосредственная челюстная, опора кузова на тележку через подпятник 7 надрессорной балки, а при наклоне кузова -- дополнительно через скользуны 5. Тележка допускает осевую нагрузку до 230 кН (23,5 тс) при скорости движения 120 км/ч и 235 кН (24 тс) при скорости 100 км/ч.

Боковая рама тележки (рис.6) отлита из низколегированной стали 20ГЛ, 20Г1ФЛ или 20ФТЛ. Рама состоит из горизонтальных и наклонных поясов, а также колонок. В середине рамы имеется проем для центрального рессорного подвешивания, а по концам -- буксовые проемы. Сечения наклонных поясов и вертикальных колонок корытообразной формы.

Рис. 6 - Боковая рама тележки модели 18-100

Рис. 7 - Надрессорная балка и скользун тележки модели 18-100: а -- надрессорная балка; б -- закрытый скользун

В местах расположения фрикционных клиньев в каждой колонке 5 рамы приклепано по одной планке 8. На верхнем поясе боковой рамы расположены кронштейны 4 для крепления подвесок тормозных башмаков. Буксовые проемы имеют в верхней части кольцевые приливы 2, которыми рама опирается на буксы, а по бокам -- челюсти 1.

Надрессорная балка (рис.4, а) отлита из стали 20ГЛ или 20Г1ФЛ в виде бруса равного сопротивления изгибу замкнутого коробчатого сечения. Она имеет подпятник 1, полку 7 для крепления кронштейна 2 мертвой точки рычажной передачи тормоза, опоры 3 для скользунов, выемки (гнезда) 6 для размещения фрикционных клиньев, бурты 5, ограничивающие смещение внутренних пружин рессорного комплекта, и выступы 4, удерживающие наружные пружины от смещения при движении тележки.

На подпятник 1 опирается пятник кузова, через центры которых проходит шкворень. Опорой для шкворня является поддон 11, который располагается под подпятником посередине надрессорной балки. Шкворень служит осью вращения тележки относительно кузова, а также передает тяговые и тормозные силы от тележки кузову и обратно. Боковые перемещения надрессорной балки амортизируются поперечной упругостью пружин, на которые она опирается.

Скользун тележки (рис.4, б) -- боковая опора кузова -- состоит из опоры 3 отлитой заодно с надрессорной балкой, колпака 8, надетого на опору, прокладок 9 для регулировки зазоров между скользунами рамы вагона и тележки, болта 10, предохраняющего колпак от падения. Зазор между скользунами для основных типов четырехосных вагонов должен быть в пределах 6-16 мм.

Рессорное подвешивание состоит из двух комплектов, размещенных в рессорных проемах левой и правой боковых рам. В каждый комплект (рис. 5,а) входит пять, шесть или семь двухрядных цилиндрических пружин 2 и 3 и два клиновых 1 фрикционных гасителя колебаний.

Рис. 8 - Рессорный комплект тележки модели 18-100: а -- общий вид; б, в, г -- схемы установки семи, шести и пяти двухрядных пружин соответственно

Каждая двухрядная пружина состоит из наружной и внутренней пружин, имеющих разную навивку -- правую и левую соответственно. Количество двухрядных пружин в комплекте зависит от грузоподъемности вагона. Пять пружин ставят в тележки, подкатываемые под кузова вагонов грузоподъемностью до 50 т, шесть -- до 60 т и семь -- более 60 т. В связи с этим и расположение пружин в комплекте будет разное (рис.4, б, в, г).

Крайние боковые пружины комплекта поддерживают клинья гасителей колебаний. Снизу клинья имеют кольцевые выступы, не допускающие смещения их относительно пружин в горизонтальной плоскости, а верхней своей частью входят в направляющие надрессорной балки.

Клинья отливают из стали 20Л. Пружины изготавливают из стали 55С2, а фрикционные планки -- из стали марок 45, ЗОХГСА или 40Х. Статический прогиб рессорного подвешивания от тары -- 8 мм, от массы брутто -- 46-50 мм. Коэффициент относительного трения гасителя колебаний -- 0,08-0,10.

Автосцепное устройство

Рис. 9 - Автосцепное устройство типа СА-3 вагона: 1 -- задний упорный угольник; 2 -- кронштейн; 3 -- расцепной рычаг; 4 -- поддерживающая планка; 5-- поглощающий аппарат; 6 --тяговый хомут; 7-- упорная плита; 8 -- клин тягового хомута; 9-- розетка (передний упор); 10 -- державка; 11 -- маятниковая подвеска; 12 -- центрирующая балка; 13 -- корпус автосцепки; 14 -- цепь; 15 -- привод механизма автосцепки

Автосцепное устройство типа СА-3 размещается в консольной части хребтовой балки рамы кузова.

Автосцепное устройство вагона состоит из следующих основных частей (рис. 9): стального корпуса 13 с деталями механизма сцепления, ударно-центрирующего прибора, упряжного устройства с поглощающим аппаратом 5, опорной части и расцепного привода 15.

Литой стальной корпус является основной частью автосцепки. Головная часть корпуса в плане имеет большой 1 и малый 4 зубья, между которыми имеется впадина (зев), в которую выступают из тела корпуса подвижной замок 3 и замкодержатель 2. При сцеплении малый зуб каждой сцепки входит в зев смежной сцепки, утапливая замок и замкодержатель. При дальнейшем движении малые зубья упираются во внутренние грани больших зубьев. При этом замки обеих сцепок освобождаются, они выступают в прежнее положение и запирают обе автосцепки в сцепленном состоянии. В пустотелом хвостовике корпуса сделано продолговатое отверстие б для клина, соединяющего корпус с хомутом. Торец хвостовика 7 служит для передачи ударных нагрузок поглощающему аппарату и имеет цилиндрическую поверхность, обеспечивающую горизонтальные перемещения автосцепки.

Центрирующий прибор автосцепки состоит из двух маятниковых подвесок 11, ударной розетки 9 и центрирующей балки 12. Назначение этого прибора -- возврат (центрирование) отклоненного корпуса автосцепки в среднее положение, соответствующее оси вагона (в плане), после прохождения вагоном кривых малого радиуса.

Упряжное устройство передает упорам продольные силы от корпуса автосцепки и смягчает их действие. Оно состоит из тягового хомута (5, поглощающего аппарата 5, клина 8, упорной плиты 7, поддерживающей планки 4 и размещено между задним 1 и передним 9 упорами автосцепки.

Тяговый хомут 6 предназначен для передачи растягивающего усилия поглощающему аппарату. Он представляет собой раму, на которой размещены упорная плита и поглощающий аппарат. В головной части хомута имеется отверстие для клина 8. Клин соединяет корпус автосцепки с тяговым хомутом 6 и передает последнему растягивающее усилие.

Упорная плита 7 упряжного устройства предназначена для передачи сжимающих усилий от корпуса автосцепки поглощающему аппарату 5 и растягивающих усилий от последнего через передний упор 9 раме кузова вагона.

Поглощающий аппарат УВЗ-95-УВЗ разработан для грузового четырехосного подвижного состава и относится к аппаратам эластомерного типа.

Тормозное оборудование

Пневматическая часть тормозного оборудования (рис. 10) включает в себя тормозную магистраль (воздухопровод) б диаметром 32 мм с концевыми кранами 4 клапанного или шаровидного типа и соединительными междувагонными рукавами 3; двухкамерный резервуар 7, соединенный с тормозной магистралью б отводной трубой диаметром 19 мм через разобщительный кран 9 и пылеловку -- тройник 8 (кран 9 с 1974 г. устанавливается в тройнике 5); запасный резервуар 11; тормозной цилиндр 1; воздухораспределитель № 483 м с магистральной 12 и главной 13 частями (блоками); авторежим № 265 А-000; стоп-кран 5 со снятой ручкой.

Рис. 10 - Схема тормозного оборудования грузового вагона

Авторежим служит для автоматического изменения давления воздуха в тормозном цилиндре в зависимости от степени загрузки вагона -- чем она выше, тем больше давление в тормозном цилиндре. При наличии на вагоне авторежима рукоятка переключателя грузовых режимов воздухораспределителя снимается после того, как режимный переключатель воздухораспределителя будет поставлен на груженый режим при чугунных тормозных колодках и средний режим при композиционных тормозных колодках. У рефрижераторных вагонов авторежима нет. Запасный резервуар имеет объем 78 л у четырехосных вагонов с тормозным цилиндром диаметром 356 мм и 135 л у восьмиосного вагона с тормозным цилиндром диаметром 400 мм.

Зарядка резервуара 7, золотниковой и рабочей камер воздухораспределителя запасного резервуара 11 производится из тормозной магистрали 6 при открытом разобщительном кране 9. При этом тормозной цилиндр через главную часть воздухораспределителя и авторежим 2 сообщен с атмосферой. При торможении давление в тормозной магистрали понижается через кран машиниста и частично через воздухораспределитель, который при срабатывании отключает тормозной цилиндр 1 от атмосферы и сообщает его с запасным резервуаром 11 до выравнивания давления в них при полном служебном торможении.

Тормозная рычажная передача грузовых вагонов выполнена с односторонним нажатием тормозных колодок (кроме шестиосных вагонов, у которых средняя колесная пара в тележке имеет двустороннее нажатие) и одним тормозным цилиндром, укрепленным на хребтовой балке рамы вагона болтами. В настоящее время в опытном порядке некоторые восьмиосные цистерны без хребтовой балки оборудуются двумя тормозными цилиндрами, от каждого из которых усилие передается лишь на одну четырехосную тележку цистерны. Это сделано для упрощения конструкции, облегчения тормозной рычажной передачи, уменьшения силовых потерь в ней и повышения эффективности работы тормозной системы.

Тормозная рычажная передача всех грузовых вагонов приспособлена к использованию чугунных или композиционных тормозных колодок. В настоящее время все грузовые вагоны имеют композиционные колодки. При необходимости перехода с одного типа колодки на другой необходимо изменить лишь передаточное число тормозной рычажной передачи путем перестановки валиков затяжки и горизонтальных рычагов (в более близко расположенное к тормозному цилиндру отверстие при композиционных колодках и, наоборот, при чугунных колодках). Изменение передаточного числа связано с тем, что коэффициент трения у композиционной колодки примерно в 1,5-1,6 раза больше, чем у чугунных стандартных колодок.

В тормозной рычажной передаче четырехосного грузового вагона (рис. 11) горизонтальные рычаги 4 и 10 шарнирно соединены со штоком б и кронштейном 7 на задней крышке тормозного цилиндра, а также с тягой 2 и авторегулятором 3 и с тягой 77. Между собой они соединены затяжкой 5, отверстия 8 которой предназначены для установки валиков при композиционных колодках, а отверстия 9-- при чугунных тормозных колодках.

Рис. 11 - Схема (а) и конструкция рычажной передачи четырехосного грузового вагона

2. ВЫБОР ОСНОВНЫХ ПАРАМЕТРОВ ВАГОНА

Основными параметрами вагона являются: грузоподъемность, тара, осность, объем кузова или площадь пола, линейные размеры, статическая и погонная нагрузки. Для сравнения вагонов между собой пользуются параметрами, представляющими отношение этих величин, правильный выбор которых обеспечивает наименьшие затраты на перевозки грузов и пассажиров. Так как вагоны имеют длительный срок службы, то вновь проектируемые конструкции должны удовлетворять не только современным, но и перспективным условиям эксплуатации.

Определение грузоподъемности вагона

Одним из основных факторов, влияющих на величину грузоподъемности вагона, является допускаемая осевая нагрузка. Возможные осевые нагрузки вагонов определяются на основе прочности пути, которая, в свою очередь, зависит от грузонапряженности железных дорог.

На основании исходной величины осевой нагрузки и осности вагона, грузоподъемность вагона определяется по формуле

(2.1)

где - вес брутто, кН;

- заданная осевая нагрузка, кН;

- количество колесных пар в вагоне, =4;

- технический коэффициент тары вагона, определяемый по графикам, =1.16.

Запишем формулу в следующем виде:

= (2.2)

Левая часть данного равенства по условию задания остается величиной постоянной, а величины слагаемых в правой части можно изменять, оставляя неизменной их сумму.

Определение линейных размеров вагона

Зная удельный объем и определив грузоподъемность вагона P, можно вычислить внутренний объем кузова V:

(2.3)

При малых колпаках, которые имеют современные цистерны, объем котла V, вычисленный по формуле (2), необходимо увеличивать на 2-3% для обеспечения возможности уширения кузова при повышении температуры. Таким образом, объем котла будет равен

(2.4)

Внутренняя длина цистерн определяется по формуле:

,(2.5)

где - площадь поперечного сечения кузова (котла), заполненного грузом, м

Площадь поперечного сечения котла цистерны определяется по формуле

(2.6)

где - внутренний диаметр котла, м;

Для определения внутреннего диаметра котла цистерны используем формулу

(2.7)

Для дальнейших расчетов внутренний диаметр котла цистерны следует принимать кратным 200 мм и меньше ширины габаритной рамки примерно на 300-400 мм. Значит, принимаем диаметр котла, равный 2,800 м.

.

Для проектируемого вагона устанавливаем наружные размеры кузова.

Наружная длина кузова определяется как:

(2.8)

где - толщина торцовой стены кузова, = 0,01 м;

Наружная ширина кузова:

(2.9)

где - внутренняя ширина габарита ()

- толщина боковой стенки кузова, = 0,09 м;

Ширина вагона в дальнейшем уточняется посредством вписывания его в заданный габарит подвижного состава.

Общая длина вагона или длина вагона по осям сцепления составляет:

(2.10)

где - вылет автосцепки, то есть расстояние от концевой балки рамы до оси сцепления автосцепок (для четырехосных и шестиосных вагонов, цистерн и платформ = 0,610 м);

Вычислив длину рамы, можно определить базу вагона:

, (2.11)

где - коэффициент, определяющий соотношение между длиной рамы и базой вагона из условия равенства выносов концевой и внутренней частей вагона в кривых участках пути при вписывании двухосного вагона в габарит подвижного состава;

Длина консольной части вагона определяется по формуле

(2.12)

Из условия размещения автосцепного оборудования на раме вагона длина консоли не должна быть менее 1500 мм. Кроме того, желательна проверка на вписывание тележки под консольную часть вагона. В этом случае минимальная длина консольной части определяется, исходя из условия отсутствия выхода частей тележки из-под консоли вагона:

, (2.13)

где - база двухосной тележки (=1,85 м);

- диаметр колеса (= 0,95 м);

- высота гребня колеса (= 0,028 м);

Поскольку данное неравенство выполняется, то можно говорить о том, что проверка на вписывании под консольную часть вагона прошла, и линейные размеры мы определили верно, длину консоли принимаем равной вычисленной.

В дальнейшем линейные размеры вагонов, принятые или вычисленные по вышеприведенным формулам, уточняются путем вписывания вагона в габарит.

3. ВПИСАНИЕ ВАГОНА В ГАБАРИТ

При проверке вписывания проектируемого грузового вагона в заданный габарит в данной курсовой работе определяют строительное и проектное очертание в горизонтальной и вертикальной плоскостях. Строительное очертание подвижного состава - это поперечное (перпендикулярное оси пути) очертание, получаемое уменьшением габарита подвижного состава, наружу которого не должна выходить ни одна часть вновь построенного вагона в ненагруженном состоянии при прохождении на прямом горизонтальном пути и при совмещении его продольной вертикальной серединной плоскости с осью пути.

Проектное очертание подвижного состава (вагона) - это поперечное, перпендикулярное оси пути очертание, имеющее размеры, уменьшенные, по сравнению с размерами строительного очертания, на величину плюсовых допусков, внутри которого должны находится все расположенные в рассматриваемом сечении элементы конструкций проектируемого вагона, имеющие номинальные размеры.

Пространство между габаритами приближения строений и подвижного состава обеспечивает безопасные смещения подвижного состава (вагона), возникающие при его движении.

Величина горизонтальных ограничений зависит от места расположения по длине подвижного состава рассматриваемого поперечного сечения. В качестве направляющих сечений четырехосных грузовых вагонов следует принимать сечения по оси пятников кузова вагона.

Вписывание верхней части вагона в габарит

Максимально допускаемые строительные размеры подвижного состава получают путем уменьшения поперечных размеров соответствующего габарита подвижного состава с каждой стороны на величины необходимых ограничений (поперечных смещений подвижного состава при вписывании в кривую расчетного радиуса с учетом наибольших допускаемых разбегов и износов деталей его ходовых частей),мм, определяемых по формулам:

- ограничение направляющих поперечных сечений вагона

(3.1)

- внутреннее ограничение поперечных сечений вагона, расположенных между направляющими сечениями по середине базы, при;

(3.2)

- наружное ограничение поперечных сечений вагона, расположенных снаружи его направляющих сечений, при;

(3.3)

где s - максимальная ширина колеи в кривой расчетного радиуса, s = 1465 мм;

s - максимальная ширина колеи в прямой, s =1528 мм;

d - минимальное расстояние между наружными гранями предельно изношенных гребней колес, d = 1410 мм;

0,5(s - d) - максимальный разбег изношенной колесной пары между рельсами (смещение из центрального положения в одну сторону), мм;

q - наибольшее возможное поперечное перемещение из центрального положения в одну сторону рамы тележки относительно колесной пары(вследствие зазоров в буксовом узле и узле соединения рамы тележки с буксой ), q = 4 мм;

w - наибольшее возможное поперечное перемещение из центрального положения в одну сторону кузова относительно рамы тележки(вследствие зазоров и упругих колебаний в узле сочленения кузова и рамы тележки), w = 52 мм;

2l - расстояние между шкворневыми (основными) сечениями вагоны (база вагона), 2l = 7,01 м;

n - расстояние от рассматриваемого поперечного сечения вагона до ближайшего основного сечения, м;

k - величина, на которую допускается выход подвижного состава, проектируемого по габаритам 0-ВМ, 02-ВМ, 03-ВМ и 1-ВМ (в нижней части), за очертание этих габаритов в кривой радиуса R = 250 м, k = 0 мм;

- величина дополнительного поперечного смещения в кривой расчетного радиуса R (R = 200 м - для габаритов Т, 1-Т и верхней части 1-ВМ, R = 250 м - для габаритов 0-ВМ, 02-ВМ, 03-ВМ и нижней части 1-ВМ) тележечного подвижного состава, = 0,5р2 = 0,5 * 1,852 = 1,71 мм;

-коэффициент, зависящий от величины расчетного радиуса кривой (R=200 м - для габаритов Т, 1-Т и верхней части 1-ВМ, R = 250 м - для габаритов 0-ВМ, 02-ВМ, 03-ВМ и нижней части 1-ВМ), = 2 мм/м;

- половина принятой на железных дорогах РФ величины увеличения расстояния между осями путей на перегонах (в расчетной кривой R = 200 м при вписывании вагонов в габариты Т, 1-Т, верхней части 1-ВМ или величина геометрического смещения середины (внутрь кривой) и концов (наружу кривой) расчетного вагона (2L = 24 м, 2l = 17 м) в кривой R = 200 м при вписывании вагонов в габариты 0-ВМ, 02-ВМ, 03-ВМ и нижней части 1-ВМ), = 0;

- дополнительные ограничения внутреннего и наружного сечений вагона, имеющее место только у очень длинных вагонов (как правило, с базой более 17 м), и определяемые из условия вписывания в кривую радиуса R = 150 м; для короткобазных вагонов эти коэффициенты заведомо отрицательны и могут не определяться; ;

Определение горизонтальных размеров проектного очертания верхней части вагона

На некоторой высоте Н над уровнем верха головки рельса максимально допускаемая ширина вагона определяется по формуле:

,(3.4)

где - полуширина габарита подвижного состава на рассматриваемой высоте H, =1750 мм;

Е - ограничение полуширины для одного из рассматриваемых сечений: направляющего, наружного и внутреннего, мм;

Ширина проектного очертания вагона в верхней части на некоторой высоте H над уровнем верха головки рельсов определяется по формуле:

,(3.5)

где E- конструктивно-технологические отклонения, допускаемые при постройке вагона в горизонтальной плоскости, = 15,5 мм;

Максимально допускаемое значение сравниваем с рассчитанной ранее наружной шириной вагона :

Данное неравенство выполняется, линейные размеры вагона определены верно. Поскольку наружная ширина вагона не превышает максимально допускаемое значение , то верхнюю часть вагона можно считать вписавшейся в габарит.

Построение горизонтальной габаритной рамки проектного очертания для верхней и нижней частей вагона.

Горизонтальная габаритная рамка определяет наибольшую допускаемую ширину проектного очертания вагона для любого поперечного сечения по длине вагона и на определенной высоте от уровня верха головки рельса.

Рис. 12 - Горизонтальная габаритная рамка проектного очертания вагона на уровне рамы

4. РАСЧЕТ НАГРУЗОК, ДЕЙСТВУЮЩИХ НА ВАГОН И ЕГО ЧАСТИ

При расчете на прочность вагонов и их частей, согласно нормам МПС, должны учитываться следующие нагрузки: вертикальная нагрузка; боковая нагрузка; продольные силы; усилия, связанные с торможением; внутреннее давление в резервуарах; усилия распора сыпучих и скатывающихся навальных грузов; усилия, возникающие при механизированной погрузке и выгрузке вагона; усилия, прикладываемые к вагону при ремонте.

Вертикальные нагрузки, действующие на кузов и тележки

Статическая нагрузка

Статическая нагрузка на любую деталь вагона определяется по формуле:

, (4.1)

где - вес брутто вагона, = 720 кН;

- вес частей и укрепленного на них оборудования, через которые передается нагрузка от рассчитываемой детали вагона на рельсы, кН;

m - число одинаковых, параллельно загруженных деталей.

Для определения статических нагрузок необходимо знать вес следующих элементов вагона:- вес рессорного комплекта, = 3,312 кН;

- вес боковой рамы, = 3,822 кН;

- вес буксового узла, = 0,725 кН;

- вес колесной пары, = 12,289 кН;

- вес двухосной тележки, = 47,824 кН;

- вес четырехосной тележки, = 98,000 кН.

Статическая нагрузка, действующая на кузов:

Статическая нагрузка, действующая на надрессорную балку:(4.2)

Статическая нагрузка, действующая на одну двухрядную пружину:

Статическая нагрузка, действующая на боковую раму:

Статическая нагрузка, действующая на буксовый узел:

Статическая нагрузка, действующая на колесную пару:

Вертикальная динамическая нагрузка

Вертикальная динамическая нагрузка определяется умножением статической нагрузки на коэффициент вертикальной динамики:

(4.3)

где - коэффициент вертикальной динамики.

Коэффициент вертикальной динамики определяется по формуле:

,(4.4)

где - среднее вероятное значение коэффициента вертикальной динамики;

- параметр распределения (уточняется по экспериментальным данным), для грузовых вагонов при существующих условиях эксплуатации параметр = 1,13;

При оценке прочности по допускаемым напряжениям, принятым согласно расчетным режимам, расчетная вероятность принимается = 0,97.

Среднее вероятное значение коэффициента вертикальной динамики определяется по формуле:

,(4.5)

где a - коэффициент, принимаемый на основании обработки результатов теоретических и экспериментальных исследований равный для элементов кузова вагона - 0,05; для обрессоренных частей тележки - 0,1; для необрессоренных частей тележки - 0,15;

b - коэффициент, учитывающий влияние числа осей в тележке (n) группе тележек под одним концом вагона на величину коэффициента динамики:

;(4.6)

v - расчетная скорость движения вагона , v = 33 м/с;

- статический прогиб рессорного подвешивания , = 0,05 м.

Определим вертикальную динамическую нагрузку, действующую на:

- кузов вагона:

- надрессорную балку:

- рессорный комплект:

- боковую раму:

- буксовый узел:

- колесную пару:

Вертикальная суммарная нагрузка

После определения вертикальной статической и вертикальной динамической нагрузок необходимо определить суммарную вертикальную нагрузку по формуле

(4.7)

Определим суммарную нагрузку, действующую на:

- кузов:

- надрессорную балку:

- рессорный комплект:

- боковую раму:

- буксовый узел:

- колесную пару:

Боковые нагрузки

Боковая горизонтальная нагрузка

Боковая нагрузка, возникающая при движении вагона по кривому участку пути, складывается из центробежной силы и давления ветра на кузов и равна:

,(4.8)

где - центробежная сила, направленная наружу кривой, кН;

- равнодействующая сила давления ветра на кузов вагона, кН.

Величина центробежной силы определяется с учетом возвышения наружного рельса над внутренним. В упрощенном виде ее можно выразить как

,(4.9)

где - коэффициент, определяемый по формуле

(4.10)

где v - скорость движения вагона, м/с;

R - радиус кривой, м;

h- возвышение наружного рельса над внутренним, мм;

2s - расстояние между кругами катания колесной пары, мм;

Если в технических требованиях не оговорены особые условия движения в кривых, то = 0,075 для грузовых вагонов.

Равнодействующую силу давления ветра определяют по формуле

(4.11)

где - удельное давление ветра, перпендикулярное боковой стене вагона, согласно нормам расчета на прочность, = 500 Н/м;

F- площадь боковой проекции кузова вагона, м;

Площадь боковой проекции котла цистерны по формуле

,(4.12)

где D - диаметр котла, согласно расчету, D = 2,800 м;

Определим равнодействующую давления ветра по формуле

Определим боковую горизонтальную нагрузку по формулам на:

- кузов:

- надрессорную балку:

- рессорный комплект:

- боковую раму:

- буксовый узел:

- колесную пару:

Вертикальные составляющие боковых нагрузок

Боковые нагрузки вызывают дополнительное вертикальное нагружение частей тележек с одной стороны вагона и соответствующее разгружение с другой. Величина такого дополнительного нагружения рассчитываемой детали находится по формуле

,(4.13)

где - вертикальные расстояния от места приложения до точек приложения сил соответственно, м,

m1 - число одноименных, параллельно загруженных элементов, расположенных с одной стороны вагона;

2b2 - расстояние между точками приложения дополнительного загружения и разгружения рассчитываемой детали, 2b2 = 2,036 м.

Определим вертикальные составляющие боковых нагрузок на:

- надрессорную балку:

,

где - расстояние от точек приложения силы до подпятника, = 2,144 м;

- расстояние от точек приложения силы до подпятника, = 2,500м.

- рессорный комплект:

где - расстояние от точек приложения силы до опорной поверхности рессорного подвешивания, = 2,387 м;

- расстояние от точек приложения силы до опорной поверхности рессорного подвешивания, = 2,748 м.

- боковую раму:

где- расстояние от точек приложения силы до опорной поверхности нижнего пояса боковой рамы, = 2,587 м;

- расстояние от точек приложения силы до опорной поверхности нижнего пояса боковой рамы, = 2,948 м.

- буксовый узел:

где- расстояние от точек приложения силы до оси колесной пары, = 2,419 м;

- расстояние от точек приложения силы до оси колесной пары, = 2,780 м.

- колесную пару:

5. УСТОЙЧИВОСТЬ КОЛЕСНОЙ ПАРЫ ПРОТИВ СХОДА С РЕЛЬСОВ

Устойчивость колесной пары в рельсовой колее оценивается коэффициентом устойчивости колесной пары против схода с рельса, учитывающим соотношение вертикальных и горизонтальных составляющих сил, возникающих при движении поезда.

Согласно требованиям Норм должно обеспечиваться устойчивое движение колес по рельсовому пути. Однако при неблагоприятном сочетании в эксплуатации вертикальных и горизонтальных сил, а также при нарушении условий загрузки и отклонений в состоянии вагона могут возникать случаи сползания гребня колеса на головку рельса, что приводит к сходу вагона с рельсов. Поэтому при установлении причины или для предупреждения схода вагона в эксплуатации производится проверка устойчивости движения колеса по рельсу. По рекомендациям Норм подсчитывается коэффициент:

, (5.1)

где - угол наклона образующей гребня колеса к горизонтальной оси; для стандартного профиля поверхности катания = 60?;

- коэффициент трения, принимаемый = 0,25;

- горизонтальная составляющая силы реакции набегающего колеса на головку рельса, действующая одновременно с

- вертикальная составляющая силы набегающего колеса на головку рельса.

Усилия , для существующих конструкций вагонов определяется по формулам:

, (5.2)

,(5.3)

,

где- осевая статическая нагрузка, = 180 кН;

- собственная сила тяжести колесной пары,=12,289 кН;

- среднее значение коэффициента вертикальной динамики, приближенное значение которого вычисляется по формуле:

(5.4)

где - величина, зависящая от осности тележки. Для грузового четырехосного вагона= 1,

А, В - величины, зависящие от гибкости рессорного подвешивания и типа вагона А = 0,03; В = ;

v- скорость движения вагона, v = 33 м/с:

b - половина расстояния между серединами шеек оси, для стандартных осей b = 1,018 м;

l - расстояние между точками контакта колес с рельсами, l = 1,555 м;

,- расстояние от точек контакта до середины шеек, = 0,217 м, = 0,264 м;

r - радиус колеса по кругу катания, r = 0,475 м;

- среднее значение коэффициента динамики боковой качки, приближенно равный

=

[]- нормированный коэффициент устойчивости колеса, [] = 1,4;

- среднее значение рамной силы, вычисленное по формуле:

Определяем вертикальные составляющие силы реакции для набегающего и ненабегающего колес на головку рельса по формулам

Определяем горизонтальную составляющую силы реакции набегающего колеса на головку рельса по формуле

Определяем коэффициент устойчивости колеса по формуле и сравниваем его с нормированным:

1,88<1,4

Вывод: В ходе расчета устойчивость колесной пары против схода с рельса обеспечена. Так как условие выполняется, то схода вагона и вползание гребня колеса на головку рельса не произойдет.

6. РАСЧЕТ ОСИ КОЛЕСНОЙ ПАРЫ УСЛОВНЫМ МЕТОДОМ

Условный (приближенный) метод может быть применен в эксплуатации при выяснении причины и для предупреждения излома или деформации оси, если они не вызваны перегревом буксового узла или другими явно выраженными факторами. Наиболее эффективно этот метод может быть использован при перегрузке вагона или максимальных износах шеек осей, связанных с их обточками в эксплуатации.

При условном методе расчета ось рассматривается в статическом состоянии, на нее действует система сил:

- вертикальная, равная

1,25(6.1)

- горизонтальная, равная

Н = 0,5,(6.2)

где - статическая нагрузка от колесной пары на рельсы равная, = 180 кН;

1,25 и 0,5 - коэффициенты, учитывающие динамическое действие сил соответственно в вертикальном и горизонтальном направлениях.

В расчетной схеме силы приложены в центре тяжести вагона, находящемся на расстоянии от осевой линии колесной пары h = 1,45 м.

Вертикальная 1,25 и горизонтальная Н = 0,5 силы вызывают загружение силой:

- левой шейки оси

,(6.3)

- правой шейки

,(6.4)

где 2b2- расстояние между серединами шеек оси, 2b= 2,036 м;

Таким образом, силы и приложены к серединам шеек оси. Вертикальные реакции рельсов при этом:

- для левого колеса

(6.5)

- для правого колеса

, (6.6)

где r - радиус колеса по кругу катания, r = 0,475 м;

2S - расстояние между кругами катания колесной пары, 2S = 1,58 м;

Изгибающие моменты, вызванные действием расчетных нагрузок, подсчитываются в трех сечениях:

- в шейке оси у внутренней галтели (сечение 1-1):

,(6.7)

где - длина шейки, = 0,176 м;

- износ по длине шейки в эксплуатации, = 0;

- в подступичной части оси в плоскости круга катания колеса (сечение 2-2):

,(6.8)

где - расстояние от середины шейки до плоскости круга катания колеса, = 0,228 м;

- в середине оси (сечение 3-3):

(6.9)

.

Находим минимальные допустимые в эксплуатации диаметры:

- шейки оси

,

- подступичной части

,

- середины оси

,

где - допускаемое напряжения на изгиб для грузовых вагонов в шейке оси, =120 МПа;

- допускаемое напряжение на изгиб в подступичной части, =165 МПа;

- допускаемое напряжение на изгиб в середине оси, =155 МПа;

Если при оценке прочности существующей оси фактические диаметры в соответствующих расчетных сечениях оказались равными или больше, чем полученные, то прочность обеспечена:

- в шейке оси 0,117 мм0,130 мм;

- в подступичной части 0,180 мм0,194 мм;

- в середине оси 0,152 мм0,165 мм.

Вывод: В ходе расчета прочности колесной пары условным методом были получены расчетные величины диаметров частей колесной пары, а именно: средней, подступичной и средней частей. Так как все три условия выполняются, то прочность колесной пары обеспечена.

7. РАСЧЕТ ДВУХРЯДНОЙ ЦИЛИНДРИЧЕСКОЙ ПРУЖИНЫ

В качестве упругих элементов рессорного подвешивания вагонов в основном применяют винтовые цилиндрические пружины. Они позволяют получить необходимые упругие характеристики при небольших габаритах и массах. Пружины изготавливают в соответствии с требованиями ГОСТ 1452-69.

В эксплуатации пружины испытывают сложные переменные нагрузки. Поэтому, для точного определения целесообразных размеров пружины, необходимо иметь полную статическую характеристику нагрузок, которые испытывает пружина за все время эксплуатации. Если нет достаточного количества таких данных, выполняют приближенные расчеты, в которых косвенно учитывают факторы, влияющие на усталость рессор. Распространенным является расчет, при котором учитывается коэффициент конструктивного запаса прогиба.

Если при расчете пружины на заданную нагрузку ее размеры получаются очень большими, то однорядную пружину целесообразно заменить многорядной с меньшими диаметрами прутков и пружины, что особенно выгодно, когда пружины воспринимают длительную переменную нагрузку и могут разрушаться от усталости (предел выносливости пружин малого диаметра выше предела выносливости пружин большого диаметра). В вагонах часто применяют двухрядные пружины, вставленные одна в другую, что обеспечивает малые габаритные размеры комплекта пружин.

При известной нагрузке на пружину необходимо сначала выбрать марку стали для изготовления пружины, чтобы принять допускаемые напряжения. Далее определить геометрические характеристики эквивалентной однорядной пружины и только потом перейти к расчету двухрядной.

Наибольший расчетный прогиб упругого элемента определяется по формуле:

, (7.1)

где - статический прогиб рессорного подвешивания, = 0,05 мм;

- коэффициент конструктивного запаса прогиба, величина которого должна быть не менее для грузовых вагонов =1,8;

Наибольшую расчетную вертикальную силу определяют из выражения:

,(7.2)

где - статическая нагрузка, действующая на двухрядную пружину, P = 26,78 кН;

- максимальное значение коэффициента вертикальной динамики, определяется по формуле:

(7.3)

Диаметр прутка эквивалентной однорядной пружины определяется по формуле:

, (7.4)

где - расчетная сила, = 42,79 кН;

m - индекс пружины, m = 5,5;

- допускаемое касательное напряжение, = 750 МПа;

- поправочный коэффициент, зависящий от индекса пружины, определяется по формуле:

(7.5)

Средний диаметр эквивалентной пружины определяется по формуле:

(7.6)

Число рабочих витков эквивалентной пружины определяется по формуле:

,(7.7)

где G - модуль сдвига, G = 0,8*1011 Па;

Высота пружины в сжатом состоянии определяется по формуле:

(7.8)

Высота пружины в свободном состоянии:

(7.9)

Диаметры прутков наружной и внутренней пружины определяется по формуле:

,(7.10)

где d - диаметр прутка эквивалентной пружины, d = 30 мм;

- зазор между витками внутренней и наружной пружин, = 3 мм;

.

(7.11)

Средние диаметры наружной и внутренней пружин определяются по формулам:

(7.12)

Число рабочих витков наружной и внутренней пружин определяются по формулам:

(7.13)

Высота пружин соответственно в сжатом и свободном состояниях:

(7.14)

(7.15)

Жесткости наружной и внутренней пружин определяются по формулам:

(7.16)

Жесткость комплекта определяется по формуле:

(7.17)

Нагрузки на наружную и внутреннюю пружины определяются из следующих выражений:

(7.18)

В качестве проверки правильности расчетов необходимо определить касательные напряжения для наружной и внутренней пружин, которые должны получиться равными допускаемому напряжению выбранной марки стали, по формулам:

(7.19)

Полученные значения касательных напряжений необходимо сравнить с допускаемыми:

(7.20)

Вывод: В ходе расчета двухрядной цилиндрической пружины полученные значения касательных напряжений не превышают допускаемые. Поскольку все условия выполняются, то можно говорить о верности расчета и о обеспечении прочности двухрядной пружины.

8. РАСЧЕТ ПОДШИПНИКА НА ДОЛГОВЕЧНОСЬ

Методика расчета подшипника на долговечность регламентирована ГОСТ 18855-82 [1].В колесных парах грузовых и пассажирских вагонов рекомендуется применять типовой буксовый узел с установкой в нем двух цилиндрических роликовых подшипников при консистентной смазке, если техническим заданием не предусмотрена другая конструкция.

При расчете динамической эквивалентной радиальной нагрузки для роликовых подшипников используют формулу:

,(8.1)

где F - средняя постоянная нагрузка,

- температурный коэффициент для роликовых подшипников равный =1;

- динамический коэффициент безопасности (для вагонных подшипников при установке на шейке оси без дистанционных колец =1,4).

С целью определения эквивалентной динамической нагрузки необходимо переменные радиальные силы, действующие на подшипник букс, привести к средним постоянным величинам. При достаточной точности расчетов среднюю постоянную нагрузку, имеющую тоже влияние на долговечность подшипника, что и переменная нагрузка, определяют по формуле:

,(8.2)

где - соответственно повторяемость нагрузок в долях единицы.

При определении эквивалентной динамической радиальной нагрузки для универсальных грузовых вагонов = 0,7 - доля эксплуатации вагона в груженом режиме; = 0,3 - то же в порожнем режиме. Соответственно определяют составляющие нагрузок , действующих на подшипник. При этом следует учесть, что

,

взятую из расчета статических нагрузок на детали тележки. А определяется аналогично при подстановке веса тары вместо веса брутто вагона

.

Подставляя все вышеперечисленные величины, определим среднюю постоянную нагрузку:

Эквивалентную радиальную нагрузку рассчитываем по формуле:

Для роликовых подшипников долговечность в миллион оборотов при 90% надежности рассчитывается по формуле:

,(8.3)

где С - базовая динамическая грузоподъемность, подсчитанная по формуле или принимаемая по каталогам в зависимости от выбранного типа подшипника, С = 495 кН;

- эквивалентная динамическая нагрузка, = 60,21 кН.

В километрах пробега вагона долговечность подшипника можно пересчитать, используя формулу:

,

где - диаметр по кругу катания средне изношенного колеса вагона, = 0,9 м;

Расчетная долговечность роликовых подшипников типовой буксы согласно нормам, должна быть не менее 1,5 млн. км для грузовых вагонов, то есть:

3,169 млн. км 1,5 млн. км

Вывод: При расчете подшипника его расчетная долговечность получилась больше, чем расчетная долговечность роликовых подшипников типовой буксы. Поскольку условие выполняется, значит, расчеты были проведены верно и долговечность подшипника обеспечена.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Глазкова И.В., Голец П.А. Методические указания к курсовой работе №1 по дисциплине «Вагоны». - Иркутск.:ИрГУПС, 2003.-41 с.

2. Конструирование и расчет вагонов: учебник / В.В. Лукин, П.С. Анисимов, В.Н. Котуранов и др.; под ред. П.С. Анисимова.-2е изд., перераб. и доп. - М.:ФГОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2011. -688с.

3. Конструирование и расчет вагонов: Учебник для вузов ж.-д. трансп. / В.В. Лукин, Л.А. Шадур, В.Н. Котуранов, А.А. Хохлов, П.С.Анисимов.; Под ред. В.В. Лукина. М: УМК МПС России, 2000. 731с.

4. Крылов В.И., Крылов В.В. Автоматические тормоза подвижного состава. - М.: Транспорт, 1983. - 360 с.: ил.

5. Пастухов И.Ф., Пигунов В.В., Кошкалда Р.О.. Конструкция вагонов: Учебник для колледжей и техникомов ж.-д. транспорта. -2-е изд. - М.: Маршрут, 2004. -504с

Размещено на Allbest.ru


Подобные документы

  • Отличительные особенности цистерн для перевозки сжиженных газов. Конструкция сливоналивного устройства, скоростного и предохранительного клапанов. Схема автосцепки четырехосного вагона. Расчет основных технико-экономических параметров грузовых вагонов.

    курсовая работа [1,7 M], добавлен 11.01.2013

  • Требования по эксплуатации и техническому обслуживанию вагона-цистерны. Выбор оптимальных параметров цистерны, описание его общего устройства. Оценка эластомерного поглощающего аппарата, прочности элементов, методика и этапы анализа их соответствия.

    дипломная работа [4,6 M], добавлен 23.02.2014

  • Определение технико-экономических параметров цистерны. Разработка конструкции четырехосной цистерны для перевозки соляной кислоты. Металл, термическая обработка роликовых подшипников. Устройство подшипников букс вагонов. Вписывание цистерны в габарит.

    курсовая работа [608,5 K], добавлен 09.12.2012

  • Требования к безопасной эксплуатации, техническому обслуживанию и влиянию на окружающую среду вагона-цистерны. Ремонтные циклы, виды и объем ремонта. Оценка эластомерного поглощающего аппарата. Соответствие ходовых качеств вагона требованиям "Норм".

    дипломная работа [4,1 M], добавлен 26.12.2013

  • Размещение ходовых частей под консольной частью вагона и вписывание вагона в габарит 1-Т. Расчет вертикальной жёсткости рессорного подвешивания и оси колесной пары вероятностным методом. Проверка кинематических параметров автосцепного оборудования.

    дипломная работа [1,6 M], добавлен 06.02.2013

  • Разработка новой конструкции грузового вагона со сниженной тарой вагона и повышенной грузоподъемностью. Вписывание вагона в габарит подвижного состава. Определение вертикальных нагрузок, расчет устойчивости движения колесной пары по рельсовой колее.

    курсовая работа [180,4 K], добавлен 06.11.2011

  • Выбор параметров хоппера для перевозки цемента в ходе проектирования. Анализ конструкции грузового вагона, расчет колесной пары с осевой нагрузкой в 245 кН. Проверка вписывания вагона в габарит 1-Т согласно требованиям эксплуатации. Экономический расчет.

    курсовая работа [1,3 M], добавлен 03.05.2021

  • Расчет кузова вагона на прочность. Расчетная схема и основные силы, действующие на кузов. Материалы и допускаемые напряжения. Определение основных размеров колесной пары. Расчет оси и колеса. Выбор буксовых подшипников. Вписывание вагона в габарит.

    курсовая работа [4,2 M], добавлен 26.07.2013

  • Конструктивная схема вагона и его технико-экономические параметры. Особенности конструкции рам цистерн вагонов. Расчет устойчивости движения колесной пары по рельсовой колее. Расчет на прочность котла цистерны от внутреннего давления и вертикальных сил.

    курсовая работа [226,9 K], добавлен 07.11.2014

  • Технико-экономические показатели вагона прототипа (цистерны 15-145). Ходовые части, автосцепное и тормозное оборудование вагона. Расчет ходовых частей и кузова вагона на прочность. Расчет автосцепного устройства. Разработка модернизации цистерны.

    курсовая работа [7,4 M], добавлен 02.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.