Метод лазерной диагностики динамической формы ротора гидрогенератора
Предложение метода лазерной диагностики динамической формы ротора гидрогенератора для измерения биения вала с определением траектории оси вращения вала. Анализ проведения прямых измерений геометрии быстро движущейся поверхности ротора гидроагрегата.
| Рубрика | Транспорт |
| Вид | статья |
| Язык | русский |
| Дата добавления | 29.06.2017 |
| Размер файла | 394,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Метод лазерной диагностики динамической формы ротора гидрогенератора
Т.Н. Круглова
И.В. Ярошенко
М.А. Мельников
Н.Н. Работалов
Аннотация
Предложен метод лазерной диагностики динамической формы ротора гидрогенератора для измерения биения вала с определением траектории оси вращения вала, позволяющий проводить прямые измерения геометрии быстро движущейся поверхности ротора гидроагрегата в реальном времени с высокой точностью без внесения изменений в конструкцию генератора.
Ключевые слова: лазерная диагностика, биение вала, гидрогенератор, триангулярный датчик, траектория оси вращения, геометрия поверхности ротора. лазерный гидрогенератор ротор
Динамический зазор между статором и вращающимся ротором является важнейшим параметром, определяющим безопасность режима работы агрегата в целом [1]. Изменение динамического зазора между статором и ротором возникает под действием различных гидравлических, механических и электрических сил. Отклонение от нормы величины зазора свидетельствует о децентрированности ротора на валу, соединяющего ротор и турбину, об износе механической части гидроагрегата или об опасном режиме работы гидроагрегата [2].
На сегодняшний день ведется активный поиск технологий измерения динамического зазора между статором и ротором работающего агрегата. Емкостные и индукционные методы имеют в своей основе ряд целый погрешностей, борьба с которыми приводит к значительному усложнению конструкции и проблемам с надежностью измерений [3].
При ремонте агрегата в статическом положении производится замер формы ротора и статора с помощью механических индикаторов и щупов. Таким образом, оценивают и прогнозируют величину динамического зазора агрегата в работе. Недостатками такого подхода являются низкая достоверность оценки, высокие требования к квалификации персонала, необходимость остановки гидроагрегата для процедуры контроля. Такое положение дел существует на подавляющем большинстве энергогенерирующих предприятий России и ближайшего зарубежья [4,5].
Предлагаемый метод относится к классу новых лазерных технологий, повышающих степень надежности и безопасности работы гидрогенераторов электростанций и позволяющих осуществлять бесконтактное дистанционное измерения координат ротора нагруженного работающего гидроагрегата на основе принципа триангуляции [6].
Преимущество разработанного измерительного устройства заключается в возможности быстрых и точных дистанционных измерений через узкий протяженный канал и использовании одного объектива для излучения лазерного луча и приема отраженного света, не требующих изменения конструкции измеряемых машин.
Для измерения геометрии вращающегося объекта (ротора) лазерный датчик закрепляют неподвижно в вентиляционный канал сердечника статора генератора (то есть направляют к поверхности ротора по нормали (рис.1)).
Рис.1 - Схема установки лазерного датчика динамического контроля формы ротора
Лазерный излучатель создает световую метку на поверхности объекта. Изображение световой метки проецируется на линейный КМОП - фотоприемник. При изменении расстояния от датчика до объекта происходит перемещение изображения световой метки в плоскости фотоприемника. Микропроцессор производит вычисление координат изображения. По координатам изображения точки определяется расстояние до объекта (рис.2).
Рис.2 - Принцип измерения лазерного датчика
Для реализации осреднения используется сигнал с отметчика, представляющего собой оптический модуль, генерирующий синхросигнал, привязанный к начальной фазе вращения ротора.
Предложенный метод лазерной диагностики динамической формы ротора гидрогенератора реализован в составе лазерной системы для динамического контроля геометрии ротора гидрогенератора и опробован на гидрогенераторах типа СВ-1477/142-104.Получен профиль поверхности ротора генератора в реальном времени без математического пересчета параметров, напрямую в микрометрах. Результаты измерений динамической формы ротора при работе гидрогенератора приведены на рис.3 в полярных координатах (отклонение от среднего значения в мм). Сравнение полученной динамической формы ротора со статической (замер вручную на остановленном гидроагрегате) приведено на рис.4.
Рис.3 - Динамическая форма ротора в полярных координатах
Рис.4 - Сравнение полученной динамической формы со статической
Методика измерения данными датчиками включает в себя измерение динамической формы ротора в двух поясах, расположенных напротив верней и нижней части ротора. Эти измерения позволяют построить траектории движения ротора в этих двух плоскостях и при их совмещении сделать вывод об изломе линии "генератор - турбина".
Сравнение измерений динамической формы ротора в двух поясах, снятых с каждой сегментной части статора гидроагрегата дает представление о ходе самих сегментов статора.
С помощью данной системы также возможно быстро и с высокой точностью провести измерение статической формы статора для оценки воздушного зазора [4], закрепив датчики на определенный полюс ротора в двух положениях по высоте и проворачивая ротор.
Как правило, величины биений вала измеряются либо механическими индикаторами, либо бесконтактными индукционными датчиками [7-10]. По опыту эксплуатации гидроагрегатов результаты измерений этими двумя способами могут существенно отличаться из-за заложенных в основе погрешностей.
Обычно величина биения вала замеряется механическими индикаторами, которые устанавливаются на неподвижных опорах (брусьях, балках и пр.), а штифт упирается в вал агрегата. Измерение биения вала вертикального гидроагрегата производится у всех направляющих подшипников (турбинного, верхнего и нижнего генераторного) в двух вертикальных плоскостях, расположенных под углом 90о друг к другу. Для непрерывного контроля биений вала в процессе эксплуатации обычно применяются бесконтактные индукционные датчики. Оценка погрешности приведена в [6].
Предложенный лазерный бесконтактный способ измерения боя вала реализован в составе лазерной системы для контроля боя вала и опробован на гидрогенераторах типа ВГСМ 1525/135-120 УХЛ 4. Полученные данные боя вала в районе генераторного и турбинного подшипников при различных режимах работы гидроагрегата приведены на рис.5
а)
б)
Рис.5 - Результаты измерения боя вала: а) в районе генераторного подшипника, б) в районе турбинного подшипника
Предлагаемая бесконтактная система контроля боя вала на основе 2-х лазерных триангуляционных датчиков положения, расположенных в одной плоскости под углом 90., со встроенной микропроцессорной системой управления, позволяет не только контролировать величину боя вала гидроагрегата, но и построить траекторию передвижения оси вала.
Предложен метод лазерной диагностики динамической формы ротора гидроагрегата для измерения боя вала с определением траектории оси вращения вала с использованием лазерных триангуляционных датчиков, позволяющих проводить прямые измерения геометрии быстро движущейся поверхности ротора гидроагрегата через узкий протяженный вентиляционный канал пакета активной стали сердечника статора в реальном времени с высокой точностью без вмешательства в конструкцию генератора.
Благодаря лазерным триангуляционным датчикам положения со встроенной микропроцессорной системой управления, расположенных в одной плоскости под углом 90, имеется возможность не только измерения боя вала гидроагрегата, но и траектории перемещения оси вала.
Опытные образцы опробованы на действующих гидроагрегатах, испытания показали применимость и эффективность использования созданной технологии в условиях мощных полей, создаваемых высоковольтным оборудованием.
Литература
1. Ярошенко И.В. математическая модель и метод классификации технического состояния высоковольтных мехатронных модулей // Инженерный вестник Дона, 2014, №2 URL: ivdon.ru/ru/magazine/archive/n2y2014/2330
2. Е.А. Абидова. Применение опорной маски спектра сигнала электродвигателя арматуры для диагностирования неисправностей // Инженерный вестник Дона, 2009, №1 URL: ivdon.ru/ru/magazine/archive/n1y2009/110
3. Скворцов О.Б., Трунин Е.С "Синхронный динамический анализ формы ротора и магнитного поля для генераторов ГЭС и ГАЭС" URL: pennwell.websds.net/2013/Moscow/rp-hvr/papers/T3S6O5-paper-ru.pdf
4. СТО РУСГИДРО 70238424.27.140.001-2011. "Гидроэлектростанции, методика оценки технического состояния основного оборудования". Москва 2011. - 45 c.
5. ЛевицкийА.С., НовикА.И. Оценка погрешности измерения емкостными датчиками биений валов электрических машин. Киев: ISSN 0204-3599. Техн. електродинамiка. 2010. №4. - С. 66-70
6. Куликов Д.В., Миледин В.Г. и другие. ФГУБН "Институт теплофизики им. Кутателадзе СО РАН" "Метод лазерной диагностики динамической формы вращающихся объектов". // Современные проблемы науки и образования. 2013. №2. - С. 12-19.
7. IEEE Std 1434-2000 "Trial Use Guide t o the Measurement of Partial Discharges in Rotating Machinery" - 2000, №8. 64 р.
8. Ю.П. Аксенов, В.И. Завидей, Р.Я. Захаркин, А.В. Мухортов (ДИАКС, концерн "РОСЭНЕРГОАТОМ", Москва). Контроль разрядных явлений в активной части электрических машин. // Инженерная физика, 2003, №3. - С.37-44.
9. Y.P. Aksenov, G. Noe, I. Arces. Maintenance's Experience of "Double Coordinates Locations Technologies" for turbine generator is on-line Sparking and PD-site location // CWIEME-2003. - Germany, BerlIN, JUNE 17-19, 2003. - pp. 18-34
10. РД ЭО 018700 Методические рекомендации по диагностике изоляции статорных обмоток вращающихся машин классов напряжения 3,15-24 кВ по характеристикам частичных разрядов, принятых для концерна "Росэнергоатом". М. МРФ по АЭ. 1999 г. - 48 c.
References
1. Jaroshenko I.V. Inћenernyj vestnik Dona (Rus), 2014, №2 URL: ivdon.ru/ru/magazine/archive/n2y2014/2330
2. Abidova E.A. Inћenernyj vestnik Dona (Rus), 2009, №1 URL: ivdon.ru/ru/magazine/archive/n1y2009/110
3. STO RUSGIDRO 70238424.27.140.001-2011. Gidrojelektrostancii, metodika ocenki tehnicheskogo sostojanija osnovnogo oborudovanija. [Hydroelectric power plants, methods for assessing the technical condition of the main equipment] Moskva 2011. - 45 p.
4. LevickijA.S., NovikA.I. Ocenka pogreshnosti izmerenija emkostnymi datchikami bienij valov jelektricheskih mashin. [Evaluation of measurement error capacitive sensors beats shafts of electric cars] Kiev: ISSN 0204-3599. Tehn. elektrodinamika. 2010. №4. - pp. 66-70
5. Skvorcov O.B., Trunin E.S. Sinhronnyj dinamicheskij analiz formy rotora i magnitnogo polja dlja generatorov GJeS i GAJeS [Synchronous dynamic analysis of the shape of the rotor and the magnetic field generator hydro and pumped storage] URL: pennwell.websds.net/2013/Moscow/rp-hvr/papers/T3S6O5-paper-ru.pdf
6. Kulikov D.V., Miledin V.G. i drugie. Sovremennye problemy nauki i obrazovanija, 2013, №2. pp. 12-19.
7. IEEE Std 1434-2000 "Trial Use Guide t o the Measurement of Partial Discharges in Rotating Machinery" 2000, №8. 64p.
8. Ju.P. Aksenov, V.I. Zavidej, R. Ja. Zaharkin, A.V. Muhortov nzhenernaja fizika, 2003, №3. pp. 37-44.
9. Y.P. Aksenov, G. Noe, I. Arces. Maintenance's Experience of "Double Coordinates Locations Technologies" for turbine generator is on-line Sparking and PD-site location . CWIEME-2003. Germany, BerlIN, JUNE 17-19, 2003. pp. 18-34
10. RD JeO 018700 Metodicheskih rekomendacijah po diagnostike izoljacii statornyh obmotok vrashhajushhihsja mashin klassov naprjazhenija 3, 15-24 kV po harakteristikam chastichnyh razrjadov, prinjatyh dlja koncerna "Rosjenergoatom". [Guidelines for the diagnosis insulation stator windings of rotating machines 3,15-24 kV voltage class characteristics of PD taken to "Rosenergoatom"] M. MRF po AJe. 1999. - 48 p.
Размещено на Allbest.ru
Подобные документы
Описание конструкции компрессора турбовинтового двигателя. Расчет его мощности, прочности его элементов: вала ротора и лопатки. Определение удельной теплоемкости продуктов сгорания и воздуха, расхода топлива. Тепловой и газодинамический расчет двигателя.
курсовая работа [2,4 M], добавлен 05.12.2014История завода "УАЗ". Геометрическая схема прототипа автомобиля УАЗ-452. Расчет мощности и частоты вращения коленчатого вала двигателя автомобиля и построение его универсальной динамической характеристики. Определение передаточных чисел коробки передач.
реферат [1,0 M], добавлен 14.11.2012Двигатель внутреннего сгорания как объект регулирования, статическая и динамическая характеристика. Расчёт регулятора, его динамика. Обороты вала двигателя на холостом ходу. Структурная схема системы регулирования частоты вращения вала двигателя.
курсовая работа [261,5 K], добавлен 09.06.2012Расчёт мощности и частоты вращения коленчатого вала двигателя автомобиля. Подбор передаточных чисел коробки передач. Тяговый баланс автомобиля. Расчёт внешней скоростной характеристики двигателя. Построение динамической характеристики автомобиля.
курсовая работа [236,2 K], добавлен 12.02.2015Основные параметры, характеризующие качество шлифовки коленчатого вала. Дефекты ремонтных коленвалов: задиры и царапины на поверхностях, ускоренный износ шеек, биения и прогиб. Расчет себестоимости и амортизационных отчислений на применяемое оборудование.
курсовая работа [1,6 M], добавлен 13.05.2014Методика расчета основных тягово-скоростных свойств автомобиля. Расчет внешней скоростной характеристики двигателя Урал-5323. Радиус качения колеса. Уравнение движения автомобиля. Частота вращения коленчатого вала. Расчет силы сопротивления воздуха.
курсовая работа [7,1 M], добавлен 19.06.2012Форс-мажорные обстоятельства в ходе морских перевозок. Режим работы неисправного дизеля при снижении скорости вращения коленчатого вала. Расчет экономического хода и режима нагрузки главных двигателей внутреннего сгорания при возникновении неисправностей.
контрольная работа [407,1 K], добавлен 23.12.2010Проблема создания бесконтактных магнитоэлектрических автотракторных генераторов и регулирование напряжения в них. Определение частот вращения ротора агрегата и передаточного числа привода от двигателя к генератору. Динамический расчет стабилизатора.
дипломная работа [993,2 K], добавлен 24.11.2010Разработка структурной схемы разборки коленчатого вала 20-04С9. Техническая характеристика узла. Выбор рационального метода и маршрута восстановления детали. Технологические расчёты операций и определение экономической эффективности восстановления вала.
курсовая работа [268,4 K], добавлен 22.10.2014Индикация современных средств диагностирования, стенды для диагностики тягово-экономических качеств автомобилей. Методика диагностирования автоматических трансмиссий на тягово-силовом стенде К467М. Датчик частоты вращения коленчатого вала автомобиля.
дипломная работа [7,6 M], добавлен 20.06.2010


