Коммутационные аппараты напряжением выше 1000 В

Выключатели высокого напряжения. Параметры воздушных выключателей. Оценка коммутационной отключающей способности выключателя. Элегазовые и масляные выключатели. Разъединители, отделители, короткозамыкатели. Неполадки и дефекты аппаратов свыше 1000 В.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 10.12.2021
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ПУБЛИЧНОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «РОССЕТИ СЕВЕРО-ЗАПАД»

МУРМАНСКИЙ ФИЛИАЛ

УЧЕБНО-ТРЕНИНГОВЫЙ ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР ПОДГОТОВКИ ПЕРСОНАЛА

Коммутационные аппараты напряжением выше 1000 В

Выполнил:

Свиридов Иван Васильевич

Электромонтер 3 разряда

СРС по «СЭС»

п. Мурмаши 2021 г.

1. Выключатели высокого напряжения

коммутационный выключатель аппарат высокое напряжение

Среди основных параметров выключателей высокого напряжения следует выделить группу номинальных параметров, присущих всем типам выключателей и определяющих условия их работы.

К основным номинальным параметрам выключателей в соответствии с рекомендациями Международной электротехнической комиссии (МЭК) относятся: номинальное напряжение Uном; наибольшее рабочее напряжение Uн.р; номинальный уровень изоляции в киловольтах; номинальная частота ?ном; номинальный ток Iном; номинальный ток отключения Iо.ном; номинальный ток включения Iв.ном; номинальное переходное восстанавливающееся напряжение (ПВН) при КЗ на выводах выключателя; номинальные параметры при неудаленных КЗ; номинальная длительность КЗ; номинальная последовательность операций (номинальные циклы); нормированные показатели надежности и др.

К параметрам, характерным для воздушных выключателей, следует отнести номинальное давление и расход воздуха, необходимые для проведения операций включения и отключения, нижний предел давления для производства отдельных операций.

Рассмотрим некоторые наиболее важные параметры. Номинальное напряжение Uном (линейное) -- это базисное напряжение из стандартизованного ряда напряжений, определяющее уровень изоляции сети и электрического оборудования. Действительные напряжения в различных точках системы могут отличаться от номинального, однако они не должны превышать наибольшие рабочие напряжения (номинальное напряжение по МЭК), установленные для продолжительной работы. Номинальные напряжения выключателей соответствуют классам напряжения (табл. 1.1).

Номинальный уровень изоляции выключателя характеризуется значениями испытательных напряжений, воздействующих на основную изоляцию выключателя. Номинальный ток -- действующее значение наибольшего тока, допустимого по условиям нагрева токоведущих частей выключателя в продолжительном режиме, принимающее следующие значения: 200; 400; 600; 800; 1000; 1250; 1600; 2000; 2500; 3150; 4000; 5000; 6300; 8000; 10000; 12 500; 16 000; 20 000; 25 000; 31 500 А.

Таблица 1.1

Класс номинальных напряжений

Номинальное междуфазное (линейное) напряжение, действующее значение, кВ

Наибольшее рабочее напряжение (номинальное напряжение по МЭК), действующее значение, кВ

3

3,6

6

7,2

10

12

15

17,5

20

24

35

40,5

110

126

150

172

220

252

330

363

500

525

750

787

1150

1200

Коммутационная отключающая способность выключателя характеризуется номинальным током отключения Iо.ном, который может отключить выключатель при наибольшем рабочем напряжении и нормированных условиях восстановления напряжения. Ток отключения характеризуется действующим значением его периодической составляющей Iо.п, отнесенной к моменту возникновения дуги (момент размыкания дугогасительных контактов) и называемой номинальным током отключения Iо.ном (2,5; 3,2; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 35,5; 40; 45; 50; 56; 63; 71; 80; 90; 100; 112; 125; 140; 160; 180; 200; 224; 250 кА), а также нормированным процентным содержанием bн апериодической составляющей, равным отношению апериодической составляющей ia тока отключения к амплитуде периодической составляющей (Ц2Iо.п = Ц2Iо.ном) того же тока в момент размыкания дугогасительных контактов. Ток отключения выключателя определяется суммой периодической и апериодической составляющих:

(1.1)

Номинальный ток включения Iв.ном -- наибольший ток, который выключатель может включить при наибольшем рабочем напряжении. При возникновении КЗ в цепи за время около 10 мс ток достигает своего максимального значения, называемого ударным током КЗ. Поэтому номинальный ток включения должен быть не менее ударного тока КЗ из условия возможности включения на существующее КЗ в цепи [в режиме автоматического повторного включения (АПВ)].

Номинальная длительность тока КЗ характеризуется способностью выключателя выдерживать во включенном положении без повреждений ток электродинамической стойкости (ударный ток) iуд = 2,55 Iо.ном и ток термической стойкости Iт = Iо.ном. Время протекания тока Iт составляет 1 или 2 с для выключателей при Uном і 330 кВ и 1 или 3 с для выключателей при Uном і 220 кВ.

При отключении тока КЗ на выводах выключателя возникает переходный процесс, который при гашении дуги характеризуется переходным восстанавливающимся напряжением (ПВН), зависящим от собственных параметров отключаемой сети.

Отключающая способность дугогасительных устройств по-разному зависит от характера изменения ПВН. Воздушные и элегазовые выключатели очень чувствительны к скорости нарастания ПВН (du/dt), а масляные -- к максимальному ПВН. Этим объясняется нормирование Iо.ном.

Отключающая способность выключателя может быть охарактеризована зависимостью допустимой скорости восстановления напряжения du/dt от тока отключения (кривая 1 на рис. 1.2). Точки пересечения кривой 1 и прямой 2, описывающей зависимость скорости нарастания ПВН на контактах выключателя при отключении не удалённого КЗ от тока отключения, определяют предельный ток Iт, который может быть отключен воздушным выключателем без теплового пробоя.

При успешном преодолении первого пика напряжения (тепловой пробой не произошел) возможен пробой на максимальном напряжении. Для каждого типа выключателя может быть определено предельно допустимое максимальное ПВН, зависящее от отключаемого тока -- кривая 3. Кривая 4 показывает максимальное ПВН сети, которое не зависит от коммутации. Точка их пересечения указывает предельное значение тока отключения выключателя Iэ, вызывающее возможный электрический пробой.

Выключатель не должен отказывать как при максимальных значениях ПВН при КЗ на контактах выключателя, так и при воздействии ПВН с высокой начальной скоростью роста при удаленных КЗ. Зависимости 3, 4, характеризующие режим возможного электрического пробоя, определяют предельный ток Iэ, который больше, чем предельный ток при возможном тепловом пробое Iт. Область применения выключателя ограничена по току значением Iт, а по напряжению -- кривой (кривая 3) возможного электрического пробоя.

В большинстве случаев (согласно статистике до 80 %) причина, вызывающая КЗ, самоликвидируется в результате кратковременного отключения напряжения, не превышающего 0,3 с, необходимого для деионизации участка существования открытой дуги КЗ, и появляется возможность повторного включения напряжения системы. Отсюда вытекает определенная последовательность операций, выполняемых выключателем, связанных с отключением КЗ и последующим автоматическим повторным включением (АПВ) этого участка сети.

Высоковольтные выключатели по способу гашения дуги подразделяются на воздушные, элегазовые, электромагнитные и вакуумные.

1.1 Воздушные выключатели

Широкое применение воздушных выключателей в энергосистемах обусловливается их высокими, для своего времени, техническими характеристиками. Конструктивно воздушные выключатели оказались хорошо приспособленными для различных условий работы современных распределительных устройств высокого напряжения при внутренней и наружной установке. Недостаточно высокая электрическая прочность воздуха (Е = 20 кВ/см) не позволяет получать модули с напряжением 350--500 кВ, что и приводит в последнее время к интенсивному развитию выключателей с использованием другой дугогасящей среды -- элегаза.

По назначению воздушные выключатели разделяются на следующие группы:

· сетевые выключатели на напряжение 6 кВ и выше, применяемые в электрических сетях и предназначенные для пропуска и коммутации тока в нормальных условиях работы цепи и в условиях КЗ;

· генераторные выключатели на напряжение 6--24 кВ, применяемые для подключения генераторов и предназначенные для пропуска и коммутации токов в нормальных условиях, а также в пусковых режимах и при КЗ;

· выключатели для электротермических установок с напряжениями 6--220 кВ, предназначенные для работы как в нормальных, так и в аварийных режимах;

· выключатели специального назначения.

По виду установки воздушные выключатели можно разделить на следующие группы:

· опорные;

· подвесные (подвешиваются к портальным конструкциям на ОРУ);

· выкатные (имеют приспособления для выкатки из РУ);

· встраиваемые в комплектные распределительные устройства.

К достоинствам воздушных выключателей можно отнести следующие показатели: высокую отключающую способность; пожаробезопасность; высокое быстродействие; способность коммутации токов КЗ с большим процентом апериодической составляющей (вплоть до коммутации цепей постоянного тока).

Недостатками воздушных выключателей являются наличие дорогостоящего постоянно действующего компрессорного оборудования; высокая чувствительность к скорости восстанавливающегося напряжения при неудаленном КЗ; возможность «среза» тока при отключении малых индуктивных токов (отключение ненагруженных силовых трансформаторов).

Принцип действия дугогаситсльпых устройств (ДУ) воздушных выключателей. Сжатый воздух является эффективной средой, обеспечивающей надежное гашение электрической дуги. Это достигается интенсивным воздействием с максимально возможными скоростями потока воздуха на дуговой канал. В ДУ воздушных выключателей гашение электрической дуги происходит в дутьевых каналах (соплах), которые конструктивно в совокупности с оконечной частью контактов дугогасителя образуют дутьевую систему. Столб дуги, образовавшейся на размыкающихся контактах, под действием воздушного потока растягивается и быстро перемещается в сопла, где происходит ее гашение.

В зависимости от формы и взаимного расположения контактов и сопл гашение дуги в таких устройствах может происходить при:

· одностороннем (продольном) дутье через металлическое сопло (рис. 1.3, а);

· одностороннем (продольном) дутье через изоляционное сопло (рис. 1.3, б);

· двустороннем симметричном (продольном) дутье через соплообразные полые контакты (рис. 1.3, в);

· двустороннем асимметричном (продольном) дутье через соплообразные полые контакты (рис. 1.3, г).

Наилучшие показатели получены в выключателях с дугогасительными системами, использующими двустороннее асимметричное дутье.

В механизме гашения электрической дуги тесно переплетаются как электрические процессы в столбе дуги, так и газотермодинамические процессы истечения газовой струи.

Своеобразие истечения газа из дугогасительного устройства заключается в том, что поток газа встречает на своем пути мощный источник теплоты, каким является дуга и который тормозит воздушный поток, т.е. уменьшается расход воздуха, протекающего через сопло с дугой. Это явление, называемое «термодинамический эффект», может приводить к полной закупорке сопла электрической дугой, что вызывает разрушение дугогасительной системы. Таким образом, размер (диаметр сопла dc на рис. 1.3, а, г) дутьевой системы определяет максимально возможный ток отключения выключателя.

Высокая эффективность охлаждения канала столба дуги аксиальным потоком газа объясняется возникновением интенсивной турбулентной конвекции на границе двух потоков (рис. 1.4).

Увеличение сопротивления дугового промежутка, определяющего электрическую прочность в воздушных выключателях, в большой степени зависит от отключаемого тока.

Конструкция воздушных выключателей. Отличительной особенностью современных выключателей высокого напряжения является модульный принцип построения. Это обеспечивает возможность применения однотипных элементов (модулей) для создания выключателей на напряжения 110--1150 кВ. Широко распространены воздушные выключатели с металлическими дугогасительными камерами, заполненными сжатым воздухом. В целях увеличения отключающей способности повышают давление сжатого воздуха. В настоящее время это давление достигает 6--8,5 МПа.

На рис. 1.5 представлен общий вид выключателя ВВБ-220-12 с номинальным напряжением Uном= 220 кВ, номинальным током отключения Iо.ном = 31,5 кА, номинальным током Iном = 2000 А. Выключатель установлен на раме 1, к которой крепятся шкаф управления 2 и опорный изолятор 3 с двумя металлическими дугогасительными камерами 9, 10, разъединенными промежуточным опорным изолятором 7. Внутри дугогасительная камера содержит два главных контакта, соединенных единой траверсой, и два вспомогательных контакта. Каждый из главных контактов зашунтирован резистором сопротивлением 100 Ом, служащим для облегчения гашения дуги в главных контактах, выравнивания напряжения между разрывами в процессе отключения и снижения скорости восстановления напряжения. Для тех же целей используются и шунтирующие конденсаторы 6. Вспомогательные контакты отключают ток, протекающий через шунтирующие резисторы. Внутри фарфорового опорного изолятора и в промежуточном изоляторе проходят два воздухопровода из стеклопластика 4. Один служит для постоянной подачи сжатого воздуха в дугогасительные камеры, второй -- для импульсной подачи сжатого воздуха в систему управления. Камеры снабжены люками 5, предназначенными для проведения ревизии и ремонта контактной и дугогасительной систем. Дугогасительные камеры 9, 10 включены последовательно токоведущей перемычкой 8.

Внутренние полости имеют незначительный перепад давления по отношению к окружающей среде (6--12) · 103 Па. Этим достигается необходимая диэлектрическая прочность по внутренней поверхности фарфоровых элементов, не имеющих прочного глазурованного покрытия. Поэтому все воздушные выключатели должны иметь соответствующее компрессорное хозяйство, обеспечивающее непрерывный расход воздуха (до 1500 л/ч) на вентиляцию.

На рис. 1.1 показаны воздушные выключатели на напряжение 330 кВ.

1.2 Элегазовые выключатели

Физико-химические свойства элегаза. Шестифтористая сера SF6 -- элегаз, относится к «электроотрицательным» газам, получившим такое название из-за способности их молекул захватывать свободные электроны, превращаясь в тяжелые и малоподвижные отрицательно заряженные ионы. Элегаз при нормальной температуре (20°С) и давлении 0,1 МПа представляет собой газ без цвета и запаха. Плотность его почти в 5 раз выше плотности воздуха, скорость звука в нем при температуре 30°С -- 138,5 м/с (330 м/с в воздухе). Элегаз обладает низкой теплоемкостью в канале столба дуги и повышенной теплопроводностью горячих газов, окружающих столб дуги (2000 К).

Это характеризует элегаз как среду, обладающую высокими теплопроводящими свойствами. К недостаткам элегаза следует отнести его низкую температуру сжижения (-64°С) при давлении 0,1 МПа, которая с повышением давления повышается. Чистый элегаз негорюч, инертен, нагревостоек до 800°С. Под влиянием электрической дуги или коронного разряда происходит разложение элегаза с образованием химически активных соединений, которые могут вызвать разрушение изоляционных и конструкционных материалов. Однако степень разложения элегаза под воздействием электрической дуги в дугогасительной камере низка из-за того, что большое количество разложившегося газа немедленно восстанавливается в элегазе. Газообразными продуктами разложения являются низшие фториды сред SF2, SF4. Хотя эти газы сами по себе не токсичны, но легко гидролизуются при взаимодействии с влагой, образуя фтористо-водородную кислоту и двуокись серы. Для их поглощения в элегазовые выключатели включаются фильтры, сорберы из активированного алюминия Аl2О3, которые поглощают как газообразные продукты разложения, так и влагу. Кроме активных газов во время горения дуги в результате реакции с парами материалов контактов дугогасителя образуются металлические фториды в виде тонкого слоя порошка. Обладая низкой электропроводностью, они не снижают электрическую прочность изоляции аппарата.

Дугогасительные устройства. В элегазовых выключателях гашение дуги происходит так же, как и в воздушных выключателях при интенсивном охлаждении дуги потоком газа.

Дугогасительная способность элегаза в 4--4,5 раза выше, чем воздуха при сопоставимых условиях. Это преимущество объясняется различиями телофизических свойств элегаза и воздуха. Канал столба дуги в элегазе обладает меньшим теплосодержанием по сравнению с воздухом и высокой способностью элегаза захватывать свободные электроны. В результате количество носителей тока -- свободных электронов -- в столбе дуги вследствие этого уменьшается, баланс их может стать отрицательным и дуга гаснет. Явление захвата электронов особенно благоприятно сказывается после перехода тока через нуль, вследствие чего элегазовые выключатели мало чувствительны к частоте восстанавливающегося напряжения.

Как показали исследования, в элегазе практически до естественного перехода тока через нуль не происходит разрушения канала столба дуги, обладающего высокой проводимостью. Это исключает возможность появления перенапряжений при отключении ненагруженных трансформаторов и линий электропередач. В противоположность этому в воздушных выключателях интенсивными турбулентными процессами столб дуги может разрушаться раньше естественного перехода тока через нуль, что приводит к появлению перенапряжений, для ограничения которых воздушные выключатели снабжаются шунтирующими сопротивлениями.

В элегазовых дугогасительных устройствах (ДУ) в отличие от воздушных при гашении дуги истечение газа через сопло происходит не в атмосферу, а в замкнутый объем камеры, заполненный элегазом при небольшом избыточном давлении. По способу гашения дуги в элегазе различают следующие ДУ:

· с системой продольного дутья, в которую предварительно сжатый газ поступает из резервуара с относительно высоким давлением элегаза (ДУ с двумя ступенями давления);

· автокомпрессионные с дутьем в элегазе, создаваемым посредством встроенного компрессионного устройства (ДУ с одной ступенью давления);

· с электромагнитным дутьем, в котором гашение дуги обеспечивается в результате ее перемещения с высокой скоростью в неподвижном элегазе по кольцевым электродам под воздействием радиального магнитного поля, создаваемого отключаемым током (ДУ с электромагнитным дутьем);

· с системой продольного дутья, в котором повышение давления в элегазе происходит при разогреве дугой, вращающейся в специальной камере под воздействием магнитного поля.

Интенсивное газодинамическое воздействие потока элегаза на столб электрической дуги является наиболее эффективным способом гашения дуги. Поэтому оно используется в большинстве современных конструкций ДУ элегазовых выключателей. Гашение дуги происходит в соплах (рис. 1.6) потоком элегаза высокого давления (0,5--0,6 МПа) как при одностороннем (рис. 1.6, а), так и при двустороннем несимметричном (рис. 1.6, б) газовом дутье.

Основными параметрами системы продольного дутья являются: площадь сечения Sc или диаметр dc горловины сопла, относительное расположение контактов, определяемое расстоянием z0, геометрические размеры формы диффузоров и конфузоров дутьевой системы. Оптимальные условия гашения дуги в таких системах во многом определяются, как и в воздушных выключателях, геометрическими параметрами дутьевых систем и особенно входной части (конфузора).

В настоящее время в зарубежных энергосистемах большинство применяемых выключателей высокого напряжения -- элегазовые. К сожалению, в отечественной энергетике выключатели этого типа пока не нашли широкого применения.

Конструкции элегазовых выключателей. Фирма Merlin Gerin разработала элегазовый выключатель Fluarc FB4 на напряжение Uном = (7,2--36) кВ, номинальный ток отключения Iо.ном= 25 кА, номинальный ток Iном = (630--1250) А. Давление внутри корпуса 1,5 МПа, время гашения дуги 15 мс, полное время отключения 60--80 мс, срок службы -- 20 лет.

На рис. 5.7 представлены полюс автокомпрессионного выключателя и положение механизма, соответствующее различным этапам отключения. Положение а соответствует нормальному включенному состоянию. Ток протекает по главным контактам 1, 2, дугогасительные контакты 3, 4 замкнуты. Ввиду того что они изготовлены из дугостойкой металлокерамики (CuW), токоведущий контур обладает большим сопротивлением. Поэтому через дугогасящие контакты, как правило, проходит ток не более 15--20 % Iном. Положение б соответствует началу процесса отключения.

Подвижный поршень 5 совместно с подвижным главным контактом 1 и соплом 6 перемещается под воздействием приводных рычагов 7, 8. Этим создается избыточное давление в полости над поршнем по сравнению с объемом под поршнем. Ток из главных контактов 1, 2 перебрасывается в дугогасительную цепь контактов 3, 4. При дальнейшем перемещении поршня (положение в) происходит размыкание контактов 3, 4 с одновременным возникновением дутья через внутренние полости контактов 3, 4 -- двустороннее симметричное дутье. При этом выделяющаяся энергия дуги разогревает элегаз, что приводит к повышению перепада давления и усилению интенсивности истечения газовой струи. После гашения дуги при дальнейшем перемещении поршня (положение г) продолжается вентиляция межконтактного промежутка, обеспечивающая необходимую электрическую прочность.

На рис. 1.2 приведен разрез отечественного выключателя 110 кВ на номинальный рабочий ток 2000 А и номинальный ток отключения 40 кА серии элегазовых баковых выключателей типа ВГБ с автономным гидравлическим приводом и встроенными трансформаторами тока.

1.3 Масляные выключатели

Принцип действия дугогаситсльпых устройств. В дугогасительных устройствах традиционных масляных выключателей гашение дуги осуществляется путем эффективного ее охлаждения в потоке газопаровой смеси, вырабатываемой дугой в результате разложения и испарения масла. В зависимости от назначения масла можно выделить две основные группы масляных выключателей:

баковые (многообъемные) масляные выключатели, в которых масло используется для гашения и изоляции токоведущих частей от заземленного бака;

маломасляные (малообъемные) масляные выключатели, в которых масло используется только для гашения дуги и изоляции между разомкнутыми контактами одного полюса.

В состав газопаровой смеси, возникающей в результате разложения масла под действием дуги, входит до 70 % водорода Н2, обладающего по сравнению с воздухом в 8 раз более высокой теплопроводностью, но меньшей предельной электрической прочностью. Поток газопаровой смеси в зоне горения дуги обладает высокой температурой 800--2500 К. Механизм охлаждения столба дуги при больших (обычно выше 100 А) и малых значениях тока дуги различен. При

больших токах охлаждение дуги происходит главным образом за счет принудительной конвекции в потоке газопаровой смеси при большом давлении. С увеличением тока интенсивность конвективного охлаждения и давление в зоне гашения дуги увеличиваются. При небольших токах конвекция и давление газа в зоне гашения дуги снижаются, условия охлаждения дуги ухудшаются и время гашения дуги затягивается. Повышение давления в зоне гашения дуги в результате принудительной подачи масла может существенно улучшить условия гашения дуги при отключении небольших токов.

Можно считать, что основными условиями для наиболее эффективного гашения дуги являются:

интенсивное дутье газопаровой смеси в зоне дуги, особенно в момент тока, близкого к нулю;

максимально возможное высокое давление газопаровой смеси в области дуги в конце полупериода тока.

Дугогасительные системы с автоматическим дутьем получили наиболее широкое применение благодаря своей эффективности и простоте конструкции. В зависимости от конструкции дугогасительных камер различают продольное дутье (рис. 1.8, а), когда поток газопаровой смеси направлен вдоль столба дуги, поперечное (рис. 1.8, б), когда поток направлен перпендикулярно или под некоторым углом к столбу дуги, и встречное (рис. 1.8, в), когда поток направлен противоположно по отношению к направлению движения подвижного контакта с дугой. Часто в дугогасительных устройствах используется их комбинация.

Гашение дуги может быть разбито на три основных этапа (рис. 1.9):

первый этап (рис. 1.9, а). После размыкания контактов дуга горит в замкнутом, как правило небольшом, пространстве, создавая за счет разложения масла значительные давления. Это так называемый «режим замкнутого пузыря». В течение этого этапа в результате выделяющейся в дуге энергии в замкнутом объеме создается (аккумулируется) высокое давление (до 10 МПа), которое используется на следующем этапе гашения дуги;

второй этап (рис. 1.9, б) наступает с момента начала истечения газопаровой смеси из области замкнутого объема через рабочие каналы, открываемые при перемещении подвижного контакта за пределы предкамерного объема. Этап характеризуется изменением давления газопаровой смеси в камере и рабочих каналах, куда затягивается дуга, а также интенсивного истечения газопаровой смеси и завершается процессами распада столба дуги и восстановления электрической прочности межконтактного промежутка;

третий этап (рис. 1.9, в). Происходят удаление из камеры оставшихся после гашения дуги горячих газов, продуктов разложения масла и заполнение внутренней полости камеры свежим маслом. На этом этапе происходит подготовка камеры для последующего ее включения и нового отключения. В масляных выключателях, предназначенных для работы в цикле АПВ, этот этап имеет очень важное значение.

Эффективность ДУ и ресурс масляных выключателей в значительной мере обусловливаются физико-химическими процессами, происходящими в зоне горения дуги. Образующиеся под влиянием дуги продукты разложения масла (Н2, С и др.), ионизированный газ, пары материала контактов понижают отключающую способность ДУ и ограничивают коммутационный ресурс. Свободные частички углерода, образуя коллоидную взвесь, снижают электрическую прочность изоляционного промежутка и утяжеляют процесс включения КЗ в режиме АПВ из-за преждевременного пробоя межконтактного промежутка. Продукты разложения масла и изоляционных материалов камеры ДУ влияют на состояние контактов, их структуру и переходное сопротивление. Время горения дуги возрастает по мере накопления продуктов разложения в масле. Все это, естественно, требует постоянного контроля за состоянием качества масла, его уровнем в ДУ. Коммутационный ресурс в большой степени зависит от тока Iо.ном выключателя и реальных токов отключения. Так, при Iо.ном = 20кА для маломасляного выключателя на напряжение 35 кВ количество отключений N Ј 10, а при токе Iо.ном = 10 кА допустимое число отключений возрастает до N Ј 30. Вышеизложенные особенности требуют постоянного контроля за техническим состоянием масляных выключателей.

Конструкции масляных выключателей. Масляные выключатели благодаря простоте конструкции явились первыми выключателями высокого напряжения. Но отмеченные выше технические сложности по их эксплуатации, а также повышенные взрыво- и пожароопасность, необходимость в сложном масляном хозяйстве привели к значительному вытеснению этих типов выключателей. В настоящее время можно встретить в эксплуатации баковые выключатели на напряжение 220 и 110 кВ. Маломасляные выключатели можно разделить на две группы. Первая, более многочисленная, -- с установкой ДУ в нижней части фазы и перемещением подвижного контакта на включение сверху вниз (см. рис. 1.8, в). Вторая -- с перемещением подвижного контакта на включение снизу вверх и установкой ДУ в верхней части полюса. Выключатели второй группы более эффективны, так как в них повышаются отключаемые токи и улучшаются динамические процессы при отключении.

На рис. 1.10 представлена одна фаза (полюс) колонкового маломасляного выключателя ВК-10. Он выпускается на напряжение 10 кВ, номинальные токи 630, 1000 и 1600 А, номинальные токи отключения 20; 31,5 кА. Выключатели ВК-10 с пружинным приводом предназначены для работы в шкафах КРУ внутренней и наружной установки, а также в режиме АПВ.

Три полюса выключателя устанавливаются на литое основание, в котором расположены рычаги механизма, связанные со встроенным пружинным приводом. Полюс выключателя (рис. 1.10, а) образован изоляционным цилиндром 1, внутри которого проходят токоведущие элементы, соединенные с верхним неподвижным розеточным контактом 2 и обоймой 3, присоединенной к направляющим стержням 4. Токоподвод к подвижному контакту 5 от направляющих стержней осуществляется роликовым устройством 6. Подвижный контакт 5 присоединен к рычагу механизма управления 11 посредством изоляционной тяги 7. На обойму 3 сверху устанавливается распорный цилиндр 8, а на него дугогасительное устройство 9.

Маслоуказатели 10 поплавкового типа расположены наверху полюса.

На рис. 1.10, б представлена конструкция дугогасительной камеры комбинированного масляного дутья, состоящей из пакета изоляционных пластин разной конфигурации, стянутых шпильками.

Верхняя перегородка имеет кольцо 12, изготовленное из дугостойкого материала (фторопласта). Камера имеет центральное отверстие для прохода подвижного стержня. В верхней части камеры изоляционные пластины образуют три поперечные, расположенные одна под другой, дутьевые щели 13 для больших токов, связанные вертикальным каналом 14 с под камерным и надкамерным пространствами.

В нижней части камеры имеются два глухих масляных кармана 15 для гашения малых токов. При гашении малых токов ввиду недостаточности давления газопаровой смеси, создаваемого в течение первого этапа, дуга не гаснет при движении стержня вдоль дутьевых щелей 13 и достигает глухих карманов 15. В этом случае вследствие незначительности объемов этих полостей масло, содержащееся в них, даже при незначительном токе отключения испаряется взрывообразно. Это приводит к попытке отрыва столба дуги за счет импульсного повышения давления от токоведущего стержня, так как выброс газопаровой смеси будет происходить вверх в зону, свободную от контактной свечи. Конусная втулка, установленная в средней части камеры, служит для предотвращения чрезмерного разгона подвижного стержня под воздействием высокого давления, возникающего в камере при отключении токов КЗ.

В настоящее время масляные выключатели за рубежом практически не выпускаются, но в отечественных сетях все еще встречаются.

1.4 Электромагнитные выключатели

Несмотря на ограниченную область использования по напряжению (6--20 кВ) выключатели этого типа нашли широкое применение в КРУ, особенно в системах внутренних нужд на ТЭЦ и АЭС. Номинальные токи выключателей достигают 3150 А, а номинальные токи отключения -- 40 кА. При этом в отличие от масляных или воздушных выключателей эксплуатационные расходы на них относительно невелики.

Принцип действия электромагнитного выключателя заключается в том, что при воздействии магнитного поля на дугу она удлиняется и направляется в дугогасительную камеру (рис. 1.11) узкощелевого типа, где, тесно взаимодействуя со стенками камеры (диаметр дуги значительно превосходит ширину щели dд > dщ), она охлаждается.

Условия гашения дуги в узкощелевом дугогасителе оказываются значительно более легкими, чем в других типах выключателей.

На рис. 1.12 представлено дугогасительное устройство электромагнитного выключателя ВЭМ-6 на напряжение Uном = 6 кВ, номинальный ток отключения Iо.ном = 38,5 кА, номинальный ток Iном= 1600 А.

На стальной раме 13 при помощи изоляторов 12 укреплены гасительная камера 14 и катушка магнитного дутья 11 с магнитными полюсами 10, охватывающими камеру с боков (показаны штриховыми линиями). Подвижный контакт 2 вращается на опорном изоляторе 1 при помощи изоляционной тяги 18. Выключатель имеет главный 3 и дугогасительные 5, 6 контакты. В зависимости от назначения функции их различны: главный служит для проведения тока во включенном состоянии и имеет серебряные накладки для снижения переходного сопротивления; дугогасительный обеспечивает режим коммутации и армирован дугостойкой металлокерамикой 7. При размыкании дугогасительных контактов 5, 6 возникающая между ними дуга под воздействием электродинамических сил перемещается вверх. По мере развития дуги на рисунке показаны различные этапы ее промежуточного положения (А, Б, В, Г, Д, Е).

Неподвижный контакт 6 отделен от дугогасительного рога 9 изоляционным промежутком, необходимым для того, чтобы катушка магнитного дутья 11 включалась посредством связи 8

лишь в момент перехода основания дуги на дугогасительный рог 9 (участок дуги Е шунтируется катушкой магнитного дутья 11). Пройдя этапы последовательного гашения дуги А--Е--Б--В--Г--Д в магнитном поле, образованном катушкой магнитного дутья, связью 16 и дугогасительным рогом 15, дуга приобретает очень большие линейные размеры (до 2 м), что приводит к необходимым условиям для ее гашения.

Следует отметить, что при отключении небольших токов (десятки ампер) электродинамические силы на начальном этапе развития дуги недостаточны для ее вхождения в ДУ. Для устранения этого недостатка имеется автопневматическое устройство 17. Поршень его связан с подвижным контактом 2, что приводит к выбросу струи сжатого воздуха по трубке 4 автопневматического устройства на контактную поверхность неподвижного дугогасительного контакта б и облегчает условия перехода дуги на дугогасительный рог 9.

1.5 Вакуумные выключатели

В последние годы отмечается интенсивное использование вакуумных коммутаторов в области напряжений 6--35 кВ для создания вакуумных контакторов, выключателей нагрузки, вакуумных выключателей для КРУ. Это объясняется рядом бесспорных достоинств: высокое быстродействие, полная взрыво- и пожаробезопасность, экологическая чистота, широкий диапазон температуры (от +200 до -70°С), надежность, минимальные эксплуатационные затраты, минимальные габаритные размеры, повышенная стойкость к ударным и вибрационным нагрузкам, высокая износостойкость при коммутации номинальных токов и токов нагрузки, произвольное рабочее положение вакуумного дугогасительного устройства.

Принцип использования вакуума для гашения дуги при высоких напряжениях известен достаточно давно. Но практическая реализация стала возможна лишь после появления технических возможностей -- создания вакуумночистых сборок материалов и получения высокого вакуума до 1,3 (10-2--10-5) Па. На рис. 1.13 показана зависимость напряжений разряда в однородном поле от расстояния между контактами для различных изоляционных сред.

Физические основы существования дуги в вакууме. Условия существования и гашения дуги в вакууме имеют свои особенности. При расхождении контактов в вакуумной дугогасительной камере (ВДК) в последний момент между ними образуется жидкометаллический мостик, который затем разрушается.

Происходит ионизация паров металла контактного мостика под воздействием приложенного напряжения сети, приводящая к образованию дуги. Таким образом, дуга в вакууме существует из-за ионизации паров контактного материала вначале за счет материала контактного мостика, а затем в результате испарения материала электродов под воздействием энергии дуги. Поэтому, если поступление паров контактного материала будет недостаточно, вакуумная дуга должна погаснуть. При подходе тока к нулю тепловая энергия, выделяющаяся в дуге, тоже уменьшается, количество паров металла соответственно снижается, и дуга должна погаснуть на первом переходе тока через нуль. Время горения дуги в ВДК не превышает 10 мс. Кроме того, для вакуумной дуги характерна очень высокая скорость деионизации столба дуги (диффузная деионизация носителей тока электронов и ионов), обеспечивающая быстрое восстановление электрической прочности после погасания дуги.

В вакууме электрическая дуга существует либо в рассеянном, «диффузном», виде при токах до 5000--7000 А, либо в концентрированном, «сжатом», виде при больших значениях тока.

Граничный ток перехода дуги из одного состояния в другое зависит в значительной степени от материала, геометрической формы и размеров контактов, а также от скорости изменения тока.

«Диффузная» дуга в вакууме существует в виде нескольких параллельных дуг одновременно, через каждую из которых может протекать ток от нескольких десятков до нескольких сотен ампер. При этом катодные пятна, отталкиваясь друг от друга, стремятся охватить всю контактную поверхность. При небольших токах и значительной площади контактов силы электромагнитного взаимодействия этих проводников с током (токи одного направления притягиваются) не могут преодолеть сил отталкивания катодных пятен друг от друга. Так как через каждое катодное пятно протекают небольшие токи, это приводит к небольшим размерам опорных пятен дуги на катоде.

По мере увеличения тока силы электромагнитного притяжения преодолевают силы отталкивания и происходит слияние отдельных дуг в один канал, что приводит к резкому увеличению размеров катодного опорного пятна. Вследствие этого появляются значительные трудности гашения дуги либо происходит полный отказ камеры. Поэтому задачи, стоящие при разработке ВДК, заключаются в создании условий, при которых дуга существовала бы в диффузном виде либо время воздействия «сжатой» дуги на электроды было бы минимальным. Это достигается созданием радиальных магнитных полей, обеспечивающих перемещение опорных точек дуги с высокой скоростью по электродам.

Для получения радиальных и аксиальных магнитных полей разработаны различные конструкции контактных систем (рис. 1.14). В ВДК на номинальное напряжение 10 кВ и номинальные токи отключения до 31,5 А применяются контактные системы с поперечным (по отношению к дуге) радиальным магнитным полем (рис. 1.14, а). Контакты 2 со спиральными лепестками имеют вид дисков, у которых периферийные участки разрезаны спиральными пазами 3 на сегменты, соединенные в центральной части. В замкнутом состоянии контакты соприкасаются по кольцевому выступу 1. При размыкании контактов дуга под воздействием электродинамических сил, возникающих из-за искривления контура тока, перемещается на периферийные участки 4. При этом из-за спиралеобразных прорезей возникает радиальное магнитное поле, под воздействием которого дуга перемещается по периферийным участкам с высокой скоростью, что не вызывает появления больших расплавленных зон на электродах. С увеличением тока до 50 кА при ограниченности геометрических размеров электродов скорости движения дуг становятся столь велики, что дуга все-таки успевает образовать значительные оплавления особенно острых кромок лепестков. Это и обусловило предел отключающей возможности контактных систем такого типа до 50 кА.

Новые разработки контактных систем направлены на создание аксиального (продольного по отношению к дуге) магнитного поля, образованного током отключения.

Схема контактной системы, представленная на рис. 1.14, б, позволяет коммутировать токи

200 кА. Создание магнитного поля, аксиального параллельным дугам, не дает им возможности соединиться, что сохраняет дугу в диффузном виде. Ток от центрального токоподвода 5 растекается по четырем радиально расположенным токопроводящим «спицам» 6, оканчивающимся на периферии проводниками кольцевой формы, но ограниченными лишь четвертью окружности каждая. В целом это создает один виток, обтекаемый током отключения. Оконечности этих кольцевых дуг соединяются непосредственно с электродом 7, на котором и происходит процесс возникновения и гашения дуги. Непосредственно контактирующие поверхности электродов 7, 8 имеют радиальные прорези, препятствующие слиянию дуг.

Как отмечалось выше, дуга возникает и существует в результате ионизации паров материала контактов. При недостаточном их поступлении она должна гаснуть. Но оказывается, что дуга может погаснуть раньше естественного перехода тока через нуль -- явление «среза тока». И тогда могут возникнуть опасные как для аппарата, так и для отключаемой цепи перенапряжения. Исследования показали, что максимальный ток среза наблюдается на контактах из молибдена -- 14 А, вольфрама -- 9 А, меди -- 2 А, висмута -- 0,3 А. Поэтому в качестве контактного материала не может быть использован какой-либо один металл, а используется сложная композиция на базе металла с высокой тепло- и электропроводностью (Си), а также небольших включений легколетучих компонентов -- висмута, сурьмы, хрома и пр. Таким образом удается уменьшить ток «среза» до минимального значения.

Конструкции вакуумных выключателей. Конструкции вакуумных выключателей близки к маломасляным и часто отличаются только тем, что имеют вакуумную дугогасительную камеру.

Существует много различных конструкций вакуумных дугогасительных камер. Одна из распространенных конструкций (рис. 1.15) имеет два изоляционных цилиндрических кожуха 1, 2, снабженных по торцам металлическими фланцами 4 , 15. Неподвижный контакт 12 при помощи токоввода 13 жестко крепится к фланцу 15, подвижный контакт 11 связан с фланцем 4 при помощи сильфона 5. Токоподвод 7 подвижного контакта 11 перемещается в направляющих 6 корпуса 8, соединенного с фланцем 4. Как правило, в конструкции ВДК имеются экраны 3, 9, 10, 14, выполняющие функции повышения электрической прочности камеры за счет выравнивания градиента напряженности электрических полей и защиты внутренних изоляционных частей от металлизации распыленным контактным материалом. Как следует из рис. 5.13, электрическая прочность контактного промежутка очень высока. Это приводит к тому, что расстояние между контактами при напряжениях до 35 кВ не превышает 5 мм.

Несмотря на то, что сильфоном создаются определенные усилия на контакт, общее контактное усилие с учетом токов КЗ 40--100 кА в ВДК может достигать 1000--4000 Н.

Вакуумные выключатели находят все более широкое применение, часто заменяя и вытесняя менее надежные и более металло- и материалоемкие масляные и электромагнитные выключатели. Выпуск вакуумных выключателей среднего напряжения от общего выпуска в настоящее время достиг в Японии 50 %, в Великобритании 30 % и в США 20 %.

2.Разъединители, отделители, короткозамыкатели

Как отмечалось выше, разъединители служат лишь для коммутации обесточенных цепей в целях проведения ремонта или ревизии АВН, а также для выполнения переключений РУ на резервное питание. При проведении ревизии или ремонта того или иного электротехнического оборудования на высоком напряжении необходимо после отключения тока в данной цепи произвести отключение данного объекта с обеих сторон с созданием видимого разрыва цепи. Кроме того, объект с обеих сторон заземляется либо переносными заземлителями, либо заземлитель предусмотрен в конструкции разъединителя и сблокирован с механизмом привода ножа разъединителя. Исходя из задачи обеспечения безопасности обслуживающего персонала при проведении работ на линии, а также осуществления бесперебойного электроснабжения потребителей, разъединитель должен отвечать следующим требованиям:

обеспечивать видимый разрыв тока в цепи при отключении;

быть термически и электродинамически устойчив;

иметь требуемый уровень изоляции при любых атмосферных условиях;

иметь простую и надежную конструкцию с учетом самых тяжелых условий работы (обледенение, ветровые нагрузки).

Поэтому разъединитель имеет таким образом организованную изоляцию, что при появлении недопустимо большого напряжения на полюсе отключенного разъединителя пробой должен произойти между полюсом и землей по его опорной изоляции, а не между разведенными ножами.

Разъединители наружной установки, как правило, имеют заземлители и могут снабжаться дугогасительными рогами для гашения емкостных токов и приспособлениями, разрушающими корку льда.

Большое разнообразие условий эксплуатации электроустановок определяет и конструктивные различия разъединителей. На рис. 1.16 показан элегазовый разъединитель на напряжение 362 кВ.

Отделители и короткозамыкатели устанавливаются на стороне высшего напряжения в менее ответственных РУ в целях экономии капитальных затрат и места. Выключатели при этом предусматриваются только на стороне низшего напряжения. При перегрузках силового трансформатора, повреждении его внутренней изоляции, повышенном газовыделении внутри бака происходит срабатывание реле газоанализатора среды либо реле дифференциальной защиты. Срабатывание этих реле дает команду на автоматическое срабатывание короткозамыкателя, провоцирующего действительное КЗ на стороне высшего напряжения. В цепи протекания тока КЗ короткозамыкателя установлены трансформаторы тока, которые дают команду о чрезмерном токе в систему релейной защиты, в свою очередь включающей систему управления выключателем на отключение выключателя. После отключения искусственно созданного КЗ линейным выключателем, часто находящимся на значительном удалении от данного РУ, исчезновение тока КЗ дает команду на отключение отделителя данного РУ. После чего в соответствии с режимом АПВ питание линии вновь возобновляется, т.е. обеспечивается отключение трансформатора в аварийном состоянии без использования выключателя на стороне высшего напряжения. Отключение короткозамыкателя осуществляется приводом, включение -- с помощью взведенных пружин. Отделитель отключается автоматически, включается вручную для исключения возможности ошибочного автоматического включения при неотключенном короткозамыкателе.

коммутационный выключатель аппарат высокое напряжение

3. Неполадки и дефекты аппаратов свыше 1000 В

1. отказы в отключении токов КЗ. Они в основном происходят из-за недостаточной отключающей способности воздушных выключателей гасить электрическую дугу, а также при отключении неудаленных КЗ, сопровождающихся большой скоростью восстановления напряжения на контактах, хотя ток КЗ при этом может быть меньше номинального тока отключения. При удалении точки короткого замыкания от шин подстанции скорость восстановления напряжения в общем случае уменьшается. До недавнего времени полагалось, что наиболее тяжелым коротким замыканием является повреждение на шинах. Однако практикой и анализом установлено, что процессы коротких замыканий на участке линий протяженностью от 0,5 до 8-10 км (те в зоне так называемого километрического эффекта) характеризуются большими значениями амплитуды первого пика высокочастотных колебаний и очень высокой начальной скоростью восстанавливающегося напряжения. При этом, как правило, происходит повторный пробой межконтактного промежутка и выключатель не справляется с отключением. Применяемыми в настоящее время способами улучшения работы воздушных выключателей являются шунтирование дугового разрыва низкоомным резистором и повышение эффективности дугогасящих устройств путем увеличения последовательно включенных мест разрыва,

2. дефекты контактных систем. Их основная причина - дефекты конструкций отдельных узлов выключателя, заклинивания деталей, приводящие к зависанию подвижных контактов в промежуточном положении или к недостаточному вжиму контактов. Зависания подвижных контактов камер и отделителей выключателей серии ВВШ (ВВП) вызываются загрязнением и «надирами» на трущихся поверхностях. Если зависание происходит во время отключения КЗ, то горящей дугой разрушаются контактные системы и фарфоровая изоляция. Отмечены случаи неполномодульного отключения выключателей серии ВВБ, при этом один модуль выключателей оказывался в отключенном положении, другой - во включенном. Отключившийся модуль выключателя не выдерживал восстанавливающего напряжения, в результате чего происходило перекрытие фарфоровой покрышки ввода и пробой межконтактного промежутка;

3. перекрытия опорной изоляции. Перекрытия по наружной поверхности обусловлены главным образом загрязнением изоляторов уносами промышленных предприятий, пылью при ее увлажнении. Проникновение и накопление влаги внутри изоляторов, а также прекращение продувки внутренних полостей воздухопроводов обычно приводят к перекрытиям изоляций по внутренней поверхности и разрушениям выключателей;

4. неисправности механизмов приводов и клапанов. Значительное число отказов в работе выключателей (в том числе выключателей серии ВНВ) связано с дефектами клапанов (некачественные уплотнения клапанов дуге гасительных устройств, изломы, заклинивания), попаданием под клапаны посторонних предметов, повреждением электромагнитов и цепей управления. Часто происходит самопроизвольное уменьшение сброса давления из-за попадания в каналы клапанов отсечек пыли и смазки. Эти неисправности, как правило, приводят к неполнофазной работе выключателей,


Подобные документы

  • Коммутационные элементы, предназначенные для включения, отключения и переключения электрических цепей. Цепи автоматики и электроники. Электрические параметры кнопок управления различных типов. Кнопки управления и тумблеры, путевые и конечные выключатели.

    реферат [1,5 M], добавлен 30.12.2009

  • Расчет токов короткого замыкания. Защита цехового трансформатора: токовая отсечка и ненормальные режимы. Защита от замыканий на землю в сетях 6-10 кВ. Температурная сигнализация. Защита асинхронных и синхронных двигателей свыше 1000 В от перегрузок.

    курсовая работа [489,4 K], добавлен 08.04.2013

  • В основу классификации выпускаемых магнитотерапевтических приборов и аппаратов положена степень локализации поля воздействия на пациента. Анализ принципов построения промышленных магнитотерапевтических аппаратов. Биотропные параметры магнитного поля.

    реферат [84,4 K], добавлен 09.01.2009

  • Телефонные аппараты и рычажный переключатель. Изменения тока в цепи для цифр номера "13" при импульсном наборе. Величина телефонной нагрузки. Число каналов в пучке при скоростной системе эксплуатации. Коммутационные параметры для двухзвенного блока.

    контрольная работа [113,8 K], добавлен 25.11.2010

  • Простые схемы дросселей насыщения. Софтстартеры: назначение, область применения. Транзисторные усилители с обратной связью. Тиристорные коммутационные аппараты постоянного тока. Цифровые устройства плавного пуска серии STAT. Основные технические данные.

    курсовая работа [1,8 M], добавлен 28.05.2014

  • Изучение выбора контактора, магнитного спускателя, теплового реле (для управления и защиты асинхронного двигателя), автоматических выключателей, предохранителей, высоко- и низковольтных аппаратов в системах электроснабжения согласно исходным данным.

    контрольная работа [3,4 M], добавлен 16.03.2010

  • Анализ сети телекоммуникаций города Гомеля, предпосылки модернизации оборудования АТС-57. Виды мультисервисных сетей. Архитектура и технические характеристики коммутационной системы Alcatel 1000 S12. Надежность аппаратуры связи, программное обеспечение.

    дипломная работа [1,9 M], добавлен 01.12.2016

  • Отличительные функции и дополнительные возможности телефонных аппаратов. Разделение на четыре класса сложности в зависимости от конструктивного исполнения и выполняемых функций. Телефонометрические, электроакустические электрические и временные параметры.

    реферат [19,4 K], добавлен 27.02.2009

  • Классификация и параметры стабилизаторов напряжения тока. Характеристики стабилитрона и нагрузочного сопротивления. Компенсационный транзистор постоянного напряжения с непрерывным регулированием. Различные параметры мощности импульсного стабилитрона.

    реферат [492,5 K], добавлен 18.07.2013

  • Разработка схемы электрической принципиальной и конструктивного исполнения блока обмена сообщениями коммутационной станции. Его электрические и конструкторские параметры и характеристики. Разработка технологического процесса сборки и монтажа конструкции.

    дипломная работа [212,6 K], добавлен 29.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.