Передача информации по волоконно-оптической линии связи

Основные сведения о волоконно-оптической линии связи; типовая схема системы; основные компоненты; преимущества и недостатки ВОЛС. Оптическое волокно (диэлектрические волноводы): типы, стандарты и области их применения. Распространение света по волокну.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 09.06.2012
Размер файла 8,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Основные сведения о ВОЛС

1.1 Общие положения

Волоконно-оптическая линия связи (ВОЛС) -- это вид системы передачи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно". Волоконно-оптическая сеть -- это информационная сеть, связующими элементами между узлами которой являются волоконно-оптические линии связи. Технологии волоконно-оптических сетей помимо вопросов волоконной оптики охватывают также вопросы, касающиеся электронного передающего оборудования, его стандартизации, протоколов передачи, вопросы топологии сети и общие вопросы построения сетей.

Передача информации по ВОЛС имеет целый ряд достоинств перед передачей по медному кабелю. Стремительное внедрение в информационные сети оптических линий связи является следствием преимуществ, вытекающих из особенностей распространения сигнала в оптическом волокне.

Преимущества ВОЛС

Широкая полоса пропускания -- обусловлена чрезвычайно высокой частотой несущей 10'4 Гц [3]. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько тера бит в секунду. Большая полоса пропускания -- это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации.

Малое затухание светового сигнала в волокне. Выпускаемое в настоящее время отечественными и зарубежными производителями промышленное оптическое волокно имеет затухание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более [4].

Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой избыточностью кода.

Высокая помехозащищенность. Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение (линии электропередачи, электродвигательные установки и т.д.). В многоволоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей много парным медным кабелям.

Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. Например, 900-парный телефонный кабель диаметром 7,5 см, может быть заменен одним волокном с диаметром 0,1 см. Если волокно "одеть" во множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля [5, 6]

Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оптической линии связи используя свойства высокой чувствительности волокна, могут мгновенно отключить "взламываемый" канал связи и подать сигнал тревоги. Сенсорные системы, использующие интерференционные эффекты распространяемых световых сигналов (как по разным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колебаниям, к небольшим перепадам давления [7]. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных. Рассмотрение волоконно-оптических сенсорных систем выходит за рамки материала данной книги.

Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических "земельных" петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.

Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.

Экономичность ВОК. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании соли тонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с [8].

Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.

Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.

Несмотря на многочисленные преимущества перед другими способами передачи информации, волоконно-оптические системы имеют также и недостатки, главным образом из-за дороговизны прецизионного монтажного оборудования и надежности лазерных источников излучения. Многие из недостатков вероятнее всего будут нивелированы с приходом новых конкурентоспособных технологий в волоконно-оптические сети.

Недостатки ВОЛС

Стоимость интерфейсного оборудования. Электрические сигналы должны преобразовываться в оптические и наоборот. Цена на оптические передатчики и приемники остается пока еще довольно высокой. При создании оптической линии связи также требуются высоконадежное специализированное пассивное коммутационное оборудование, оптические соединители с малыми потерями и большим ресурсом на подключение-отключение, оптические разветвители, аттенюаторы.

Монтаж и обслуживание оптических линий. Стоимость работ по монтажу, тестированию и поддержке волоконно-оптических линий связи также остается высокой. Если же повреждается ВОК, то необходимо осуществлять сварку волокон в месте разрыва и защищать этот участок кабеля от воздействия внешней среды.

Производители тем временем поставляют на рынок все более совершенные инструменты для монтажных работ с ВОК, снижая цену на них.

Требование специальной защиты волокна. Прочно ли оптическое волокно? Теоретически да. Стекло, как материал, выдерживает колоссальные нагрузки с пределом прочности на разрыв выше 1ГПа (10~ Н/м~) [9]. Это, казалось бы, означает, что волокно в единичном количестве с диаметром 125 мкм выдержит вес гири в 1 кг. К сожалению, на практике это не достигается. Причина в том, что оптическое волокно, каким бы совершенным оно не было, имеет микротрещины, которые инициируют разрыв. Для повышения надежности оптическое волокно при изготовлении покрывается специальным лаком на основе эпоксиакрилата, а сам оптический кабель упрочняется, например нитями на основе кевлара (kevlar). Если требуется удовлетворить еще более жестким условиям на разрыв, кабель может упрочняться специальным стальным тросом или стеклопластиковыми стержнями. Но все это влечет увеличение стоимости оптического кабеля.

Преимущества от применения волоконно-оптических линий связи настолько значительны, что несмотря на перечисленные недостатки оптического волокна, дальнейшие перспективы развития технологии ВОЛС в информационных сетях более чем очевидны.

Типовая схема системы волоконно-оптической связи

Типовая схема системы связи, использующей ВОЛС, показана на рис. 1.1. Аналоговый сигнал, генерируемый оконечным оборудованием данных (ООД), например, телефоном, терминалом, видеокамерой и т.д., приходит на узел коммутации, где аналого-цифровой преобразователь (кодер) оцифровывает его в битовый поток. Битовый поток используется для модуляции оптического передатчика, который передает серию оптических импульсов в оптическое волокно. На приемной стороне импульсы света преобразуются обратно в электрический сигнал при помощи оптического приемника. Декодерная часть коммуникационной системы преобразует бинарный электрический поток обратно в аналоговый сигнал ООД. Обычно кодеры и декодеры, а так же оптические приемники и передатчики совмещаются в одном устройстве, так что образуется двунаправленный канал связи.

Рис. 1.1 Типовая схема системы связи с использованием ВОЛС «Точка-точка»

1.2 Основные компоненты ВОЛС

Оптический передатчик обеспечивает преобразование входного электрического (цифрового или аналогового) сигнала в выходной световой (цифровой или аналоговый) сигнал. При цифровой передаче оптический излучатель передатчика "включается" и "выключается" в соответствии с поступающим на него битовым потоком электрического сигнала. Для этих целей используются инфракрасные светоизлучающие диоды LED или лазерные диоды ILD. Эти устройства способны поддерживать модуляцию излучаемого света с мегагерцовыми и даже гигагерцовыми частотами. При построении сетей кабельного телевидения оптический передатчик осуществляет преобразование широкополосного аналогового электрического сигнала в аналоговый оптический. В последнем случае оптический передатчик должен иметь высокую линейность.

Оптический приемник осуществляет обратное преобразование входных оптических импульсов в выходные импульсы электрического тока. В качестве основного элемента оптического приемника используются р4-и и лавинные фотодиоды, имеющие очень малую инерционность.

Если приемная и передающая станции удалены на большое расстояние друг от друга, например на несколько сот километров, то может дополнительно потребоваться одно или не- сколько дромежуочных регенерационных устройств для усиления ослабевающего в процессе распространения оптического сигнала, а также для восстановления фронтов импульсов. В качестве таких устройств используются повторители и оптические усилители.

Повторитель состоит из оптического приемника, электрического усилителя и оптического передатчика. При передаче дискретного сигнала электрическое усиление, как правило, также может сопровождаться восстановлением фронтов и длительностей передаваемых импульсов. Для этого повторитель принимает оптический сигнала в синхронном или асинхронном режиме, в зависимости от стандарта передачи.

При синхронном режиме приемное устройство повторителя регулярно принимает синхроимпульсы, на основании которых настраивает свой таймер, задающий частоту для последующей передачи. Существует непрерывный битовый поток в линии. И даже если нет передачи данных, синхроимпульсы продолжают поступать. В передающую последовательность повторитель добавляет синхроимпульсы, предназначенные для синхронизации следующего каскада.

При асинхронном режиме передаваемая информация организуется в специальные пакеты данных -- кадры. Каждому пакету предшествует последовательность однотипных групп битов-- преамбула. Именно преамбула обеспечивает синхронизацию приемного устройства, которое до начала приема находится в ждущем режиме.

Повторитель, который восстанавливает форму оптического сигнала до первоначальной, называется регенератором.

Оптический усилитель не осуществляет оптоэлектронного преобразования, как это делает повторитель или регенератор. Он, используя специальные активные среды и лазеры накачки, непосредственно усиливает проходящий оптический сигнал, благодаря индуцированному излучению. Таким образом, усилитель не наделен функциями восстановления скважности, в чем уступает повторителю. Однако, есть две основные причины, которые делают применение усилителя более предпочтительным.

1. Следует иметь в виду, что качество сигналов, передаваемых по оптическому волокну, даже если сегмент протяженный, остается очень высоким вследствие малой дисперсии и затухания. Также не велик уровень вносимых шумов из-за подверженности волокна влиянию электромагнитного излучения. Поэтому ретрансляция передаваемых данных простым усилением без полной регенерации становится весьма эффективной.

2. Оптический усилитель является более универсальным устройством, поскольку в отличие от регенератора он не привязан к стандарту передающегося сигнала или определенной частоте модуляции.

На практике на один регенератор может приходиться несколько последовательно расположенных оптических усилителей (до 4-8). Таким образом, эффективность использования оптических усилителей при построении волоконно-оптических магистралей большой протяженности очень высока.

Волоконно-оптический кабель (ВОК). Характерная строительная длина оптического кабеля (длина непрерывного участка кабеля, поставляемого на одном барабане) варьируется в зависимости от производителя и типа кабеля в пределах 2-10 км. На протяженных участках между повторителями (репитерами) могут помещаться десятки строительных длин кабелей. В этом случае производится специальное сращивание (как правило, сварка) оптических волокон. На каждом таком участке концы ВОК защищаются специальной герметичной проходной муфтой.

2. Оптическое волокно

2.1 Типы оптических волокон

Оптические волокна производятся разными способами, обеспечивают передачу оптического излучения на разных длинах волн, имеют различные характеристики и выполняют разные задачи. Все оптические волокна делятся на две основные группы: многогодовые MMF (multi mode fiber) и одноподовые SMF (single mode fiber).

Многомодовые волокна подразделяются на ступенчатые (step index multi mode fiber) и градиентные (graded index multi mode fiber).

Одномодовые волокна подразделяются на ступенчатые одномодовые волокна (step in- dex single mode fiber) или стандартные волокна SF (standard fiber), на волокна со смещенной дисперсией DSF (dispersion-shifted single mode fiber), и на волокна с ненулевой смещенной дисперсией NZDSF (non-zero dispersion-shifted single mode fiber)

Типы и размеры волокон приведены на рис. 2.1. Каждое волокно состоит из сердцевины и оболочки с разными показателями преломления. Сердцевина, по которой происходит распространение светового сигнала, изготавливается из оптически более плотного материала. При обозначении волокна указываются через дробь значения диаметров сердцевины и оболочки. Волокна отличаются диаметром сердцевины и оболочки, а также профилем показателя преломления сердцевины. У многомодового градиентного волокна и одномодового волокна со смещенной дисперсией показатель преломления сердцевины зависит от радиуса. Такой более сложный профиль делается для улучшения технических характеристик или для достижения специальных характеристик волокна.

Если сравнивать многомодовые волокна между собой (рис. 2.1 а, б), то градиентное волокно имеет лучшие технические характеристики, чем ступенчатое, по дисперсии. Главным образом это связано с тем, что межмодовая дисперсия в градиентном многомодовом волокне -- основной источник дисперсии -- значительно меньше, чем в ступенчатом многомодовом волокне, что приводит к большей пропускной способности у градиентного волокна.

Одномодовое волокно имеет значительно меньший диаметр сердцевины по сравнению с многомодовые и, как следствие, из-за отсутствия межмодовой дисперсии, более высокую пропускную способность. Однако оно требует использования более дорогих лазерных пере- датчиков.

В ВОЛС наиболее широко используются следующие стандарты волокон (табл. 2.1):

* многомодовые градиентное волокно 50/125 (рис . 2.1 а);

* многомодовые градиентное волокно 62,5/125 (рис. 2.1 б);

* одномодовое ступенчатое волокно SF (волокно с несмещенной дисперсией или стандартное волокно) 8-10/125 (рис. 2.1 в);

* одномодовое волокно со смещенной дисперсией DSF 8-10/125 (рис. 2.1 г);

* одномодовое волокно с ненулевой смещенной дисперсией NZDSF (по профилю показателя преломления это волокно схоже с предыдущим типом волокна).

Таблица 2.1

Стандарты оптических волокон и области их применения

Большинство устройств волоконной оптики используют область инфракрасного спектра в диапазоне от 800 до 1600 нм в основном в трех окнах прозрачности: 850, 1310 и 1550 нм, рис. 2.8 [1]. Именно окрестности этих трех длин волн образуют локальные минимумы затухания сигнала и обеспечивают большую дальность передачи.

Рис. 2.1 Типы оптических волокон

Многомодовые градиентные волокна

В стандартном многомодовом градиентном волокне (50/125 или 62,5/125) диаметр светонесущей жилы 50 и 62,5 мкм, что на порядок больше длины волны передачи. Это приводит к распространению множества различных типов световых лучей -- мод -- во всех трех окнах прозрачности. Два окна прозрачности 850 и 1310 нм обычно используют для передачи света по многогодовому волокну.

Одномодовые волокна

B ступенчатом одноподовом волокне (SF) диаметр светонесущей жилы составляет 8-10 мкм и сравним с длиной световой волны. В таком волокне при достаточно большой длине волны света Х > Хс (Х > Хс~ -- длина волны отсечки) распространяется только один луч (одна Mopa). Одномодовый режим в одноподовом волокне реализуется в окнах прозрачности 1310 и 1550 нм. Распространение только одной моды устраняет межмодовую дисперсию и обеспечивает очень высокую пропускную способность одномодового волокна в этих окнах прозрачности, Наилучший режим распространения с точки зрения дисперсии достигается в окрестности длины волны 1310 нм, когда хроматическая дисперсия обращается в ноль. С точки зрения потерь это не самое лучшее окно прозрачности. В этом окне потери составляют 0,3-0,4 дБ) км, в то время как наименьшее затухание 0,2-0,25 дБ/км достигается в окне 1550 нм.

В одномодовом волокне со смещенной дисперсией (DSF) длина волны, на которой результирующая дисперсия обращается в ноль, -- длина волны нулевой дисперсии Х~ -- смещена в окно 1550 нм. Такое смещение достигается благодаря специальному профилю показателя преломления волокна, рис. 2.1 г. Таким образом, в волокне со смещенной дисперсией реализуются наилучшие характеристики как по минимуму дисперсии, так и по минимуму потерь. Поэтому такое волокно лучше подходит для строительства протяженных сегментов с расстоянием между ретрансляторами до 100 и более км. Разумеется, единственная рабочая длина волны берется близкой к 1550 нм.

Одномодовое волокно с ненулевой смещенной дисперсией NZDSF в отличие от DSF оптимизировано для передачи не одной длины волны, а сразу нескольких длин волн (мультиплексного волнового сигнала) и наиболее эффективно может использоваться при построении магистралей "полностью оптических сетей" -- сетей, на узлах которых не происходит оптоэлектронного преобразования при распространении оптического сигнала.

Передача мультиплексного сигнала на большие расстояния требует использования линейных широкополосных оптических усилителей, из которых наибольшее распространение получили так называемые эрбиевые усилители на основе легированного эрбием волокна (EDFA). Линейные усилители типа EDFA эффективно могут усиливать сигнал в своем рабочем диапазоне от 1530-1560 нм. Длина волны нулевой дисперсии у волокна NZDSF, в отличие от волокна DSF, выведена за пределы этого диапазона, что значительно ослабляет влияние нелинейных эффектов в окрестности точки нулевой дисперсии при распространении нескольких длин волн.

Оптимизация трех перечисленных типов одномодовых волокон совершенно не означает, что они всегда должны использоваться исключительно под определенные задачи: SF -- передача сигнала на длине волны 1310 нм, DSF -- передача сигнала на длине волны 1550 нм, NZDSF -- передача мультиплексного сигнала в окне 1530-1560 нм. Так, например, мультиплексный сигнал в окне 1530-1560 нм можно передавать и по стандартному ступенчатому одномодовому волокну SF. Однако длина без ретрансляционного участка при использовании волокна SF будет меньше, чем при использовании NZDSF, или иначе потребуется очень узкая полоса спектрального излучения лазерных передатчиков для уменьшения результирующей хроматической дисперсии. Максимальное допустимое расстояние определяется техническими характеристиками как самого волокна (затуханием, дисперсией), так и приемопередающего оборудования (мощностью, частотой, спектральным уширением излучения передатчика, чувствительностью приемника).

2.2 Распространение света по волокну

Основными факторами, влияющими на характер распространения света в волокне, наряду с длиной волны излучения, являются: геометрические параметры волокна; затухание; дисперсия.

Геометрические параметры волокна

Относительная разность показателей преломления. Волокно состоит из сердцевины и оболочки. Оболочка окружает оптически более плотную сердцевину, являющуюся светонесущей частью волокна, рис. 2.2. Будем обозначать через n и ng показатели преломления сердцевины и оболочки, соответственно. Один из важных параметров, который характеризует волокно, это -- относительная разность показателей преломления

Если показатель преломления оболочки выбирается всегда постоянной величиной, то показатель преломления сердцевины в общем случае может зависеть от радиуса. В этом случае для проведения различных оценок параметров волокна вместо п используют п,т.

Распространение света по волокну можно объяснить на основе принципа полного внутреннего отражения, вытекающего из закона преломления света Синеллиуса:

п,sin0, =п п0

где n> -- показатель преломления среды 1, 0| -- угол падения, n -- показатель преломления среды 2, 0> -- угол преломления.

Формальные выкладки удобнее производить для ступенчатого волокна (волокна со ступенчатым профилем показателя преломления), в котором показатель преломления сердцевины является постоянной величиной (n, = const). На рис. 2.2 показан ход лучей в таком волокне. Так как сердцевина является оптически более плотной средой по отношению к оболочке (п,) п2, то существует критический угол падения 0С -- внутренний угол падения на границу, при котором преломленный луч идет вдоль границы сред (0> -- -- 90). Из закона Синеллиуса легко найти этот критический угол падения:

Если угол падения на границу раздела меньше критического угла падения (луч 2), то при каждом внутреннем отражении часть энергии рассеивается наружу в виде преломленного луча, что приводит, в конечном итоге, к затуханию света, если же угол падения больше критического угла (луч 1), то при каждом отражении от границы вся энергия возвращается обратно в сердцевину благодаря полному внутреннему отражению.

Лучи, траектории которых полностью лежат в оптически более плотной среде, называются направляемыми. Поскольку энергия в направляемых лучах не рассеивается наружу, такие лучи могут распространяться на большие расстояния.

Рис. 2.2 Ход лучей в многомодовом оптическом волокне со ступенчатым профилем

Числовая апертура. Важным параметром, характеризующим волокно, является числовая апертура NA. Она связана с максимальным углом 0~ вводимого в волокно излучения из свободного пространства, при котором свет испытывает полное внутреннее отражение и распространяется по волокну, формулой:

NA = sin6Д. (2-3)

Фирмы-изготовители волокна экспериментально измеряют угол О и указывают соответствующее значение числовой апертуры для каждого поставляемого типа волокна. Для волокна со ступенчатым профилем легко получить значение числовой апертуры, выраженное через показатели преломления:

NA = $8 ~ -- п~~ = n, /2Л . (2-5)

Для градиентного волокна используется понятие локальной числовой апертуры N=т) п, (т) -- n~, значение которой максимально на оси и падает до 0 на границе сердцевины и оболочки. Для градиентного волокна с параболическим профилем показателя преломления, формула (2-10), определяется эффективная числовая апертура, которая равна (2-7) где п (О) -- максимальное значение показателя преломления на оси.

Нормированная частота. Другим важным параметром, характеризующим волокно и распространяющийся по нему свет, является нормированная частота V.

Номенклатура мод. При более строгом рассмотрении процесса распространения света по волокну следует решать волновые уравнения Максвелла. Именно в этой трактовке лучи ассоциируются с волнами, причем различные типы волн -- решения уравнений -- называются модами. Сами моды обозначаются буквами Е и/или Н с двумя индексами п и m .Индекс п характеризует азимутальные свойства волны (число изменений поля по окружности), а m -- радиальные (число изменений поля по диаметру). По оптическому волокну распространяются только два типа волн: симметричные (Epm и pm) у которых только одна продольная составляющая, и несимметричные (смешанные) (Е, и HДm), у которых имеется две продольные составляющие. При этом, если преобладает продольная составляющая электрического поля -- Е„то волна обозначается ЕН, а если преобладает продольная составляющая магнитного поля -- Н„то волна называется НЕ. Сопоставляя волновую теорию с геометрической оптикой, следует отметить, что симметричные моды Е и Hp соответствуют меридиональным лучам, несимметричные моды Е и Н -- косым лучам [10].

По волокну могут распространяться как только одна мода -- одномодовый режим, так и много мод многомодовый режим. Многомодовый или одномодовый характер идущего по волокну света коренным образом влияет на дисперсию, а следовательно, и на пропускную способность волокна. Расчет на основе уравнений Максвелла позволяет найти простой критерий распространения одной моды: V <2,405 (точное значение константы в правой части неравенства определяется первым нулем функции Бесселя Ip(x), [1, 2]. Это гибридная мода НЕ. Отметим, что нормированная частота явно зависит от длины волны света. В табл. 2.2 приведены значения нормированной частоты, вычисленные по формуле (2-7).

Как видно из табл. 2.2, в одномодовом ступенчатом волокне при длине волны света 1550 нм выполняется критерий (2-8), и поэтому распространяется только одна мода. При длине волны 1310 нм критерий не выполнен, что означает возможность распространения нескольких мод в одномодовом волокне на этой длине волны. На практике, однако, волокно помещается в кабель, который, будучи проложенным, имеет множество изгибов. Особенно велики искривления волокна в сплайс-боксах. Искривление волокна приводит к быстрому затуханию не основных мод. Во всех остальных случаях наблюдается многомодовый характер распространения света. Отметим, что при длине волны 880 нм критерий (2-8) нарушается для всех типов волокон. Таким образом, если вводить излучение длиной волны 850 нм в одномодовое волокно, то иметь место будет многомодовый режим распространения света. Противоречия здесь нет. Дело в том, что ступенчатое одномодовое волокно 8/125 предназначено для использования в спектральных окрестностях двух длин волн:1310 нм и 1550 нм, где оно в истинном смысле проявляет себя как одномодовое.

Значение этого выражения может быть как целым, так и дробным. В действительности же число мод может быть только целым и составлять величину от одной до нескольких тысяч.

Количество мод для градиентного оптического волокна с параболическим профилем сердцевины: (а -- радиус сердцевины, -- радиус оболочки).

Таблица 2.2

Значения основных оптических параметров волокон и нормированной частоты V для различных длин волн

Таблица 2.3

Номенклатура мод низких порядков

На рис. 2.3 показана общая картина распространения света по разным типам световодов: многомодовому ступенчатому, многомодовому градиентному, и одномодовому ступенчатому волокну.

Длина волны отсечки (cutoff wavelength)

Минимальная длина волны, при которой волокно поддерживает только одну распространяемую моду, называется длиной волны отсечки. Этот параметр характерен для одномодового волокна. Если рабочая длина волны меньше длины волны отсечки, то имеет место многомодовый режим распространения света. В этом случае появляется дополнительный источник дисперсии -- межмодовая дисперсия, ведущий к уменьшению полосы пропускания волокна.

Рис. 2.3 Распространение света по разным типам волокон: а) многомодовое ступенчатое волокно, б) многомодовое градиентное волокно, в) одномодовое ступенчатое волокно

Различают волоконную длину волны отсечки (Х) и кабельную длину волны отсечки (Хс). Первая соответствует слабо напряженному волокну. На практике же волокно помещается в кабель, который при прокладке испытывает множество изгибов. Кроме этого, сильные искривления волокон происходят при их укладке в сплайс-боксах. Все это ведет к подавлению побочных мод и смещению Х в сторону коротких длин волн по сравнению с Х. С практической точки зрения кабельная длина волны отсечки представляет больший интерес.

Волоконную длину волны отсечки можно оценить как теоретически, так и экспериментально. Теоретически легко это сделать для ступенчатого одномодового волокна -- на основании выражений (2-7), (2-8) и (2-9) получаем Xл d NA/2,405=1,847 d n,~Б. Х, в отличие от Х, можно оценить только экспериментальным образом. Одним из практических методов измерения длин волн отсечки Х и Х~~~ является метод передаваемой мощности (transmitted power method) [5, 6]. Сравнивается измеренная переданная спектральная мощность в зависимости от длины волны для образца одномодового волокна длиной 2 м с аналогичным параметром, полученным на образце многомодового волокна. Строится кривая, где А -- разница затухании; Р -- мощность на выходе одномодового волокна; Р -- мощность на выходе многомодового волокна.

Многомодовое волокно является эталонным. При этом один и тот же источник излучения с перестраиваемой длиной волны используется как для одномодового, так и многомодового волокна. Строится кривая А (k), рис. 2.4, длинноволновый участок которой экстраполируется прямой (1). Строится параллельная прямая (2), отстоящая ниже от (1) на 0,1 дБ. Точка пересечения прямой (2) с кривой А (Х) соответствует длине волны отсечки.

Рис. 2.4 Определение длины волны отсечки

Условия измерения должны соответствовать рекомендациям TIA/EIA и CCITT [1, 2, 3]. Концы волокна очищаются от защитного покрытия, скалываются -- угол скола не должен превышать 2. Диаметр светового пятна от источника излучения -- 200 мкм; числовая апертура вводимого излучения 0,20; полная ширина спектра излучения <10 нм, измеренная на-полумаксимуме; измеряемый диапазон длин волн от 1000 нм до 1600 нм с шагом TO нм.

При измерении длины волны отсечки волокна X<F образец волокна должен иметь длину 2 м и располагаться таким образом, чтобы образовывалась одна петля радиусом 140 мм, рис. 2.5 а. Не должно быть дополнительных изгибов волокна с радиусом, меньшим 140 мм. Экспериментально измеренная длина волны отсечки волокна близка к теоретическому значению, которое можно получить из критерия (2-7), если обратить его в равенство.

При измерении кабельной длины волны отсечки тестируемый образец волокна должен иметь длину 22 м. Большая часть волокна свертывается и располагается на катушке с радиусом не меньше, чем 140 мм, что моделирует кабельные эффекты. Затем делается по одной петле диаметром 76 мм на расстоянии 1 м от каждого конца волокна для моделирования эффекта изгиба волокна в сплайс-боксах, рис. 2.5 б. И, наконец, в средней части делается две дополнительные петли радиусом, меньшим 140 мм.

Затухание

Волокно характеризуется двумя важнейшими параметрами: затуханием и дисперсией. Чем меньше затухание (потери) и чем меньше дисперсия распространяемого сигнала в волокне, тем больше может быть расстояние между регенерационными участками или повторителями,

На затухание света в волокне влияют такие факторы, как: потери на поглощении; потери на рассеянии; кабельные потери.

Потери на поглощении и на рассеянии вместе называют собственными потерями, в то время как кабельные потери в силу их природы называют также дополнительными потерями, рис. 2.6.

Полное затухание в волокне (измеряется в дБ/км) определяется в виде суммы:

Потери на поглощении а, состоят как из собственных потерь в кварцевом стекле (ультрафиолетовое и инфракрасное поглощение), так и из потерь, связанных с поглощением света на примесях. Примесные центры, в зависимости от типа примеси, поглощают свет на определенных (присущих данной примеси) длинах волн и рассеивают поглощенную световую энергию в виде джоулева тепла. Даже ничтожные концентрации примесей приводят к появлению пиков на кривой потерь, рис. 2.7. Следует отметить характерный максимум в районе длины волны 1480 нм, который соответствует примесям ОН. Этот пик присутствует всегда, Область спектра в районе этого пика ввиду больших потерь практически не используется.

Собственные потери на поглощении растут и становятся значимыми в ультрафиолетовой и инфракрасной областях. При длине волны излучения выше 1,6 мкм обычное кварцевое стекло становится непрозрачным из-за роста потерь, связанных с инфракрасным поглощением, рис. 2.7.

Потери на рассеянии. Уже к 1970 году изготавливаемое оптическое волокно становится настолько чистым (99,9999%), что наличие примесей перестает быть главенствующим фактором затухания в волокне. На длине волны 800 нм затухание составило 1,5 дБ/км. Дальнейшему уменьшению затухания препятствует так называемое релеевское рассеяние света. Релеевское рассеяние вызвано наличием неоднородностей микроскопического масштаба в волокне. Свет, попадая на такие неоднородности, рассеивается в разных направлениях. В результате часть его теряется в оболочке. Эти неоднородности неизбежно появляются во время изготовления волокна.

Потери на релеевском рассеянии зависят от длины волны по закону Х и сильней проявляются в области коротких длин волн, рис. 2.7.

волоконный оптический связь волновод

Длина волны, на которой достигается нижний предел собственного затухания чистого кварцевого волокна, составляет 1550 нм и определяется разумным компромиссом между потерями вследствие релеевского рассеяния и инфракрасного поглощения.

Внутренние потери хорошо интерполируются формулой:

а = К„~Х ~ +бон (Х)+Се,

где Зон (Х) отражает пик поглощения на примесях ОН с максимумом при 1480 нм, а первое и последнее слагаемые соответствуют рэлеевскому рассеянию и инфракрасному поглощению соответственно (KДi = 0,8 мкм4дБ/км; С = 0,9 дБ/км; 1C = 0,7-0,9 мкм; данные приведены для кварца). На рис. 2.8 приводится общий вид спектральной зависимости собственных потерь с указанием характерных значений четырех основных параметров (минимумов затухания в трех окнах прозрачности 850, 1300 и1550 нм, и пика поглощения на длине волны 1480 нм) для современных одномодовый и многомодовый волокон.

Кабельные (радиационные) потери а обусловлены скруткой, деформациями и изгибами волокон, возникающими при наложении покрытий и защитных оболочек, производства кабеля, а так же в процессе инсталляции ВОК. При соблюдении ТУ на прокладку кабеля номинальный вклад со стороны радиационных потерь составляет не больше 20% от полного затухания. Дополнительные радиационные потери появляются, если радиус изгиба кабеля становится меньше минимального радиуса изгиба, указанного в спецификации на ВОК.

Потенциальные ресурсы волокна и волновое уплотнение

Не принимая во внимание дисперсию, то есть искажение сигнала по мере распространения по волокну, рассмотрим сначала потенциальные возможности волокна.

Длина волны и частота светового излучения связаны между собой формулой

v =c/Х,

где с -- скорость света (3 10 м/с).

Дифференцируя по Х, получаем dv = -- с/Х, а, следовательно, окну ЛХ вокруг ~ -- соответствует окно Лч, которое определяется по формуле:

Лч = с Хр

Если Xp = 1 300 нм и ЛХ = 200 нм, то Лч = 35 ТГц ( 35 1 0,2 Гц), если же Хр 1550 нм и ЛХ= 200 нм, то Л= 25 ТГц.

Наиболее подходящим с точки зрения магистральных протяженных сетей является окно 1550 нм, поскольку в этом окне достигается минимальное затухание сигнала до 0,2 дБ/км, рис. 2.8. Несмотря на такие большие ресурсы волокна, реализовать передачу на скорости 25 Тбит/с в настоящее время невозможно, поскольку соответствующая частота модуляции пока не достижима. Однако есть другое очень эффективное решение, идея которого заключается в разделении всей полосы на каналы меньшей емкости. Каждый из таких каналов можно использовать под отдельное приложение. Эта технология известна как волновое уплотнение или волновое мультиплексирование -- WDM. Технология WDM позволяет увеличить пропускную способность волокна не за счет увеличения частоты модуляции (при наличии одной передающей длины волны -- одной несущей), а за счет добавления новых длин волн (новых несущих). Единственное условие, которое необходимо выполнить- это исключение перекрытий между спектральными каналами. Интервал между соседними длинами волн должен быть больше ширины спектра излучения. Современные одномодовое лазеры с распределенным брэгговским отражением -- DBR лазеры -- дают спектральную полосу меньше 0,1 нм. Так, при интервале 0,8 нм между соседними длинами волн в окне 1530-1560 нм, соответствующем рабочей области оптического усилителя EDFA, может разместиться около 40 длин волн -- 40 каналов. Причем полоса пропускания на каждый канал достигает 10 Гбит/с и более [8]. Технически реализованы оптические передатчики на основе временного мультиплексирования -- TDM, способные вводить в волокно оптический TDM сигнал с частотой 100 ГГц в расчете на один канал, в результат чего полная емкость одного волокна составляет 4 Тбит/с (при 40 каналах волнового уплотнения) [9]. Но передать такой сигнал на большие расстояния не просто. Одним из главных факторов, препятствующих этому, является дисперсия.

Дисперсия и полоса пропускания

По оптическому волокну передается не просто световая энергия, но также полезный информационный сигнал. Импульсы света, последовательность которых определяет информационный поток, в процессе распространения расплываются. При достаточно большом уширении импульсы начинают перекрываться, так что становится невозможным их выделение при приеме.

Дисперсия -- уширением импульсов -- имеет размерность времени и определяется как квадратичная разность длительностей импульсов на выходе и входе кабеля длины б по формуле. Обычно дисперсия нормируется в расчете на 1 км, и измеряется в пс/км. Дисперсия в общем случае характеризуется тремя основными факторами, рассматриваемыми ниже:

* различием скоростей распространения направляемых мод (межмодовой дисперсией)

* направляющими свойствами световодной структуры (волноводной дисперсией т),

* свойствами материала оптического волокна (материальной дисперсией т,~).

Межмодовая дисперсия

Межмодовая дисперсия возникает вследствие различной скорости распространения у мод, и имеет место только в многомодовом волокне (рис. 2.3 а, б). Для ступенчатого многомодового волокна и градиентного многомодового волокна с параболическим профилем показателя преломления.

Изменение закона дисперсии с линейного на квадратичный связано с неоднородностями, которые есть в реальном волокне. Эти неоднородности приводят к взаимодействию между модами, и перераспределению энергии внутри них. При L > L, наступает установившийся режим, когда все моды в определенной установившейся пропорции присутствуют в излучении. Обычно длины линий связи между активными устройствами при использовании многомодового волокна не превосходят 2 км и значительно меньше длины межмодовой связи. По- этому можно пользоваться линейным законом дисперсии.

Вследствие квадратичной зависимости от Л значения межмодовой дисперсии у градиентного волокна значительно меньше, чем у ступенчатого, что делает более предпочтительным использование градиентного многомодового волокна в линиях связи.

На практике, особенно при описании многомодового волокна, чаще пользуются термином полоса пропускания. При расчете полосы пропускания W можно воспользоваться формулой [1]:

Измеряется полоса пропускания в МГц км. Из определения полосы пропускания видно, что дисперсия накладывает ограничения на дальность передачи и верхнюю частоту передаваемых сигналов. Физический смысл W -- это максимальная частота (частота модуляции) передаваемого сигнала при длине линии 1 км. Если дисперсия линейно растет с ростом расстояния, то полоса пропускания зависит от расстояния обратно пропорционально.

Хроматическая дисперсия

Хроматическая дисперсия состоит из материальной и волноводной составляющих и имеет место при распространении как в одномодовом, так и в многомодовом волокне. Однако наиболее отчетливо она проявляется в одномодовом волокне из-за отсутствия межмодовой дисперсии.

Материальная дисперсия обусловлена зависимостью показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит дифференциальная зависимость показателя преломления от длины волны:

Полноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны [1]: где введены коэффициенты М(Х) и ч(Х) -- удельные материальная и волноводная дисперсии соответственно, а ЛХ (нм) -- уширении длины волны вследствие не когерентности источника излучения. Результирующее значение коэффициента удельной хроматической дисперсии определяется как

Р(Х) = М(Х)+ М(Х)

Удельная дисперсия имеет размерность пс/(нм км). Если коэффициент волноводной дисперсии всегда больше нуля, то коэффициент материальной, (Примерно 131 0 + 10 НМ ДЛЯ ступенчатого одномодового волокна) происходит взаимная компенсация М(Х) и В(Х), а результирующая дисперсия обращается в ноль. Длина волны, при которой это происходит, называется длиной волны нулевой дисперсии Обычно указывается некоторый диапазон длин волн, в пределах которых может варьироваться Х для данного конкретного волокна.

Фирма Corning использует следующий метод определения удельной хроматической дисперсии. Измеряются задержки по времени при распространении коротких импульсов света в волокне длиной' не меньше км. После получения выборки данных для нескольких длин волн из диапазона интерполяции (800-1600 нм для MMF, 1200-1600 нм для SF и DSF) делается повторная выборка измерения задержек на тех же длинах волн, но только на коротком эталонном волокне (длина 2 м). Времена задержек, полученных на нем, вычитаются из соответствующих времен, полученных на длинном волокне.

Для одномодового ступенчатого и многомодового градиентного волокна используется эмпирическая формула Селмейера (Sellmeier, [4]): т(Х) = А+ ВХ + СХ. Коэффициенты А, В, С являются подгоночными, и выбираются так, чтобы экспериментальные точки лучше ложились на кривую т(Х), рис. 2.10.

Для волокна со смещенной дисперсией эмпирическая формула временных задержек записывается в виде т(Х) = А+ Вл+Сл1пХ, а соответствующая удельная дисперсия определяется как со значениями параметров Х, =е с и S, =С/Х,

Рис. 2.10 Кривые временных задержек и удельных хроматических дисперсией для:

а) многомодового градиентного волокна (62,5/125);

б) одномодового ступенчатого волокна (SF);

в) одномодового волокна со смещенной дисперсией (DSF)

где Х -- рабочая длина волны, Х -- длина волны нулевой дисперсии, и S, -- наклон нулевой дисперсии. Хроматическая дисперсия связана с удельной хроматической дисперсией простым соотношением т (М = D(X1 ЛХ, где Лл -- ширина спектра излучения источника. К уменьшения, например лазерных передатчиков (АХ 2 нм), и использование рабочей длины волны более близкой к длине волны нулевой дисперсии. В табл. 2.4 представлены дисперсионные свойства различных оптических волокон.

Для того, чтобы при передаче сигнала сохранялось его приемлемое качество -- соотношение, сигнал/шум было не ниже определенного значения -- необходимо, чтобы полоса про- пускания волокна на длине волны передачи превосходила частоту модуляции. Ниже приводятся примеры расчета допустимой длины сегмента с использованием табл. 2.4.

Пример 2.1

Стандарт Ethernet для многомодового волокна. Оптический интерфейс 10Base-FL предполагает манчестерское кодирование с частотой модуляции 20 МГц. При использовании светодиодов с Ал, = 35 нм (850 нм) удельная полоса пропускания для волокна 50/125 составляет 125 МГцкм и при длине оптического сегмента 4 км будет 31 МГц, что больше 20 МГц.

То есть, с точки зрения дисперсии, протяженность в 4 км является допусти- мой при указанной характеристике оптического передатчика и при данном типе волокна. Однако по затуханию, которое на этой длине волны составляет 3 дБ/км, динамического диапазона у стандартных приемопередатчиков на это расстояние может не хватить. Стандартом Ethernet 10Base-FL установлено допустимое расстояние 2 км с учетом менее строгих требований как к характеристикам кабельной системы (например волокно 62,5/125, наличие нескольких сухих соединительных стыков), так и к оптическим приемопередатчикам -- оптическим трансиверам Ethernet (например АХ= 50 нм ).

Пример 2.2

Стандарт FDDI для многомодового волокна. Оптический интерфейс

FDDI PMD предполагает кодировку 4В/5В с частотой модуляции 125 МГц. При использовании светодиодов с Лл, = 35 нм (1310 нм) удельная полоса пропускания для волокна 62,5/125 составляет 450 МГцкм, и при длине оптического сегмента 2 км будет 225 МГц, что больше 125 МГц, то есть, с точки зрения дисперсии, протяженность в 2 км является допустимой, что находится в полном соответствии со стандартом FDDI PMD на многомодовое волокно.

Слабая зависимость полосы пропускания многомодового волокна (например 62,5/125) от спектральной ширины источника излучения, работающего на длине волны 1310 нм (450 МГцкм при АХ = 35 нм, и 452 МГц км при АХ = 2 нм), объясняется незначительной долей хроматической дисперсии по сравнению с межмодовой в силу близости рабочей длины волны к длине волны нулевой дисперсии. Таким образом, технические требования к спектральной полосе оптических передатчиков для работы по многомодовому волокну на длине 1310 нм обычно слабые.

Пример 2.3

Стандарт Fast Ethernet для одномодового волокна. Оптический интер - фейс 100Base-FX аналогично FDDI предполагает кодировку 4В/5В с частотой модуляции 125 МГц. При использовании лазеров с АХ = 2 нм (1310 нм) удельная полоса пропускания див ступенчатого одномодового волокна 8/125 составляет более 120000 МГц км и при длине оптического сегмента 100 км будет 1200 МГц, что больше 125 МГц. То есть, с точки зрения дисперсии, протяженность в 100 км является допустимой, однако здесь уже начинает сказываться затухание. При динамическом диапазоне 25 дБ с учетом потерь на сухих соединениях и сварках при затухании в волокне 0,4 дБ/км получаем максимальное расстояние 62,5 км.

Уменьшить потери можно, если передавать сигнал на длине волны 1550 нм. По потерян при прежнем динамическом диапазоне 25 дБ и при условии, что волокно имеет затухание 0,25 дБ/км, получаем расстояние 100 км. По дисперсии при использовании лазеров с АХ = 2 нм (1310 нм) удельная полоса пропускания для ступенчатого одномодового волокна 8/125 составляет 12600 МГц км. В итоге на дистанции 100 км полоса пропускания будет 126 МГц, что сравнимо с частотой модуляции Fast Ethernet. Это не очень надежно. При фиксированной спектральной полосе АХ = 2 нм затруднения можно снять, если использовать для передачи волокно со смещенной дисперсией DSF. Если же кабельная система представлена исключительно одномодовыми волокнами со ступенчатым профилем (SF), то следует использовать оптические передатчики с более узкой спектральной полосой, например Лл = 1 нм.

Пример 2.4

Стандарт АТМ 622 Мбит/с (STM-4) для одномодового волокна. Оптический интерфейс АТМ 622 Мбит/с использует кодировку 8В/10В, что соответствует частоте . модуляции 778 МГц. При использовании лазера с ЛХ = 0,1 нм (1550 нм) удельная полосы пропускания для ступенчатого одномодового волокна 8/125 составляет 252000 МГц км (12600 х 20) и при длине оптического сегмента 100 км будет 2520 МГц, что значительно больше 778 МГц. То есть, с точки зрения дисперсии, при использовании лазера с ЛХ = 0,1 нм ~ (1550 нм) протяженность в 100 км является допустимой, даже если применяется стандартное ступенчатое волокно.

Пример 2.5

Передача супер-сигнала на частоте 100 ГГц по одномодовому волокну со смещенной дисперсией DSF. При использовании лазеров с ЛХ = 0,1 нм (1550 н) удельная полоса пропускания для DSF 8/125 составляет более 2400 ГГцкм (20 х 120000 МГц км) и при длине оптического сегмента 20 км будет 120 ГГц, что незначительно превосходит 100 ГГц. То есть, с точки зрения дисперсии, протяженность сегмента в 20 км находится на грани предельного допустимого расстояния. Именно поэтому оптические супер-сети со скоростью передачи на канал 100 Гбит/с имеют ограниченный масштаб, например масштаб, города.

Поляризационная модовая дисперсия

Поляризационная модовая дисперсия т -- возникает вследствие различной скорости распространения двух взаимно перпендикулярных поляризационных составляющих моды. Коэффициент удельной дисперсии Т нормируется в расчете на 1 км и имеет размерность а трв Растет о Рвотам Расстояния по закону т в Т ч. Для учета вклада в результирующую дисперсию следует добавить слагаемое тр 4в правую часть (2-13). Из-за г небольшой величины то может проявляться исключительно в одномодовом волокне, причем когда используется передача широкополосного сигнала (полоса пропускания 2,4 Гбит/с и выше) с очень узкой спектральной полосой излучения 0,1 нм и меньше. В этом случае хроматическая дисперсия становится сравнимой с поляризационной модовой дисперсией.


Подобные документы

  • Волоконно-оптические линии связи как понятие, их физические и технические особенности и недостатки. Оптическое волокно и его виды. Волоконно-оптический кабель. Электронные компоненты систем оптической связи. Лазерные и фотоприемные модули для ВОЛС.

    реферат [1,1 M], добавлен 19.03.2009

  • Схема строительства волоконно-оптической линии связи (ВОЛС) с использованием подвески оптического кабеля на осветительных опорах. Особенности организации по ВОЛС каналов коммерческой связи. Расчет длины регенерационных участков по трассе линии связи.

    курсовая работа [778,1 K], добавлен 29.12.2014

  • Структура оптического волокна. Виды оптоволоконных кабелей. Преимущества и недостатки волоконно-оптической линии связи. Области ее применения. Компоненты тракта передачи видеонаблюдения. Мультиплексирование видеосигналов. Инфраструктура кабельной сети.

    курсовая работа [1,2 M], добавлен 01.06.2014

  • Общая характеристика волоконно-оптической связи, ее свойства и области применения. Проектирование кабельной волоконно-оптической линии передач (ВОЛП) способом подвески на опорах высоковольтной линии передачи. Организация управления данной сетью связи.

    курсовая работа [3,8 M], добавлен 23.01.2011

  • Характеристика действующей волоконно-оптической линии связи в Павлодарской области, распложенной вдоль реки Иртыш. Анализ отрасли телекоммуникации в Республике Казахстан. Организация защищенного транспортного кольца волоконно-оптической линии связи.

    отчет по практике [25,7 K], добавлен 15.04.2015

  • Расчет параметров волоконно-оптической линии связи (ВОЛС). Основные дисперсные параметры. Эффективная апертура излучателя и приемника, их параметры. Полный коэффициент поглощения. Энергетический потенциал ВОЛС. Длина участков регенерации и их количество.

    контрольная работа [90,8 K], добавлен 20.09.2011

  • Обоснование необходимости строительства волоконно-оптической линии связи (ВОЛС). Расчет и распределение нагрузки между пунктами сети. Синхронизация цифровых систем связи. Система мониторинга целостности ВОЛС. Порядок строительства и эксплуатации ВОЛС.

    дипломная работа [4,2 M], добавлен 23.09.2011

  • Исследование бюджета мощности волоконно-оптической линии передачи, работающей по одномодовому ступенчатому оптическому волокну на одной оптической несущей, без чирпа, на регенерационном участке без линейных оптических усилителей и компенсаторов дисперсии.

    курсовая работа [654,7 K], добавлен 24.10.2012

  • Общая характеристика оптоволоконных систем связи. Измерение уровней оптической мощности и затухания. Системы автоматического мониторинга. Оборудование кабельного линейного тракта. Модернизация волоконно-оптической сети. Схема оборудования электросвязи.

    дипломная работа [3,8 M], добавлен 23.12.2011

  • Проектирование волоконно-оптической линии связи (ВОЛС) с обозначением оконечного и промежуточного оборудования ввода/вывода цифровых потоков между г. Елец и г. Липецк. Оценка пропускной способности ВОЛС, оценка ее надежности. Разработка структурной схемы.

    курсовая работа [3,5 M], добавлен 10.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.