Промышленная сеть для поддержки АСУ

Построение автоматизированной системы управления технологическим процессом по принципу трехуровневой системы. Рассмотение различных протоколов и интерфейсов для передачи данных (Modbus, Ethernet, CAN, LON, PROFIBUS). Особенности промышленных компьютеров.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 12.02.2012
Размер файла 3,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Промышленная сеть для поддержки АСУ

В современных системах автоматического управления промышленная связь играет исключительно важную роль. Она обеспечивает взаимодействие управляющих систем между собой, а также соединяет их с информационными системами более высокого уровня.

Принципы построения промышленной сети

Существует два основных принципа построения структуры промышленной сети для АСУ ТП.

Первый - централизованная структура, в которой центром системы является мощное вычислительное устройство, от которого «звездой» подключаются оконечные устройства управления и исполнительные механизмы. Данный принцип построения является наиболее удобным в смысле администрирования, поскольку есть единая точка контроля над всей системой. Однако такая структура ненадежна: выход из строя «центра звезды» вызывает простой всей сети. Эту проблему можно решить за счет создания «дублирующего центра», но такой вариант приводит к значительному удорожанию сети в целом. Еще один минус - отсутствие возможности расширения функционала системы. При необходимости добавления большого количества исполнительных механизмов приходится менять центральное устройство, что само по себе нерационально и убыточно.

Второй принцип - распределенная структура, состоящая из множества узлов, между которыми осуществляется обмен данными по цифровым каналам промышленной сети. Такой вариант построения является, конечно, более дорогим с точки зрения затрат на администрирование, зато более надежным - при выходе из строя одного из узлов система продолжает функционировать. Распределенная структура более гибкая и позволяет наращивать систему без существенного изменения действующей ее части. Кроме того, она дает возможность расположить узлы, в качестве которых выступают контроллеры и интеллектуальные устройства ввода-вывода, максимально близко к оконечным устройствам (датчикам и исполнительным механизмам), за счет чего сокращается длина сигнальных кабелей. Это позволяет не только экономить на сигнальных кабельных линиях, но и избежать необходимости строить дополнительные громоздкие конструкции для прокладки кабеля.

Для передачи данных в промышленной сети существует множество протоколов и интерфейсов, например Modbus, Ethernet, CAN, LON, PROFIBUS и др. Протоколы разработаны с учетом особенностей производства и технических систем, обеспечивают надежные соединения и высокую точность управления. Оборудование, для которого они предназначены, должно устойчиво работать при высоких температурах или влажности, в условиях сильной вибрации или химически активной среды.

автоматизированный управление промышленный компьютер

Структура АСУ ТП

Промышленные АСУ ТП строятся по принципу трехуровневой системы.

Нижний уровень (полевой) - состоит из датчиков и исполнительных механизмов, устанавливаемых на технологических объектах. Для связи с датчиками используются:

- AS-интерфейс - для организации связи с датчиками и исполнительными устройствами.

Позволяет подключать датчики и исполнительные механизмы к системе управления на основе построения сети с использованием одного двухжильного кабеля, посредством которого обеспечивается как питание всех сетевых устройств, так и опрос датчиков и выдача команд на исполнительные механизмы;

- HART-протокол - основан на методе передачи данных с помощью частотной модуляции, при этом цифровой сигнал накладывается на аналоговый токовый. Частотно-модулированный сигнал является двухполярным и при использовании соответствующей фильтрации не искажает основной аналоговый сигнал 4-20 мА.

Средний уровень (контроллерный) - состоит из промышленных контроллеров, силовой, сигнализационной автоматики и прочих устройств аналого-цифрового, цифро-аналового, дискретного, импульсного и другого преобразования, а также устройств для сопряжения с верхним уровнем (шлюзов). Для передачи данных на этом уровне могут применяться интерфейсы и протоколы PROFIBUS, Modbus, СAN, LON и Ethernet.

Рассмотрим протокол PROFIBUS с точки зрения применения на среднем уровне АСУ ТП.

PROFIBUS - семейство промышленных сетей, обеспечивающих комплексное решение коммуникационных проблем предприятия.

Под этим общим названием понимается совокупность трех различных, но совместимых протоколов: PROFIBUS-FMS, PROFIBUS-DP и PROFIBUS-PA.

Протокол PROFIBUS-FMS появился первым и предназначался для работы на так называемом цеховом уровне. Основное применение - передача больших объемов данных.

Протокол PROFIBUS-DP используется для высокоскоростного обмена данными между программируемым логическим контроллером и распределенными устройствами связи с объектом. Физическая среда передачи - экранированная витая пара стандарта RS-485. Скорость обмена прямо зависит от длины сети и варьируется от 100 кбит/с на расстоянии 1200 м до 12 Мбит/с на дистанции до 100 м. Взаимодействие узлов в сети определяется моделью Master - Slave («ведущий - ведомый»).

PROFIBUS-PA - это сетевой интерфейс, физическая среда передачи данных которого соответствует стандарту IEC 61158-2. Может применяться для построения сети, соединяющей исполнительные устройства, датчики и контроллеры, расположенные непосредственно во взрывоопасной зоне.

Верхний уровень (информационно-вычислительный) - состоит из оборудования для визуализации технологических процессов. Для передачи данных на этом уровне используются технологии Industrial Ethernet.

Промышленные сети верхнего уровня

Сети верхнего уровня служат для передачи данных между контроллерами серверами и операторскими рабочими станциями. Иногда в состав таких сетей входят дополнительные узлы: центральный сервер архива, сервер промышленных приложений, инженерная станция и т.д. Но это уже опции.

Какие сети используются на верхнем уровне? В отличие от стандартов полевых шин, здесь особого разнообразия нет. Фактически, большинство сетей верхнего уровня, применяемых в современных АСУ ТП, базируется на стандарте Ethernet (IEEE 802.3) или на его более быстрых вариантах Fast Ethernet и Gigabit Ethernet. При этом, как правило, используется полный стек коммуникационных протоколов TCP/IP. В этом плане сети операторского уровня очень похожи на обычные ЛВС, применяемые в офисных приложениях. Использование единого сетевого стандарта позволяет упростить интеграцию АСУ ТП в общую сеть предприятия, что становится особенно ощутимым при реализации и развертывании систем верхнего уровня типа MES (Мanufacturing Еxecution System) .Однако у промышленных сетей верхнего уровня есть своя специфика, обусловленная условиями промышленного применения.

Типичными требованиями, предъявляемыми к таким сетям, являются:

1. Большая пропускная способность и скорость передачи данных. Объем трафика напрямую зависит от многих факторов: количества архивируемых и визуализируемых технологических параметров, количества серверов и операторских станций, используемых прикладных приложений и т.д.

В отличие от полевых сетей жесткого требования детерминированности здесь нет: строго говоря, неважно, сколько времени займет передача сообщения от одного узла к другому - 100 мс или 700 мс (естественно, это не важно, пока находится в разумных пределах). Главное, чтобы сеть в целом могла справляться с общим объемом трафика за определенное время. Наиболее интенсивный трафик идет по участкам сети, соединяющим серверы и операторские станции (клиенты). Это связано с тем, что на операторской станции технологическая информация обновляется в среднем раз в секунду, причем передаваемых технологических параметров может быть несколько тысяч. Но и тут нет жестких временных ограничений: оператор не заметит, если информация будет обновляться, скажем, каждые полторы секунды вместо положенной одной. В то же время, если контроллер (с циклом сканирования в 100 мс) столкнется с 500-милисекундной задержкой поступления новых данных от датчика, это может привести к некорректной отработке алгоритмов управления.

2. Отказоустойчивость. Достигается, как правило, путем резервирования коммуникационного оборудования и линий связи по схеме 2*N так, что в случае выхода из строя коммутатора или обрыва канала, система управления способна в кратчайшие сроки (не более 1-3 с) локализовать место отказа, выполнить автоматическую перестройку топологии и перенаправить трафик на резервные маршруты.

3. Соответствие сетевого оборудования промышленным условиям эксплуатации. Под этим подразумеваются такие немаловажные технические меры, как: защита сетевого оборудования от пыли и влаги; расширенный температурный диапазон эксплуатации; увеличенный цикл жизни; возможность удобного монтажа на DIN-рейку; низковольтное питание с возможностью резервирования; прочные и износостойкие разъемы и коннекторы. По функционалу промышленное сетевое оборудование практически не отличается от офисных аналогов, однако, ввиду специального исполнения, стоит несколько дороже.

Промышленная сеть Industrial Ethernet обеспечивает эффективную связь верхнего уровня и базируется на международных стандартах (IEEE 802.3/IEEE 802.3u).

На Западе коммуникационная технология построения единой информационной сети, объединяющей интеллектуальные контроллеры, датчики и исполнительные механизмы, определяется одним термином fieldbus (полевая шина, или промышленная сеть).

Fieldbus - это, во-первых, некий физический способ объединения устройств (например, RS485) и, во-вторых, программно-логический протокол их взаимодействия.

Корнем термина fieldbus является слово field - область, сфера, место приложения. Промышленные сети (fieldbuses) применяются на уровне устройств, обслуживающих реальный процесс производства и переработки материалов. Выход в системы представления (визуализации) данных, коммерческие и административные системы организуется, как упоминалось выше, через стандартные офисные сети типа Ethernet через протокол TCP/IP.

Переход на fieldbus-технологию обещает улучшение качества, снижение затрат и повышение эффективности конечной системы. Эти обещания основаны на том факте, что принимаемая или передаваемая информация кодируется в цифровом виде. Каждое устройство может выполнять функции управления, обслуживания и диагностики. В частности, оно может сообщать о возникающих ошибках и обеспечивать функции самонастройки. Это существенно увеличивает эффективность системы в целом и снижает затраты по ее сопровождению. Серьезный ценовой выигрыш получается за счет проводников и монтажных работ: аналоговая технология связи требует, чтобы каждое устройство имело собственный набор проводов и собственную точку соединения. Fieldbus устраняет эту необходимость, так как использует всего одну витую пару проводников для объединения всех активных (контроллеры) и пассивных (датчики) устройств.

В число узлов сети входят компьютеры, выполняющие функции NC и SCADA. Это могут быть обычные персональные компьютеры и специализированные программируемые логические контроллеры, называемые промышленными компьютерами. Специфика ПЛК - наличие нескольких аналоговых и цифровых портов, встроенный интерпретатор специализированного языка, детерминированные задержки при обработке сигналов, требующих незамедлительного реагирования. Однако ПЛК, в отличие от IBM PC, рассчитаны на решение ограниченного круга задач в силу специализированности программного обеспечения.

В целом промышленные компьютеры имеют следующие особенности: 1) работа в режиме реального времени (для промышленных персональных компьютеров разработаны такие ОС реального времени, как OS-9, QNX, VRTX и др.); 2) конструкция, приспособленная для работы ЭВМ в цеховых условиях (повышенные вибрации, электромагнитные помехи, запыленность, перепады температур, иногда взрывоопасность); 3) возможность встраивания дополнительных блоков управляющей, регистрирующей, сопрягающей аппаратуры, что помимо специальных конструкторских решений обеспечивается использованием стандартных шин и увеличением числа плат расширения; 4) автоматический перезапуск компьютера в случае "зависания" программы; 5) повышенные требования к надежности функционирования. В значительной мере специализация промышленных компьютеров определяется программным обеспечением. Конструктивно промышленный компьютер представляет собой корзину (крейт) с несколькими гнездами (слотами) для встраиваемых плат. Возможно использование мостов между крейтами. В качестве стандартных шин в настоящее время преимущественно используются шины VME-bus (Versabus Module Europe-bus) и PCI (Peripheral Component Interconnect).

Программная связь с аппаратурой нижнего уровня (датчиками, исполнительными устройствами) происходит через драйверы. Межпрограммные связи реализуются через интерфейсы, подобные OLE. Для упрощения создания систем разработан стандарт OPC (OLE for Process Control). Обычными для промышленных сетей являются предельные расстояния между узлами (датчиками, исполнительными устройствми и контроллерами) в сотни метров, размеры сообщений - до одного килобайта (в сжатой форме). Опрос датчиков периодический. Важное требование к промышленной сети - обеспечение работы в реальном масштабе времени, поэтому для АСУТП сети типа Ethernet не подходят, поскольку в них не гарантируется ограничение задержек сверху

Существуют три основных режима обмена данными, эффективность использования которых зависит от конкретной задачи.

? Режим «Ведущий ведомый». В этом простейшем режиме один из узлов ПС является ведущим устройст вом, которое последовательно опр шивает подчиненные узлы. В зависимости от содержания запроса в домый узел либо выполняет полученную команду, либо передает ведущему текущие данные с подключенных оконечных устройств. Типичным примером ЦПС, построенной на таком принципе, являются сети PROFIBUS. Как правило, роли ведущего и ведомого закрепляются жестко и не меняются в процессе функционирования сети.

? Режим «Клиент сервер». Данный режим имеет много общего с предыдущим и используется в системах с гибким распределением функций. Узел клиент запрашивает данные, а узел сервер их предоставляет. При этом клиент может запрашивать несколько узлов, а сервер - иметь несколько клиентов. Также функции клиента и сервера могут совмещаться на одном узле. Примером может послужить ПС Foundation Fieldbus.

? Режим «Подписка». В этом режиме узел, нуждающийся в регулярном поступлении какой либо информации, подписывается на её получение от другого узла, после чего получает регулярные рассылки данных без дополнительных запросов. Режим имеет два варианта: в первом случае данные передаются циклически с определенным интервалом вне зависимости от динамики информации; во втором случае данные передаются только в случае их изменения. Данный режим также используется в сетях Foundation Fieldbus.

Одним из основных критериев оценки систем АСУ ТП является надежность.

? По надежности цифровой метод передачи данных намного превосходит аналоговый. Передача в цифровом виде малочувствительна к помехам и гарантирует доставку информации благодаря встроенным в протоколы ПС механизмам контрольных сумм, квитирования и повтора искаженных пакетов данных.

? Надежность функционирования систем АСУ ТП на базе ПС с интеллектуальными узлами значительно выше, чем в традиционных структурах.

? Важной проблемой является защита ПС от повреждения кабельной сети, особенно в том случае, если его топология имеет вид шины. Для критически важных технологических участков эта задача должна решаться дублированием линий связи или наличием нескольких альтернативных путей передачи информации.

Системы АСУ ТП редко делаются раз и навсегда; как правило, их состав и структура подвержены коррекции в си лу изменяющихся требований производства. Поэтому важными критериями оценки закладываемых в проект решений являются гибкость и модифицируемость комплекса. По этим показателям ПС, несомненно, намного превосходит традиционную централизованную схему: добавление или удаление отдельных точек ввода вывода и даже целых узлов требует минимальных монтажных работ и может произ водиться без остановки системы автоматизации. Переконфигурация системы осуществляется на уровне программного обеспечения и также занимает минимальное время. Другая проблема, связанная с развитием системы вопрос совместимости протоколов, заложенных в интеллектуальные оконечные устройства, стоял очень остро. Сейчас практически все широко распространенные решения в этой сфере стандартизованы, что поз воляет разработчикам АСУ ТП выбирать оборудование из широкого спектра поставщиков, оптимизируя стоимость проекта и его технологическую структуру.

Пример промышленной сети - Profibus, скорость 12 Мбод, пакеты до 247 байт, расстояния до 1,5 км. Имеет выход в сеть АСУП, в качестве которой чаще всего используется сеть Ethernet. Наряду с Profibus, используют и другие протоколы, например, популярен протокол CAN. На физическом уровне в Fieldbus часто используют интерфейс RS-485 - витая пара, длина сегмента до 1,2 км, на сегменте может быть до 32 узлов

CAN, LON, PROFIBUS, Interbus-S, FIP, FF, DeviceNET, SDS, ASI, HART, ControlNet и несколько десятков протоколов еще - это сегодняшняя ситуация на рынке промышленных сетей. Каждая из них имеет свои особенности и области применения. На этом фоне отсутствует единый международный стандарт промышленной сети. Это приводит к тому, что каждая технология развивается самостоятельно в состоянии неизбежной конкуренции. Ясно, что со временем определится ведущая, например, пятерка технологий, вокруг которой будет сосредоточено основное внимание пользователей и бизнес независимых производителей. Таким центром кристаллизации де-факто можно считать сегодня европейский стандарт EN50170. Со стороны Европейского комитета по стандартизации CENELEC поступили предложения по расширению EN50170 за счет промышленных сетей Foundation Fieldbus и ControlNet. Если такое предложение будет принято, EN50170 превратится реально в международный стандарт, каждая отдельная часть которого будет определять отдельную fieldbus-технологию.

ASI

Первые продукты, работающие по технологии ASI, вышли на рынок в 1993 году. Сегодня эта технология поддерживается рядом известных фирм: IFM, Limberg, Siemens, Pepperl+Fuchs, Allen-Bradley и др.

Основная задача этой сети - связать в единую информационную структуру устройства самого нижнего уровня автоматизируемого процесса (датчики и разнообразные исполнительные механизмы) с системой контроллеров. Это следует из названия: Actuator Sensor Interface (ASI).

ASI-интерфейс позволяет через свои коммуникационные линии передавать не только данные, но и запитывать датчики. Здесь используется принцип последовательной передачи на базовой частоте. Информационный сигнал модулируется на питающую частоту.

Позоляет полностью исключить из АСУ ТП аналоговые линии связи, кроссировочные шкафы и другое вспомогательное оборудование. Максимальное время цикла опроса составляет 5 10 мс, то есть сравнимо с циклом отработки программы в контроллере. Благодаря этому сети на базе AS интерфейса активно применяются в распределенных АСУ ТП реального времени, например в системах управления конвейерными производствами.Первоначально AS интерфейс был ориентирован на работу исключительно с бинарными данными, поэтому длина информационной посылки рекордно малая -- всего 4 бита. Тем не менее новая редакция спецификации AS интерфейса позволяет подключать к сети аналоговые датчики и поворотные шифраторы.

Максимальное количество узлов равно 62, максимальная длина с использованием повторителей -- 300 м. Данные и питающее напряжение передаются по одной паре проводов.

В качестве физической среды используется специальный неэкранированный двухпроводный кабель с трапециевидным профилем. Этот кабель позволяет подключать датчики, устанавливаемые на подвижных частях механизмов. Топологией ASI-сети может быть шина, звезда, кольцо или дерево с циклом опроса 31 узла за 5 мс. Максимальный объем данных с одного ASI-узла - 4 бит.

CAN

История этого протокола началась в начале 80-х годов, когда технология создания и эксплуатации современных транспортных средств потребовала установки на них большого числа датчиков, увязываемых в единую информационную сеть с замыканием на бортовом компьютере автомобиля. Компания BOSCH (Германия) разработала для этой цели протокол CAN (Control Area Network), получивший статус международного стандарта ISO11898. По своим характеристикам он удовлетворяет не только требованиям задач реального времени, но и реализует высокую степень обнаружения и исправления ошибочных телеграмм.

CANbus - это последовательная шина с децентрализованным доступом на основе модели CSMA/CM. Возможные коллизии, связанные с одновременным запросом шины, разрешаются на основе приоритетности передаваемых сообщений.

История развития этого протокола - яркий пример того, как не доведенная до конца работа по стандартизации приводит к появлению целого семейства несовместимых друг с другом протоколов. Дело в том, что развитие CAN остановилось на определении только первых двух уровней OSI-модели. Появилось большое число разработок 7-го уровня для CAN, оформленных как самостоятельные протокольные решения: SDS (Honeywell), DeviceNET (Allen Bradley), CAL (CiA-ассоциация), CAN11 (BMW), SeleCAN (Selectron), Kingdom (Kvaser), MiCAN (RMI) и несколько других.

Количество узлов ПС, работающих на основе CAN, исчисляется десятками миллионов. Практически у каждого крупного про изводителя микроконтроллеров есть изделие с CAN интерфейсом. Основными достоинствами, определившими высокую популярность этого протоко ла у разработчиков встраиваемых и промышленных систем, являются высокая скорость (до 1 Мбит/с), метод доступа CSMA/СA (не путать с CSMA/CD, реализованным в Ethernet), возможность иметь в сети не сколько ведущих устройств, надежная система обнаружения и исправления ошибок. CSMA/СA сочетает нные одновременно. Благодаря этому гарантируется доставка сообщения, то есть система является детерминированной. «Гарантией качества» CAN являются автомобили «Мерседес», электроника которых работает именно по этому протоколу. Технические характеристики (для DeviceNet): максимальное расстояние 500 м, максимальное количество узлов 64, длина информационной посылки 8 байт, используемый кабель Belden 3082A.

HART

Протокол HART (Highway Addressable Remote Transducer), разработанный фирмой Rosemount Inc. в середине 80-х годов, реализует известный стандарт BELL 202 FSK (Frequency Shift Keying), основанный на 4 20мА-технологии

HART протокол используется в двух режимах подключения.

В большинстве случаев применяется соединение «точка точка» (рис. 1 а), то есть непосредственное соединение прибора низовой автоматики (преобразователя информации, датчика, исполнительного устройства и т.п.) и не более чем двух ведущих устройств.

Схема взаимоотношений между узлами сети основана на принципе MASTER/SLAVE. В HART-сети может присутствовать до 2 MASTER-узлов (обычно один). Второй MASTER, как правило, освобожден от поддержания циклов передачи и используется для организации связи с какой-либо системой контроля/отображения данных. Стандартная топология - "звезда", но возможна и шинная организация. Для передачи данных по сети используются два режима:

1) асинхронный: по схеме "MASTER-запрос\SLAVE-ответ" (один цикл укладывается в 500 мс);

2) синхронный: пассивные узлы непрерывно передают свои данные MASTER-узлу (время обновления данных в MASTER-узле за 250-300 мс).

В многоточечном режиме (рис. 1 б) до 15 ведомых устройств (slave) могут соединяться параллельно двухпроводной линией с теми же двумя ведущими устройствами (master). При этом по линии осуществляется только цифровая связь. Сигнал постоянного тока 4 мА обеспечивает вспомогательное питание ведомых приборов по сигнальным линиям. Типовые HART компоненты и схема их подключения показаны на рис. 2

За одну посылку один узел может передать другому до 4 технологических переменных, а каждое HART-устройство может иметь до 256 переменных, описывающих его состояние. Контроль корректности передаваемых данных основан на получении подтверждения.

Стандарт для передачи аналоговых сигналов значениями тока в диапазоне 4 20 мА известен уже несколько десятков лет и широко используется при создании систем АСУ ТП, в химической индустрии, теплоэнергетике, в пище вой и многих других отраслях промышленности. Традиционно для измерения различных физических величин (давления, объема, температуры и т.д.) предлагается множество приборов с токовым выходом 4 20 мА. Достоинством данного стандарта является простота его реализации, массовое использование в приборах и возможность помехоустойчивой передачи аналогового сигнала на относительно большие расстояния. Однако при создании нового поколения интеллектуальных приборов и датчиков потребовалось наряду с передачей аналоговой информации передавать и цифровые данные, соответствующие их новым расширенным функциональным возможностям. В середине 80 х годов американская компания Rosemount разработала протокол Highway Addressable Remote Transducer (HART). В начале 90 х годов протокол был дополнен и стал открытым коммуникационным стандартом . Вначале он был нормирован только для применения в режиме соединения «точка точка», затем появилась возможность применять протокол в режиме многоточечного соединения («mul tidrop»).

HART протокол основан на методе передачи данных с помощью частотной модуляции (Frequency Shift Keying, FSK), в соответствии с широко распространенным коммуникационным стандартом Bell 202. Цифровая информация передаётся частотами 1200 Гц (логическая 1) и 2200 Гц (логический 0), которые накладываются на аналоговый токовый сигнал (рис. 3). Частотно модулированный сигнал является двухполярным и при применении соответствующей фильтрации не влияет на основной аналоговый сигнал 4 20 мА. Скорость передачи данных для HART составляет 1,2 кбит/с. Каждый HART компонент требует для цифровой передачи соответствующего модема.

Благодаря наличию двух ведущих устройств каждое из них может быть готово к передаче через 270 мс (время ожидания). Цикл обновления данных повторяется 2 3 раза в секунду в режиме запрос/ответ и 3 4 раза в секунду в пакетном режиме. Несмотря на относительно большую длительность цикла, в большинстве случаев он является достаточным для управления непрерывными процессами.

Важнейшим условием для передачи HART сигналов является то, что нагрузка в общей цепи коммуникационного канала должна быть в пределах 230...1100 Ом. В противном случае возникает несоответствие допустимым качестве первичного ведущего устройства, как правило, используется устройство связи с объектом (УСО) или программируемый логический контроллер, а в качестве вторичного -- портативный HART терминал или отладочный ПК с соответствующим модемом. При этом аналоговый токовый сигнал передается от ведомого прибора к соответствующему ведущему устройству. Цифровые сигналы могут приниматься или передаваться как от ведущего, так и от ведомого устройства. Так как цифровой сигнал наложен на аналоговый, процесс передачи аналогового сигнала происходит без прерывания.

PROFIBUS

При построении многоуровневых систем автоматизации, как правило, стоят задачи организации информационного обмена между уровнями. В одном случае необходим обмен комплексными сообщениями на средних скоростях. В другом - быстрый обмен короткими сообщениями с использованием упрощенного протокола обмена (уровень датчиков). В третьем требуется работа в опасных участках производства (переработка газа, химическое производство). Для всех этих случаев PROFIBUS имеет решение. Сегодня, говоря о PROFIBUS, необходимо иметь ввиду, что под этим общим названием понимается совокупность трех отдельных протоколов: PROFIBUS-FMS, PROFIBUS-DP и PROFIBUS-PA. Все три варианта протокола используют общий канальный уровень (уровень 2 OSI-модели).

Протокол PROFIBUS-DP (рис. 2), был спроектирован для организации быстрого канала связи с датчиковым уровнем. В основе алгоритма работы лежит модель циклического опроса каналов. Скорость обмена прямо зависит от длины сетевого сегмента и варьируется от 100 кбит/с на расстоянии 1200 метров до 12 Мбит/с на дистанции до 100 метров. Кроме этого, существует набор ациклических функций для конфигурирования, диагностики и поддержки сигналов. В DP-протоколе существуют три типа устройств:

мастер Класса-2 (DPM2): может выполнять функции конфигурирования и диагностики устройств сети;

мастер Класса-1 (DPM1): это программируемые контроллеры (PLC, PC), в оперативном режиме выполняющие функции ведущего узла в сети;

ведомые устройства (DP Slave): это пассивные устройства с аналоговым/дискретным вводом/выводом.

DP-протокол позволяет организовать мономастерную (один DPM1 и до 126 DP-Slaves) и многомастерную конфигурацию (несколько DPM1 и DP-Slaves).

Протокол PROFIBUS-FMS появился первым и был предназначен для работы на так называемом цеховом уровне. Здесь требуется высокая степень функциональности, и этот критерий важнее критерия скорости. FMS-протокол допускает гибридную архитектуру взаимодействия узлов, основанную на таких понятиях, как виртуальное устройство сети, объектный словарь устройства (переменная, массив, запись, область памяти, событие и др.), логическая адресация и т.д.

Протокол PROFIBUS-PA - это расширение DP-протокола в части технологии передачи, основанной не на RS485, а на реализации стандарта IEC1158-2 для организации технологии передачи во взрывоопасных средах. Он может использоваться в качестве замены старой 4-20мА-технологии связи. Для коммутации устройств нужна всего одна витая пара, которая может одновременно использоваться и для информационного обмена, и для запитывания устройств.

На одном физическом канале (RS485 или оптоволоконном) одновременно могут работать устройства PROFIBUS всех трех типов. Рабочая скорость передачи может быть выбрана в диапазоне 9,6-12000Ккбит/с.

PROFIBUS - это маркерная шина, в которой все циклы строго регламентированы по времени и организована продуманная система тайм-аутов. Протокол хорошо разрешает разнообразные коллизии в сети. Настройка всех основных временных параметров идет по сценарию пользователя.

Исследования, проведенные независимыми западными маркетинговыми компаниями, свидетельствуют о том, что PROFIBUS покрывает свыше 40% рынка открытых промышленных сетей в Германии и Европе. Идет стремительный процесс завоевания и американского рынка. Но самое главное то, что сегодня PROFIBUS рассматривается как кандидат на обретение статуса международного стандарта IEC (МЭК).

Каналы связи

В зависимости от требований, предъявляемых к сети PROFIBUS, для передачи данных могут использоваться различные виды каналов связи.

- Электрические каналы связи выполняются экранированной витой парой. Для прокладки линий связи может использоваться множество кабелей для различных условий эксплуатации. Большинство из этих кабелей поддерживает технологию быстрого соединения (Fast Connect).

- Оптические каналы связи PROFIBUS могут выполняться стеклянными или пластиковыми оптоволоконными кабелями, предназначенными для различных условий эксплуатации.

- Применение модуля ILM позволяет осуществлять передачу информации по инфракрасным каналам на расстояние до 15м.

- Комбинированные системы. В составе одной сети PROFIBUS может использоваться комбинированное сочетание различных каналов связи.

FOUNDATION FIELDBUS

Эта сеть родилась в результате сотрудничества двух ведущих американских ассоциаций - ISP и WorldFIP, которые до 1993 года пытались самостоятельно создать универсальную промышленную сеть. В 1994 году появилась ассоциация Fieldbus Foundation, продвигающая на рынке и обеспечивающая поддержку сети Foundation Filedbus (FF). После многолетних безуспешных попыток разработать универсальную промышленную сеть, предпринятых ведущими комитетами по стандартизации IEC и ISA, ассоциация Fieldbus Foundation пришла к синтезированному решению с использованием наработок из разных источников под общим названием Foundation Fieldbus.

Итак, FF сегодня - это:

физический уровень H1 FF (медленный), обеспечивающий рабочую скорость 31,25Ккбит/с. Эта реализация физического уровня основана на модифицированной версии стандарта IEC 1158-2 и предназначена для объединения устройств, функционирующих во взрывоопасных газовых средах;

- физический уровень H2 FF (быстрый), обеспечивающий рабочую скорость до 1КМбит/с и также основанный на стандарте IEC 1158-2;

- сетевой уровень, использующий элементы проекта IEC/ISA SP50 универсальной промышленной сети;

- прикладной уровень, включающий элементы из проекта ISP/Profibus.

Основная область применения этой сети - самый нижний уровень распределенной системы автоматизации с обвязкой устройств, работающих во взрывоопасных средах и использующих сеть как для информационного обмена, так и для собственной запитки.

У протоколов FF и Profibus-PA много общего и именно поэтому со стороны европейской ассоциации по стандартизации CENELEC сделано предложение о включении FF в стандарт EuroNorm 50170 в качестве самостоятельной его части.

PROFIBUS PA и FOUNDATION™ fieldbus имеют ряд общих характеристик:

* обе системы удовлетворяют требованиям спецификаций физического уровня H1 IEC/ISA, которые определяют среду передачи данных;

* обе системы искробезопасны и способны по одним и тем же проводам передавать как данные, так и электропитание для подключенных к сети устройств, что позволяет использовать их во взрывоопасных зонах;

* обе системы поддерживаются между народными организациями, объединяющими как конечных пользователей, так и поставщиков;

* обе системы могут быть развернуты в качестве цифровой замены аналоговых каналов 4 20 мА с использованием тех же самых, уже существующих линий связи;

* обе системы поддерживают работу в многоточечном режиме, благодаря чему снижаются затраты на монтаж и обслуживание кабельного хозяйсва.

Однако между сетевыми системами имеются и существенные различия.

На прикладном уровне PROFIBUS PA вместо FMS использует расширения DP, что приводит к ограничению возможностей по удаленному конфгурированию, а также почтению и записи.

Хотя обе системы способны управлять событиями в самой сети, применяемая в PROFIBUS PA коммуникационная модель «главный подчиненный» (ведущий-ведомый), а также отсутствие протокола системного администрирования делают PROFIBUS PA неудовлетворительным решением для управления распределенными процессами.

FOUNDATION™ fieldbus, напротив, создавалась не только для организации обмена цифровой информацией между управляющим устройством сети и устройствами нижнего уровня (полевого оборудования), но и для распределенного управления, включая поддержку функции автоматического конфигурирования (plug and play), что существенно расширяет границы совместимости оборудования.

FOUNDATION™ fieldbus при передаче данных одновременно поддерживает маркерный доступ и обмен по расписанию. Прикладной уровень в FOUNDATION™ fieldbus обеспечивает поддержку квитированного взаимодействия между клиентом и сервером, что может использоваться для изменения оператором значений уставок, удаленной загрузки и настройки параметров конфигурации. Кроме того, поддерживается рассылка оповещений об аварийных событиях и их подтверждении. Это основано на том же прикладном уровне, который используется в PROFIBUS FMS.

В PROFIBUS PA один ведущий узел использует протокол DP для опроса подчиненных узлов, содержащих функциональные блоки ввода/вывода. Время опроса всех узлов сети зависит от количества узлов и ряда других факторов, поэтому детерминированным может быть только время начала опроса.

Одним из достоинств полевой шины является возможность распределения функций управления процессом среди устройств нижнего уровня (уровня полевых устройств) АСУ ТП. Архитектура FOUNDATION™ fieldbus, основанная на модели публикации данных одними сетевыми узлами и подписки на эти данные других сетевых узлов, позволяет организовывать тесное взаимодействие между устройствами различных производителей, объединенными в одну сеть. Таким образом, логика алгоритма управления может быть перенесена на нижний уровень системы управления (т.е. УСО, датчики и исполнительные механизмы). Архитектура «ведущий подчиненный», используемая в PROFIBUS, означает, что весь обмен происходит по инициативе ведущего устройства. В результате из-за непредсказуемых задержек невозможно обеспечить функционирование распределенных по устройствам нижнего уровня контуров управления с обратной связью.

Функции системного администрирования в FOUNDATION™ fieldbus обеспечивают исполнение функциональных блоков на разных узлах сети в точно заданной последовательности в течение детерминированных интервалов времени, что необходимо при реализации контуров регулирования на нижнем уровне системы.

Подсистема администрирования и канальный уровень FOUNDATION™ fieldbus способны также выполнять следующие важные функции:

* автоматическое присвоение сетевого адреса при добавлении нового устройства, что обеспечивает функциональность plug and play;

* предотвращение дублирования сетевых адресов, каждому устройству назначается один уникальный адрес;

* синхронизация времени в прикладных программах;

* поиск тегов; это устраняет необходимость в репликации системной базы данных, содержащей информацию об устройствах.

PROFIBUS не имеет средств системного администрирования, а значит, неспособен обеспечить выполнение описанных ранее функций.

Функциональная совместимость устройств -- это возможность замены устройства полевой шины одного изготовителя на устройство другого изготовителя без потери функциональности или степени интеграции с системой управления или хост контроллером. Функциональная совместимость устройств позволяет пользователю для своего проекта выбрать наиболее подходящую аппаратуру, независимо от того, кто является производителем конкретного контроллера, датчика, исполнительного механизма или иного полевого оборудования.

В то время как семиуровневая модель OSI является общепринятой в области сетевых коммуникаций, FOUNDATION™ fieldbus вводит еще один, восьмой уровень, называемый пользовательским (User Level). В этом, в частности, состоит ее отличие от PROFIBUS PA. Элементами пользовательского уровня в архитектуре, используемой FOUNDATION™ fieldbus, являются функциональные блоки, которые представляют собой стандартизированные объекты управления, такие, например, как аналоговый вход, аналоговый выход и ПИД регулятор (рис. 1). Существуют также дополнительные стандартные функциональные блоки, такие как дискретный вход, дискретный выход, селектор сигналов, операторский ввод, блок отношение/смещение и блок отношение. Функциональные блоки встроены в датчики и исполнительные устройства, за счет чего обеспечивается высокий уровень их функциональных возможностей.

PROFIBUS не имеет полностью определенных стандартных функциональных блоков. Вместо этого используются так называемые «профили» для определения функций, главным образом таких простых, как ввод и вывод. При этом собственно управление осуществляется специальным хост контроллером.

В пользовательский уровень (User Layer) FOUNDATION™ fieldbus включена возможность описания устройств на языке описания устройств (Device Description Language, DDL). Описания устройств можно рассматривать как своеобразные драйверы устройств. Поставщики оборудования предоставляют описания своих устройств пользователям. После считывания описания устройств хост системой система, как и все подключенные к ней устройства, способна поддерживать весь спектр функциональных возможностей устройства.

PROFIBUS не имеет средств, аналогичных описанию устройства. Совместимое с PROFIBUS оборудование должно соответствовать профилям устройств, допустимый набор которых определяется ассоциацией PNO. Профили, содержащие базовый набор параметров устройства, жестко заданы и не расширяемы. Это означает, что PROFIBUS распознает только базовый набор параметров, являющихся общими для всех устройств определенного типа. Чтобы получить возможность доступа к дополнительным или расширенным параметрам или возможностям конкретного устройства, необходимо написать специальную программу.

Более того, спецификации PROFIBUS не содержат никаких возможностей для обеспечения выполнения стандартных приложений во всех PROFIBUS совместимых устройствах.

В то время как организации, поддерживающие PROFIBUS, ссылаются на строгое соблюдение профилей как на доказательство совместимости, на самом деле это относится скорее к вопросам сетевой совместимости и совсем недостаточно для настоящей совместимости уровня plug and play.

Например, для совместимого с PROFIBUS датчика температуры гарантируется возможность обмена данными через сеть PROFIBUS. Пользователь будет в состоянии выполнять базовые функции, такие как установка пределов измерения, считывание температуры и т.д., однако без специального программирования он не сможет выполнить специфические для конкретного датчика операции, такие, например, как калибровка. Это объясняется отсутствием в PROFIBUS возможностей описания устройств.

Используя FOUNDATION™ fieldbus, пользователь может легко подключить устройство к сети и после загрузки описания устройства взаимодействовать с ним без каких-либо ограничений. Технология FOUNDATION™ fieldbus обеспечивает полный доступ ко всем данным, в том числе к параметрам, специфичным для данного устройства.

Лишь некоторые версии PROFIBUS являются открытыми. Фактически компания Siemens все свои сети на базе RS 485 называет PROFIBUS, несмотря на то, что некоторые из них являются частнофирменным решением Siemens. С другой стороны, FOUNDATION fieldbus разработана в полностью открытой и нейтральной по отношению к различным производителям среде. Спецификации FOUNDATION fieldbus опубликованы и доступны всем желающим.

Кроме того, в ассоциации Fieldbus Foundation установлены такие правила, что любая часть сетевой технологии, будь то микросхемы или реализации протоколов, принимаются, только если для них существует несколько поставщиков.

Технология PROFIBUS, разработанная компанией Siemens в 1989 г., в настоящее время применяется большим числом пользователей, чем FOUNDA TION™ fieldbus. Однако следует заметить, что протокол, используемый PROFIBUS, был разработан значительно раньше, чем протокол Fieldbus Foundation, и основан на менее современной технологии.

Число инсталляций PROFIBUS, объявленное ассоциацией PNO, отчасти вводит в заблуждение, так как существует множество версий PROFIBUS, ряд из которых не совместим друг с другом. Кроме того, компания Siemens разработала ряд протоколов, которые она называет PROFIBUS, не смотря на то, что эти протоколы не приняты органами стандартизации Германии или организацией PROFIBUS Users Group.

FOUNDATION™ fieldbus получает все более широкое распространение среди производите лей аппаратно программных средств для систем промышленной автоматизации, предъявляющих повышенные требования к отказоустойчивости и надежности работы систем. За по следние несколько месяцев системы, использующие технологию Fieldbus Foundation, были установлены такими крупными компаниями, как Dow Chemical, Syncrude Canada, Ltd. и Daishowa Paper.

Подробное изучение состава членов ассоциации Fieldbus Foundation в сравнении с PNO также показывает, что наибольшие вложения в разра ботку новых изделий будут прихо диться на FOUNDATION™ fieldbus.

Для большинства конечных пользователей все перечисленные ограничения делают PROFIBUS PA скорее временной заменой системы «4...20 мА», чем законченной сетевой архитектурой, с которой имеет смысл связывать свое будущее.

В течение последних нескольких лет развитие промышленных (полевых) сетевых архитектур было одной из самых обсуждаемых тем среди производителей и потребителей оборудования для промышленной автоматизации. С середины 80 х годов предпринимались попытки вы работать единый стандарт полевой шины (fieldbus), устанавливающий требования к открытому цифровому протоколу обмена, который бы обеспечивал возможность взаимодействия контроллеров, устройств связи с объектом, датчиков и исполнительных механизмов разных производителей.

С топологией fieldbus связано много ожиданий:

* это было огромным шагом вперед в области АСУ ТП подобно тому, как поколение назад интерфейс 4-20 мА практически полностью вытеснил пневмоавтоматику;

* стало возможным обеспечить двунаправленную помехоустойчивую связь между различными устройства ми системы управления;

* поскольку к единственному сегменту шины может подключаться несколько устройств различного назначения, отпадает необходимость прокладки отдельных линий связи и кабелей к каждому устройству, что существенно снижает затраты на монтаж и обслуживание кабельного хозяйства;

* устройства становятся способными передавать диагностическую информацию на верхний уровень системы управления, позволяя операторам немедленно локализовать неисправность;

* к промышленной сети могло бы быть подключено любое совместимое по протоколу устройство, независимо от фирмы производителя.

И, наконец, самое важное:

* поскольку «настоящий» стандарт на полевую шину позволяет устройствам обмениваться информацией по принципу «точка точка», стало бы возможным распределить управление технологическим процессом непосредственно на уровне датчиков и исполнительных механизмов.

К преимуществам такого рода распределенных систем управления относится полное (за счет параллельной обработки) использование вычислительных ресурсов микропроцессорных устройств нижнего уровня АСУ ТП, что может привести:

* к сокращению времени реакции на события;

* к лучшей управляемости автоматизированной системы;

* к улучшению диагностики;

* к большей гибкости;

* к возможности использовать освободившиеся вычислительные ресурсы верхних уровней АСУ ТП для решения дополнительных задач, в том числе для управления производством в целом (АСУП).

Вне всякого сомнения, FOUNDATION™ fieldbus -- более открытый протокол, разработанный и поддерживаемый организацией, в состав которой входит большинство крупнейших производителей аппаратно-программных средств для промышленрной автоматизации. И, напротив, контроль над PROFIBUS PA осуществляется одной компанией.

Хотя технология PROFIBUS PA, веоятно, сможет удовлетворить потребности большого числа пользователей в ближайшем будущем, эта технология, несомненно, является устаревшей по сравнению с открытой, постоянно совершенствующейся технологией FOUNDATION™ fieldbus.

LON

Протокол LON (точнее LONTalk) был разработан американской компанией Echelon Corporation для построения интеллектуальных систем жизнеобеспечения зданий. В основе LON-технологии лежит использование специального интерфейсного кристалла Neuron. В 1990Кг. компания ECHELON заключила договор с компаниями Toshiba и Motorola об исключительном праве этих компаний на его производство. Этот однокорпусный кристалл содержит 3 микропроцессора: MAC (media access control CPU - ЦП доступа к среде передачи), NET (network CPU - сетевой ЦП) и APP (application CPU - ЦП приложений). MAC-процессор поддерживает первый и второй уровни OSI-модели; NET-процессор реализует функции с третьего по шестой уровень; APP-процессор обрабатывает функции прикладного уровня.

Существуют протоколы и методы кодирования для самых разнообразных физических каналов передачи данных. Например, метод дифференциального манчестерского кодирования выбран для витой пары, FSK-модуляция применяется для работы на сегментах линий электропроводки и на радиоканалах. LON-сеть может состоять из сегментов с различными физическими средами передачи: витая пара, радиочастотный канал, инфракрасный луч, линии напряжения, коаксиальный и оптический кабели. Для каждого типа физического канала существуют трансиверы, обеспечивающие работу сети на различных по длине каналах, скоростях передачи и сетевых топологиях.

При разрешении коллизий используется предсказывающий алгоритм их предупреждения, то есть доступ к каналу упорядочивается на основе знания о предполагаемой нагрузке этого канала. Узел, желающий передавать, всегда получает доступ к каналу со случайной задержкой из некоторого диапазона. Для предотвращения снижения пропускной способности сети величина задержки представлена как функция числа незавершенных заданий (backlog), стоящих в очереди на выполнение. Способность алгоритма, реализованного на MAC-уровне, "предсказывать" основана на оценке числа незавершенных заданий. Каждый узел имеет и поддерживает текущее значение backlog: инкрементирование и декрементирование происходит по результатам отправления и приема пакетов.


Подобные документы

  • Структура трехуровневой распределенной автоматизированной системы управления технологическим процессом. Подключение полевых устройств через станцию распределенной периферии. Формирование сигналов в аналоговых модулях. Основные коммуникационные протоколы.

    презентация [375,4 K], добавлен 10.02.2014

  • Технологический процесс подготовки нефти на дожимной насосной станции, методы его автоматизации. Выбор проектной конфигурации контроллера, разработка и описание алгоритмов управления технологическим процессом. Расчет системы автоматического регулирования.

    дипломная работа [737,7 K], добавлен 23.09.2012

  • Локальная сеть как группа персональных компьютеров (периферийных устройств), которые объединены между собой высокоскоростным каналом передачи цифровых данных в пределах близлежащих зданий. Сети Ethernet: формирование, история разработки. Сетевые кабели.

    курсовая работа [350,9 K], добавлен 04.12.2012

  • Система управления технологическим процессом, ее нижний и верхний уровни. Характеристика объекта автоматизации, контролируемые и регулируемые параметры. Программа управления процессом на языке UltraLogic. Расчет физической среды для передачи данных.

    курсовая работа [412,1 K], добавлен 26.01.2015

  • Создание централизованной системы управления технологическим сегментом на участке Барановск-Хасан. Проект управления первичной сетью связи, построенной на базе аппаратуры Обь 128Ц, объединение РМ в единую вычислительную сеть ОАО "РЖД"; расчет затрат.

    дипломная работа [1,4 M], добавлен 08.03.2011

  • Понятие компьютерных сетей, их виды и назначение. Разработка локальной вычислительной сети технологии Gigabit Ethernet, построение блок-схемы ее конфигурации. Выбор и обоснование типа кабельной системы и сетевого оборудования, описание протоколов обмена.

    курсовая работа [2,0 M], добавлен 15.07.2012

  • Модель распределённой системы управления MTU-RTU и её компоненты. Интеллектуальные датчики: типы, структура и функции. Физический уровень реализации сетей. Обеспечение взрывозащиты: технологический процесс, структура и аппаратные средства системы.

    реферат [6,3 M], добавлен 13.12.2010

  • История развития и форматы кадров технологии Ethernet, ее максимальная производительность и спецификации физической среды. Общая характеристика протоколов локальных сетей. Метод доступа CSMA/CD. Особенности альтернативной сетевой технологии TokenRing.

    курсовая работа [1,6 M], добавлен 09.10.2012

  • Изучение протоколов технологии Ethernet, история их появления. Анализ сетей, в которых она используется. Использование двухканальных подуровней. Основные характеристики Ethernet. Аббревиатура международных стандартов ИСО на основе стандартов IEEE.

    контрольная работа [127,7 K], добавлен 16.12.2015

  • Признаки открытой магистрально-модульной системы. Основные группы открытых стандартов и протоколов ОММС. Структура и принципы работы шин. Электронные схемы шинного интерфейса. Конструктивное исполнение магистралей. Промышленные сети передачи данных.

    презентация [1,8 M], добавлен 06.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.