Системы подвижной радиосвязи

Технологические процессы и классификация радиотехнических средств связи с подвижным составом. Характеристика параметров цифровой радиосвязи стандартов GSM и TETRA. Анализ достоинств гауссовской частотной манипуляции с минимальным частотным сдвигом.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 23.09.2011
Размер файла 239,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • 1. Технологические процессы и классификация радиотехнических средств связи с подвижным составом 2
  • 2. Цифровая радиосвязь стандарта GSM 7
  • 3. Цифровая радиосвязь стандарта TETRA 18

Список использованной литературы 24

1. Технологические процессы и классификация радиотехнических средств связи с подвижным составом

По назначению системы связи с ПО могут быть разделены на:

- ведомственные (специализированные) радиотелефонные системы;

- радиотелефонные системы общего пользования.

Созданные первыми, ведомственные системы применяются в промышленности, сельском хозяйстве, на транспорте и в строительстве, такси, скорой помощи, а также в различных аварийных службах. Эти системы предназначены для оперативного управления процессами производственной деятельности. Различают диспетчерские радиотелефонные системы, используемые для связи руководителя работ с абонентами ПО, а также для связи абонентов между собой и с радиосистемами передачи данных. Последние находят применение в автоматизированных системах управления производством, технологическими процессами и в таких системах, в которых от подвижного абонента (ПА) или к нему необходимо передавать с высокой скоростью большой объем информации.

Однако в силу разобщенности ведомственных сетей, неэффективного использования ими спектра частот, ограниченности количества обслуживаемых подвижных абонентов, сложности унификации аппаратуры связи и управления, а также ряда других причин применение ведомственных систем носит ограниченный характер.

Однако ведомственные системы радиосвязи с подвижными объектами несмотря на отмеченные недостатки могут просуществовать еще длительное время, что объясняется их практичностью и ориентацией на те условия и специфику работ, для которых они создавались и отрабатывались. Таким образом, становится актуальной задача преобразования и модификации этих

систем в целях их объединения в единую сеть подвижной радиосвязи согласно концепции построения сети радиосвязи с подвижными объектами общего пользования. Одним из вариантов решения такой задачи может быть способ организации единого автоматизированного управления ведомственными и другими локальными системами радиоподвижной связи, объединяемыми в сеть радиосвязи с подвижными объектами общего пользования.

Радиотелефонные системы общего пользования в настоящее время составляют основной вид связи с ПО. Они позволяют наиболее полно и эффективно использовать выделенный частотный спектр и, объединяя своих потребителей в одну группу, дают им возможность общего доступа к системе связи независимо от ведомственной принадлежности (по принципу городской телефонной сети). Указанное преимущество систем обеспечивает широкий комплекс услуг: автоматическое соединение абонентов между собой и с абонентами городской телефонной сети, а также других городов и государств с использованием междугородных и международных линий, передачу речи и данных, а в ближайшем будущем телексных и факсимильных сообщений, цветных графических изображений, информации из банков данных и т.п. Радиотелефонные системы общего пользования делятся на два вида:

- системы с большими зонами обслуживания (БЗО - радиальные системы);

- системы с малыми зонами обслуживания (МЗО - сотовые системы связи).

Системы с большой зоной обслуживания основаны на использовании одной центральной радиостанции, обслуживающей зону большого радиуса (от 50 до 100 км). Мощность передатчика этой станции выбирается в зависимости от заданной напряженности поля на границах обслуживаемой территории и заключена в пределах от 100 до 250 Вт, а антенна располагается в наиболее высокой точке зоны обслуживания. Широкому внедрению таких систем препятствует ряд присущих им недостатков, прежде всего невозможность существенного увеличения количества обслуживаемых абонентов. Также, для систем БЗО необходимо:

- исключать влияние мощных передатчиков на приемники центральных станций, так как на центральных станциях (УКВ-диапазон) они используются совместно;

- исключать влияние мощных передатчиков центральных станций соседних зон на работу центральной станции данной зоны;

- контролировать качество связи внутри каждой зоны для подвижных абонентов, находящихся на различных удалениях от центральной станции данной зоны;

- тщательно планировать частотную обстановку в выделенном диапазоне;

- обеспечивать равнодоступность каналов связи со стороны подвижных объектов.

Тем более, увеличение числа каналов на ограниченной территории обслуживания вызывает необходимость соответствующего увеличения числа центральных станций (ЦС), работающих с достаточно большой мощностью. Это обстоятельство при наличии круговой диаграммы направленности антенны ЦС приводит к возможности возникновения взаимных помех для большинства радиостанций ПА, находящихся в зоне обслуживания. Кроме того, значительному увеличению числа каналов препятствует ограниченность выделяемого спектра радиочастот и невозможность повторного использования каналов в близлежащих районах из-за большой мощности передатчика.

Другие недостатки связаны с многолучевостью распространения радиоволн при работе в городских условиях с плотной застройкой и наличием радиозатененных зон, что может вызвать значительные искажения сигналов и даже их пропадание на дальностях, близких к предельным. Отметим также возможность возникновения интермодуляционных помех из-за достаточно плотного расположения каналов.

В связи с перечисленными причинами возникла необходимость интенсивных поисков и исследований в области разработки систем с большой эффективностью использования выделенного спектра и высокой пропускной способностью, которые были бы в состоянии обслуживать большое количество абонентов. Эти исследования начались на рубеже 60-70-х годов и привели к созданию территориальных систем с малыми зонами обслуживания, получивших название сотовых систем радиосвязи с подвижными объектами.

Сотовые системы подвижной радиосвязи имеют принципиально новую структуру, основанную на сотовом построении и распределении частот,согласно которому зона обслуживания делится на большое число ячеек ("сот"), каждая из которых обслуживается отдельной радиостанцией небольшой мощности, находящейся в центре ячейки. Небольшая мощность передатчиков в системах МЗО и, соответственно, небольшой радиус их действия, допускает организацию повторения частот приема-передачи через 1 - 2 зоны.

Это позволяет реализовать основное достоинство сотовой системы - обеспечение высококачественной радиосвязью большого количества ПА в условиях ограниченного частотного диапазона.

К достоинствам систем МЗО также относятся:

- применение сравнительно маломощных передатчиков в базовых станциях и, как следствие этого, экономия радиоспектра за счет динамического распределения частот выделенного диапазона между зонами обеспечения связи;

- возможность гибкого эволюционного развития системы МЗО (за счет, например, увеличения или уменьшения числа зон обслуживания);

К недостаткам систем МЗО относятся:

- увеличение стоимости систем в целом за счет использования большого числа стационарных базовых станций;

- необходимость применения аппаратуры непрерывного слежения за подвижными абонентами, т.к. распределение каналов связи меняется от зоны к зоне и поэтому возможны перерывы связи при пересечении подвижными абонентами границ сопряженных зон. По принципам реализации управления СРПО подразделяются на следующие группы:

СРПО с ручным управлением, в которых реализуется ручная коммутация радиоканалов как между подвижными объектами, так и между подвижными и стационарными абонентами, ручная коррекция и визуальный контроль оператором режимов работ как абонентских радиопередающих станций (АРС), так и аппаратуры центральных (базовых) станций и т.д.;

СРПО с автоматизированным управлением, в которых только часть операций выполняются человеком, а большая часть операций по обслуживанию подвижных объектов - посредством управляющих вычислительных средств (УВС) согласно заданным алгоритмам работы;

СРПО с автоматическим управлением, в которых все основные операции установления связи и контроля за работой системы реализуются за счет организации систем автоматического управления - без участия человека-оператора. В последнее время наибольшее распространение получили СРПО, имеющие:

- сотовую или квазисотовую структуры;

- автоматизированное или автоматическое управление;

- возможность входа в сеть общего пользования или сопряжения с другой СРПО;

- возможность передачи цифровых сигналов управления и прямого и обратного преобразования информации (в том числе и речи) в цифровую форму и обратно.

Внедрение в ССПР цифровых методов обработки информации в самом ближайшем будущем позволит получить абонентам целый ряд дополнительных услуг: доступ к международным базам данных, факсимильная связь, определение местоположения ПА с большой точностью.

2. Цифровая радиосвязь стандарта GSM

В соответствии с рекомендацией СЕРТ 1980 г., касающейся использования спектра частот подвижной связи в диапазоне частот 862-960 МГц, стандарт GSM на цифровую общеевропейскую (глобальную) сотовую систему наземной подвижной связи предусматривает работу передатчиков в двух диапазонах частот: 890-915 МГц (для передатчиков подвижных станций - MS), 935-960 МГц (для передатчиков базовых станций - BTS).

В стандарте GSM используется узкополосный многостанционный доступ с временным разделением каналов (NB ТDМА). В структуре ТDМА кадра содержится 8 временных позиций на каждой из 124 несущих.

Для защиты от ошибок в радиоканалах при передаче информационных сообщений применяется блочное и сверточное кодирование с перемежением. Повышение эффективности кодирования и перемежения при малой скорости перемещения подвижных станций достигается медленным переключением рабочих частот (SFH) в процессе сеанса связи со скоростью 217 скачков в секунду.

Для борьбы с интерференционными замираниями принимаемых сигналов, вызванными многолучевым распространением радиоволн в условиях города, в аппаратуре связи используются эквалайзеры, обеспечивающие выравнивание импульсных сигналов со среднеквадратическим отклонением времени задержки до 16 мкс.

Система синхронизации рассчитана на компенсацию абсолютного времени задержки сигналов до 233 мкс, что соответствует максимальной дальности связи или максимальному радиусу ячейки (соты) 35 км.

В стандарте GSM выбрана гауссовская частотная манипуляция с минимальным частотным сдвигом (GMSK). Обработка речи осуществляется в рамках принятой системы прерывистой передачи речи (DTX), которая обеспечивает включение передатчика только при наличии речевого сигнала и отключение передатчика в паузах и в конце разговора. В качестве речепреобразующего устройства выбран речевой кодек с регулярным импульсным возбуждением/долговременным предсказанием и линейным предикативным кодированием с предсказанием (RPE/LTR-LTP-кодек). Общая скорость преобразования речево, о сигнала - 13 кбит/с.

В стандарте GSM достигается высокая степень безопасности передачи сообщений; осуществляется шифрование сообщений по алгоритму шифрования с открытым ключом (RSA).

В целом система связи, действующая в стандарте GSM, рассчитана на ее использование в различных сферах. Она предоставляет пользователям широкий диапазон услуг и возможность применять разнообразное оборудование для передачи речевых сообщений и данных, вызывных и аварийных сигналов; подключаться к телефонным сетям общего пользования (PSTN), сетям передачи данных (PDN) и цифровым сетям с интеграцией служб (ISDN).

Таблица 1 Основные характеристики стандарта GSM

Частоты передачи подвижной станциии приема базовой станции, МГц

890-915

Частоты приема подвижной станции и передачи базовой станции, МГц

935-960

Дуплексный разнос частот приема и передачи, МГц

45

Скорость передачи сообщений в радиоканале, кбит/с

270, 833

Скорость преобразования речевого кодека, кбит/с

13

Ширина полосы канала связи, кГц

200

Максимальное количество каналов связи

124

Максимальное количество каналов, организуемых в базовой станции

16-20

Вид модуляции

GMSK

Индекс модуляции

ВТ 0,3

Ширина полосы предмодуляционного гауссовского фильтра, кГц

81,2

Количество скачков по частоте в секунду

217

Временное разнесение в интервалах ТDМА кадра (передача/прием) для подвижной станции

2

Вид речевого кодека

RPE/LTP

Максимальный радиус соты, км

до 35

Схема организации каналов комбинированная TDMA/FDMA

Состав оборудования и структура сети

Функциональное построение и интерфейсы, принятые в стандарте GSM, показаны на схеме рис. 1., на которой MSC (Mobile Switching Centre) - центр коммутации подвижной связи; BSS (Base Station System) - оборудование базовой станции; ОМС (Operations and Maintenance Centre) - центр управления и обслуживания; MS (Mobile Stations) - подвижные станции.

Рисунок 1. Структурная схема сети GSM

Функциональное сопряжение элементов системы осуществляется рядом интерфейсов. Все сетевые функциональные компоненты в стандарте GSM взаимодействуют в соответствии с системой сигнализации МККТТ SS N 7 (CCITT SS. N 7).

Центр коммутации подвижной связи обслуживает группу сот и обеспечивает все виды соединений, в которых нуждается в процессе работы подвижная станция. MSC аналогичен ISDN коммутационной станции и представляет собой интерфейс между фиксированными сетями (PSTN, PDN, ISDN и т.д.) и сетью подвижной связи. Он обеспечивает маршрутизацию вызовов и функции управления вызовами. Кроме выполнения функций обычной ISDN коммутационной станции, на MSC возлагаются функции коммутации радиоканалов. К ним относятся "эстафетная передача", в процессе которой достигается непрерывность связи при перемещении подвижной станции из соты в соту, и переключение рабочих каналов в соте при появлении помех или неисправностях.

Каждый MSC обеспечивает обслуживание подвижных абонентов, расположенных в пределах определенной географической зоны (например, Москва и область). MSC управляет процедурами установления вызова и маршрутизации. Для телефонной сети общего пользования (PSTN) MSC обеспечивает функции сигнализации по протоколу SS N 7, передачи вызова или другие виды интерфейсов в соответствии с требованиями конкретного проекта.

MSC формирует данные, необходимые для выписки счетов за предоставленные сетью услуги связи, накапливает данные по состоявшимся разговорам и передает их в центр расчетов (биллинг-центр). MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети.

MSC поддерживает также процедуры безопасности, применяемые для управления доступами к радиоканалам.

MSC не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления, кроме передачи управления в подсистеме базовых станций (BSS). Регистрация местоположения подвижных станций необходима для обеспечения доставки вызова перемещающимся подвижным абонентам от абонентов телефонной сети общего пользования или других подвижных абонентов. Процедура передачи вызова позволяет сохранять соединения и обеспечивать ведение разговора, когда подвижная станция перемещается из одной зоны обслуживания в другую. Передача вызовов в сотах, управляемых одним контроллером базовых станций (BSC), осуществляется этим BSC. Когда передача вызовов осуществляется между двумя сетями, управляемыми разными BSC, то первичное управление осуществляется в MSC. В стандарте GSM также предусмотрены процедуры передачи вызова между сетями (контроллерами), относящимися к разным MSC. Центр коммутации осуществляет постоянное слежение за подвижными станциями, используя регистры положения (HLR) и перемещения (VLR). В HLR хранится та часть информации о местоположении какой-либо подвижной станции, которая позволяет центру коммутации доставить вызов станции. Регистр HLR содержит международный идентификационный номер подвижного абонента (IMSI). Он используется для опознавания подвижной станции в центре аутентификации (AUC).

Практически HLR представляет собой справочную базу данных о постоянно прописанных в сети абонентах. В ней содержатся опознавательные номера и адреса, а также параметры подлинности абонентов, состав услуг связи, специальная информация о маршрутизации. Ведется регистрация данных о роуминге (блуждании) абонента, включая данные о временном идентификационном номере подвижного абонента (TMSI) и соответствующем VLR.

К данным, содержащимся в HLR, имеют дистанционный доступ все MSC и VLR сети и, если в сети имеются несколько HLR, в базе данных содержится только одна запись об абоненте, поэтому каждый HLR представляет собой определенную часть общей базы данных сети об абонентах. Доступ к базе данных об абонентах осуществляется по номеру IMSI или MSISDN (номеру подвижного абонента в сети ISDN). К базе данных могут получить доступ MSC или VLR, относящиеся к другим сетям, в рамках обеспечения межсетевого роуминга абонентов.

Второе основное устройство, обеспечивающее контроль за передвижением подвижной станции из зоны в зону, - регистр перемещения VLR. С его помощью достигается функционирование подвижной станции за пределами зоны, контролируемой HLR. Когда в процессе перемещения подвижная станция переходит из зоны действия одного контроллера базовой станции BSC, объединяющего группу базовых станций, в зону действия другого BSC, она регистрируется новым BSC, и в VLR заносится информация о номере области связи, которая обеспечит доставку вызовов подвижной станции. Для сохранности данных, находящихся в HLR и VLR, в случае сбоев предусмотрена защита устройств памяти этих регистров.

VLR содержит такие же данные, как и HLR, однако эти данные содержатся в VLR только до тех пор, пока абонент находится в зоне, контролируемой VLR.

В сети подвижной связи GSM соты группируются в географические зоны (LA), которым присваивается свой идентификационный номер (LAC). Каждый VLR содержит данные об абонентах в нескольких LA. Когда подвижный абонент перемещается из одной LA в другую, данные о его местоположении автоматически обновляются в VLR. Если старая и новая LA находятся под управлением различных VLR, то данные на старом VLR стираются после их копирования в новый VLR. Текущий адрес VLR абонента, содержащийся в HLR, также обновляется.

VLR обеспечивает также присвоение номера "блуждающей" подвижной станции (MSRN). Когда подвижная станция принимает входящий вызов, VLR выбирает его MSRN и передает его на MSC, который осуществляет маршрутизацию этого вызова к базовым станциям, находящимся рядом с подвижным абонентом.

VLR также распределяет номера передачи управления при передаче соединений от одного MSC к другому. Кроме того, VLR управляет распределением новых TMSI и передает их в HLR. Он также управляет процедурами установления подлинности во время обработки вызова. По решению оператора TMSI может периодически изменяться для усложнения процедуры идентификации абонентов. Доступ к базе данных VLR может обеспечиваться через IMSI, TMSI или MSRN. В целом VLR представляет собой локальную базу данных о подвижном абоненте для той зоны, где находится абонент, что позволяет исключить постоянные запросы в HLR и сократить время на обслуживание вызовов.

Для исключения несанкционированного использования ресурсов системы связи вводятся механизмы аутентификации - удостоверения подлинности абонента. Центр аутентификации состоит из нескольких блоков и формирует ключи и алгоритмы аутентификации. С его помощью проверяются полномочия абонента и осуществляется его доступ к сети связи. AUC принимает решения о параметрах процесса аутентификации и определяет ключи шифрования абонентских станций на основе базы данных, сосредоточенной в регистре идентификации оборудования (EIR - Equipment Identification Register).

Каждый подвижный абонент на время пользования системой связи получает стандартный модуль подлинности абонента (SIM), который содержит: международный идентификационный номер (IMSI), свой индивидуальный ключ аутентификации (Ki), алгоритм аутентификации (A3).

С помощью записанной в SIM информации в результате взаимного обмена данными между подвижной станцией и сетью осуществляется полный цикл аутентификации и разрешается доступ абонента к сети.

Процедура проверки сетью подлинности абонента реализуется следующим образом. Сеть передает случайный номер (RAND) на подвижную станцию. На ней с помощью Ki и алгоритма аутентификации A3 определяется значение отклика (SRES), т.е.

SRES = Ki * [ RAND]

Подвижная станция посылает вычисленное значение SRES в сеть, которая сверяет значение принятого SRES со значением SRES, вычисленным сетью. Если оба значения совпадают, подвижная станция приступает к передаче сообщений. В противном случае связь прерывается, и индикатор подвижной станции показывает, что опознавание не состоялось. Для обеспечения секретности вычисление SRES происходит в рамках SIM. Несекретная информация (например, Ki) не подвергается обработке в модуле SIM.

EIR - регистр идентификации оборудования, содержит централизованную базу данных для подтверждения подлинности международного идентификационного номера оборудования подвижной станции (1МЕ1). Эта база данных относится исключительно к оборудованию подвижной станции. Бзза данных EIR состоит из списков номеров 1МЕ1, организованных следующим образом:

БЕЛЫЙ СПИСОК - содержит номера 1МЕ1, о которых есть сведения, что они закреплены за санкционированными подвижными станциями.

ЧЕРНЫЙ СПИСОК - содержит номера 1МЕ1 подвижных станций, которые украдены или которым отказано в обслуживании по другой причине.

СЕРЫЙ СПИСОК - содержит номера 1МЕ1 подвижных станций, у которых существуют проблемы, выявленные по данным программного обеспечения, что не является основанием для внесения в "черный список".

К базе данных EIR получают дистанционный доступ MSC данной сети, а также MSC других подвижных сетей.

Как и в случае с HLR, сеть может иметь более одного EIR, при этом каждый EIR управляет определенными группами 1МЕ1. В состав MSC входит транслятор, который при получении номера 1МЕ1 возвращает адрес EIR, управляющий соответствующей частью базы данных об оборудовании.

IWF - межсетевой функциональный стык, является одной из составных частей MSC. Он обеспечивает абонентам доступ к средствам преобразования протокола и скорости передачи данных так, чтобы можно было передавать их между его терминальным оборудованием (DIE) сети GSM и обычным терминальным оборудованием фиксированной сети. Межсетевой функциональный стык также "выделяет" модем из своего банка оборудования для сопряжения с соответствующим модемом фиксированной сети. IWF также обеспечивает интерфейсы типа прямого соединения для оборудования, поставляемого клиентам, например, для пакетной передачи данных PAD по протоколу Х.25.

ЕС - эхоподавитель, используется в MSC со стороны PSTN для всех телефонных каналов (независимо от их протяженности) из-за физических задержек в трактах распространения, включая радиоканал, сетей GSM. Типовой эхоподавитель может обеспечивать подавление в интервале 68 миллисекунд на участке между выходом ЕС и телефоном фиксированной телефонной сети. Общая задержка в канале GSM при распространении в прямом и обратном направлениях, вызванная обработкой сигнала, кодированием/декодированием речи, канальным кодированием и т.д., составляет около 180 мс. Эта задержка была бы незаметна подвижному абоненту, если бы в телефонный канал не был включен гибридный трансформатор с преобразованием тракта с двухпроводного на четырехпроводный режим, установка которого необходима в MSC, так как стандартное соединение с PSTN является двухпроводным. При соединении двух абонентов фиксированной сети эхо-сигналы отсутствуют. Без включения ЕС задержка от распространения сигналов в тракте GSM будет вызывать раздражение у абонентов, прерывать речь и отвлекать внимание.

ОМС - центр эксплуатации и технического обслуживания, является центральным элементом сети GSM, который обеспечивает контроль и управление другими компонентами сети и контроль качества ее работы. ОМС соединяется с другими компонентами сети GSM по каналам пакетной передачи протокола Х.25. ОМС обеспечивает функции обработки аварийных сигналов, предназначенных для оповещения обслуживающего персонала, и регистрирует сведения об аварийных ситуациях в других компонентах сети. В зависимости от характера неисправности ОМС позволяет обеспечить ее устранение автоматически или при активном вмешательстве персонала. ОМС может обеспечить проверку состояния оборудования сети и прохождения вызова подвижной станции. ОМС позволяет производить управление нагрузкой в сети. Функция эффективного управления включает сбор статистических данных о нагрузке от компонентов сети GSM, записи их в дисковые файлы и вывод на дисплей для визуального анализа. ОМС обеспечивает управление изменениями программного обеспечения и базами данных о конфигурации элементов сети. Загрузка программного обеспечения в память может производиться из ОМС в другие элементы сети или из них в ОМС.

NMC - центр управления сетью, позволяет обеспечивать рациональное иерархическое управление сетью GSM. Он обеспечивает эксплуатацию и техническое обслуживание на уровне всей сети, поддерживаемой центрами ОМС, которые отвечают за управление региональными сетями. NMC обеспечивает управление трафиком во всей сети и обеспечивает диспетчерское управление сетью при сложных аварийных ситуациях, как например, выход из строя или перегрузка узлов. Кроме того, он контролирует состояние устройств автоматического управления, задействованных в оборудовании сети, и отражает на дисплее состояние сети для операторов NMC. Это позволяет операторам контролировать региональные проблемы и, при необходимости, оказывать помощь ОМС, ответственному за конкретный регион. Таким образом, персонал NMC знает состояние всей сети и может дать указание персоналу ОМС изменить стратегию решения региональной проблемы.

NMC концентрирует внимание на маршрутах сигнализации и соединениях между узлами с тем, чтобы не допускать условий для возникновения перегрузки в сети. Контролируются также

маршруты соединений между сетью GSM и PSTN во избежание распространений условий перегрузки между сетями. При этом персонал NMC координирует вопросы управления сетью с персоналом других NMC. NMC обеспечивает также возможность управления трафиком для сетевого оборудования подсистемы базовых станций (BSS). Операторы NMC в экстремальных ситуациях могут задействовать такие процедуры управления, как "приоритетный доступ", когда только абоненты с высоким приоритетом (экстренные службы) могут получить доступ к системе.

NMC может брать на себя ответственность в каком-либо регионе, когда местный ОМС является необслуживаемым, при этом ОМС действует в качестве транзитного пункта между NMC и оборудованием сети. NMC обеспечивает операторов функциями, аналогичными функциям ОМС.

NMC является также важным инструментом планирования сети, так как NMC контролирует сеть и ее работу на сетевом уровне, а, следовательно, обеспечивает планировщиков сети данными, определяющими ее оптимальное развитие.

BSS - оборудование базовой станции, состоит из контроллера базовой станции (BSC) и приемо-передающих базовых станций (BTS). Контроллер базовой станции может управлять несколькими приемо-передающими блоками. BSS управляет распределением радиоканалов, контролирует соединения, регулирует их очередность, обеспечивает режим работы с прыгающей частотой, модуляцию и демодуляцию сигналов, кодирование и декодирование сообщений, кодирование речи, адаптацию скорости передачи для речи, данных и вызова, определяет очередность передачи сообщений персонального вызова.

BSS совместно с MSC, HLR, VLR выполняет некоторые функции, например: освобождение канала, главным образом, под контролем MSC, но MSC может запросить базовую станцию обеспечить освобождение канала, если вызов не проходит из-за радиопомех. BSS и MSC совместно осуществляют приоритетную передачу информации для некоторых категорий подвижных станций.

ТСЕ- транскодер, обеспечивает преобразование выходных сигналов канала передачи речи и данных MSC (64 кбит/с ИКМ) к виду, соответствующему рекомендациям GSM по радиоинтерфейсу (Рек. GSM 04.08). В соответствии с этими требованиями скорость передачи речи, представленной в цифровой форме, составляет 13 кбит/с. Этот канал передачи цифровых речевых сигналов называется "полноскоростным". Стандартом предусматривается в перспективе использование полускоростного речевого канала (скорость передачи 6,5 кбит/с).

Снижение скорости передачи обеспечивается применением специального речепреобразую-щего устройства, использующего линейное предикативное кодирование (LPC), долговременное предсказание (LTP), остаточное импульсное возбуждение (RPE - иногда называется RELP).

Транскодер обычно располагается вместе с MSC, тогда передача цифровых сообщений в направлении к контроллеру базовых станций - BSC ведется с добавлением к потоку со скоростью передачи 13 кбит/с, дополнительных битов (стафингование) до скорости передачи данных 16 кбит/с. Затем осуществляется уплотнение с кратностью 4 в стандартный канал 64 кбит/с. Так формируется определенная Рекомендациями GSM ЗО-канальная ИКМ линия, обеспечивающая передачу 120 речевых каналов. Шестнадцатый канал (64 кбит/с), "временное окно", выделяется отдельно для передачи информации сигнализации и часто содержит трафик SS N7 или LAPD. В другом канале (64 кбит/с) могут передаваться также пакеты данных, согласующиеся с протоколом X.25 МККТТ.

Таким образом, результирующая скорость передачи по указанному интерфейсу составляет 30х64 кбит/с + 64 кбит/с + 64 кбит/с = 2048 кбит/с.

3. Цифровая радиосвязь стандарта TETRA

цифровой радиосвязь частотный

Стандарт TETRA создавался Европейским институтом телекоммуникационных стандартов (European Telecommunications Standards Institute, ETSI) как единый общеевропейский стандарт цифровой транкинговой радиосвязи. До апреля 1997 г. аббревиатура TETRA означала Трансевропейское транкинговое радио (Trans-Eupopean Trunked RAdio). Впоследствии, когда интерес к стандарту TETRA вышел за пределы Европы, смысл аббревиатуры TETRA изменился и стал расшифровываться как Наземное Транкинговое Радио (TErresstrial Trunked RAdio).

Стандарт TETRA является основным (если не сказать единственно доступным) стандартом для систем профессиональной транкинговой радиотелефонной связи. Это прежде всего современный цифровой стандарт, разработанный на основе технологии GSM и ориентированный на создание систем связи эффективно и экономично решающих задачу гибкой коммуникации между различными группами пользователей с обеспечением многоуровневой приоритезации вызовов и защищенности информации. Основными пользователями систем стандарта TETRA являются силовые ведомства, аэропорты, производственный сектор.

TETRA - открытый стандарт, т.е. предполагается, что оборудование различных производителей совместимо. Доступ к спецификациям TETRA свободен для всех заинтересованных сторон, вступивших в ассоциацию «Меморандум о взаимопонимании и содействии стандарту TETRA» (MoU TETRA). Ассоциация объединяет разработчиков, производителей, испытательные лаборатории и пользователей оборудования из различных стран. На деле же элементы инфраструктуры различных производителей абсолютно несовместимы в связи с использованием проприетарных внутренних интерфейсов. Кроме того, качественный и количественный состав оборудования инфраструктуры различных производителей для реализации одних и тех же функций может отличаться на порядок. Вместе с этим все производители оборудования стандарта TETRA реализуют одинаковый радиоинтерфейс, что позволяет использовать в одной сети абонентские терминалы (радиостанции) различных производителей. Абсолютная совместимость при этом не гарантируется, но базовые функции выполняются.

Итак, основным требованием к разработке платформ TETRA является функциональная совместимость, т. е. типовой набор функций в абонентских терминалах TETRA различных производителей должен реализовываться в полной мере на любом инфраструктурном оборудовании.

Передовые производители инфраструктурного оборудования стандарта TETRA, выпускающие также абонентские терминалы, помимо реализации основного функционала TETRA, предлагают дополнительные возможности при работе в «родной» сети (например, всю мощь терминалов Motorola можно ощутить при работе на платформах Compact TETRA, Dimetra IP, Dimetra IP Compact производства Motorola). Эти дополнительные возможности могут сильно превосходить базовый набор функций TETRA и иногда могут являться определяющими при выборе системы связи. Примерами дополнительных функций могут являться WAP, работа с GPS, передача данных, удаленный доступ к базам данных и приложениям. Кроме того, даже скорость передачи данных у каждого производителя может отличаться. Например, в абонентских терминалах Motorola (в отличие от Sepura или PUMA) на сегодняшний день достигается большая скорость передачи данных, что связано с более эффективным использованием канала. Аналогичная ситуация наблюдается с опциями по шифрованию радиоинтерфейса -- набор опций зависит от производителя, и в том случае, если защита информации является приоритетной задачей, оператору TETRA предстоит серьезный анализ платформ для выявления наиболее подходящей.

Основными элементами системы транкинговой связи TETRA являются:

· Инфраструктура управления и коммутации (SwMI, Switching and Management Infrastructure)

К инфраструктуре TETRA относится оборудование, которое обеспечивает радиопокрытие и необходимые режимы функционирования сети TETRA: центр коммутации / маршрутизации; базовые станции; диспетчерские пульты; центр управления системой; шлюзы в другие сети; серверы приложений и др.

· Абонентские терминалы

Стандартом описывается два режима функционирования абонентского оборудования (радиостанций):

· Режим транкинговой радиосвязи (Trunked Mode Operation, TMO)

Режим ТМО возможен, когда абонент находится в зоне действия базовой станции. Режим TMO может предоставлять абоненту все возможности TETRA и оптимизирован для решения следующих задач: а) одновременной передачи голоса и данных (V+D), б) пакетной передачи данных (Packet data optimized).

· Режим прямой передачи (Direct Mode Operation, DMO)

Режим DMO предназначен для группового взаимодействия между абонентами за пределами зоны действия базовых станций TETRA. Связь между абонентами осуществляется в полудуплексном режиме, но при этом сохраняется возможность сделать индивидуальный или групповой вызов.

Стандарт TETRA использует технологию многостанционного доступа с временным разделенимем (Time Division Multiple Access, TDMA) совместно с технологией частотного дуплекса (Frequency Division Duplex, FDD). Тип модуляции радиоканала - относительная дифференциальная фазовая манипуляция со сдвигом кратным ?/4 (?/4 DQPSK).

Стандарт TETRA реализует максимально возможную в системах подвижной радиосвязи частотную эффективность - 4 логических канала занимают 25 кГц. Для сравнения: в системах APCO/ASTRO25 на одном частотном канале шириной 12,5 кГц реализуется только один логический канал.

Один из логических каналов базовой радиостанции TETRA является управляющим. Обычно это первый слот на первой несущей. Управляющая информация также передается в каждом 18 кадре на каждом логическом канале. При этом кадр общей длительностью 56,67 мс состоит из 4 временных интервалов (слотов).

Основные аспекты коммутации в рамках стандарта TETRA:

1. Голосовые вызовы занимают только один логический канал.

2. Вызовы передачи данных могут занимать до 4 логических каналов одновременно.

3. Голос и данные могут передаваться одновременно в различных логических каналах.

В режиме DMO картина иная. В отсутствие базовой станции синхронизация между физическими каналами отсутствует. Синхронизацию в логическом канале осуществляет терминал-мастер (терминал, у которого нажата клавиша PTT). А кроме этого абонентские терминалы не могут использовать все доступные слоты. Первая фаза стандарта TETRA подразумевает использование в режиме DMO только одного логического канала из 4 доступных. При этом другие группы, закрепленные на этой же частоте, получат сообщение о занятости канала. Вторая фаза предполагает возможность осуществления одновременно 2 групповых вызовов в режиме DMO.

В рамках стандарта TETRA можно выделить соедующие услуги по передаче данных:

1. Передача данных с коммутацией каналов, cо скоростью 2.4 - 28.8 кбит/с

2. Передача данных с пакетной коммутацией, cо скоростью 2.4 - 28.8 кбит/с (фаза 1)

3. Передача коротких информационных и статусных сообщений (до 256 ASCII-символов в рамках одного сообщения).

Существуют несколько режимов передачи данных: без защиты (до 7.2 кбит/с), с низким уровнем защиты до 4.8 кбит/с) с высоким уровнем защиты (до 2.4 кбит/c). При применении незащищенной передачи данных функция проверки доставки данных должна выполняться приложениями верхнего уровня эталонной модели OSI.

Подводя итоги хочу остановиться на основных преимуществах решений на базе стандарта TETRA. Итак:

1. повысить частотную эффективность (требуется меньшее количество частотных каналов);

2. повысить эффективность управления системой технологической радиосвязи;

3. снизить эксплуатационные расходы;

4. увеличить пропускную способность системы;

5. увеличить разборчивость речи в тяжелой помеховой обстановке;

6. улучшить качество связи;

7. защитить переговоры абонентов

и, как результат, увеличить скорость реагирования на чрезвычайные ситуации, повысить безопасность технологического процесса и экономическую эффективность предприятия.

Список использованной литературы

1. Личный профессиональный опыт, технологические карты и технологии производства работ.

2. Ваванов Ю.В. и др. Радиотехнические системы железнодорожного транспорта. _ М.: Транспорт, 1991. - 303 с.

3. Интернет: поиск по ключевым словам «GSM-R» и «TETRA».

4. Весоловский Кшиштоф. Системы подвижной радиосвязи. - М.: Горячая линия - Телеком, 2006. - 536 с.

Размещено на Allbest.ru


Подобные документы

  • Транкинговая связь: понятие, стандарты радиосвязи, операторы. Обобщенные сведения о системах стандартов Edacs, Tetra, Apco 25, Tetrapol, iden и их технические характеристики. Функциональные возможности, предоставляемые системами цифровой радиосвязи.

    курсовая работа [37,4 K], добавлен 16.09.2013

  • Распространение цифровых стандартов в области сотовых сетей подвижной радиосвязи. Максимальное число обслуживаемых абонентов как основная характеристика системы подвижной радиосвязи. Достоинствами транкинговых сетей. Европейский проект стандарта W-CDMA.

    контрольная работа [26,3 K], добавлен 18.09.2010

  • Назначение и виды станционной радиосвязи. Условия обеспечения необходимой дальности связи между стационарной радиостанцией и локомотивом. Определение дальности действия радиосвязи и высоты антенны. Определение территориального и частотного разносов.

    курсовая работа [140,0 K], добавлен 16.12.2012

  • Tехнико-эксплуатационная характеристика Гомельской дистанции сигнализации и связи. Цифровой стандарт радиосвязи GSM-R. Проектирование сети GSM-R на участке дороги Минск-Гудогай. Гигиеническая оценка и нормирование СВЧ-излучений, их влияние на человека.

    дипломная работа [5,1 M], добавлен 30.05.2013

  • Сложность проведения мероприятий по противодействию террористическим угрозам. Программы развития системы радиосвязи органов внутренних дел. Характеристика систем радиосвязи ОВД. Радиотелефонная система общего пользования, сотовая и радиорелейная связь.

    реферат [31,0 K], добавлен 27.03.2009

  • Основные виды модуляции. Дифференциальная квадратурная фазовая манипуляция, используемая в стандарте D-AMPS. Особенности гауссовской манипуляции с минимальным сдвигом. Обработка речи на передачу в подвижной станции. Мобильные терминалы стандарта GSM.

    реферат [363,5 K], добавлен 20.10.2011

  • Структура Кандыагашской дистанции сигнализации и связи. Необходимость перехода на цифровые стандарты радиосвязи. Проектирование и строительство системы TETRA на участке железной дороги Кандыагаш-Никельтау. Функции и технические характеристики стандарта.

    дипломная работа [1,9 M], добавлен 16.04.2014

  • Радиосвязь — связь, в которой носителем сигнала используются радиоволны в пространстве; диапазоны частотной сетки односторонней и двухсторонней радиосвязи. Профессиональные радиостанции; отраслевая специфика и классификация решений мобильной радиосвязи.

    контрольная работа [1,1 M], добавлен 24.06.2012

  • Анализ оснащенности участка проектирования системами связи. Требования к стандартам радиосвязи. Преимущества GSM-R, принципы построения, организация каналов доступа, особенности базовой структуры. Энергетический расчет проектируемой системы радиосвязи.

    дипломная работа [4,5 M], добавлен 24.06.2011

  • Организация сетей радиосвязи. Частотно-территориальное планирование. Модель сотовой сети связи. Применение кластеров минимального размера. Интерференция частотных каналов в сети. Сота-ретранслятор, ее предназначение. Функции одночастотных ретрансляторов.

    презентация [1,5 M], добавлен 16.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.