Анализ структур и процессов функционирования локальной вычислительной сети с топологией "звезда"

Организация локальной вычислительной сети (ЛВС), ее структура и топология. Аппаратное и программное обеспечение ЛВС. Организация ЛВС с топологией "звезда" на примере ТОО "ГАУДИ-АСТАНА". Сетевая технология: стратегия доступа от одного компьютера к другому.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 19.08.2010
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

  • Введение
    • 1. Организация локальной вычислительной сети
    • 1.1 Место и роль локальных сетей
    • 1.2 Структура ЛВС
    • 1.3 Типы ЛВС
    • 1.4 Топология сети
    • 1.5 Аппаратное обеспечение ЛВС
    • 1.6 Программное обеспечение ЛВС
    • 1.7 Характеристика топологии "звезда"
    • 2. Организация лвс с топологией звезда на примере ТОО "ГАУДИ-АСТАНА"
    • 2.1 Информационная справка ТОО "Гауди-Астана"
    • 2.2 Организация локальной сети
    • 2.3 Сетевая технология
    • 2.4 Программное обеспечение
    • 2.5 Аппаратное обеспечение сети
    • Заключение
    • Глоссарий
    • Список использованной литературы
    • Приложение

Введение

Компьютерные сети и сетевые технологии обработки информации в наше время стали основой для построения современных информационных систем. И теперь компьютер следует рассматривать не как отдельное устройство обработки, а как часть компьютерных сетей, средство коммуникаций с сетевыми ресурсами и другими пользователями сетей.

Компьютерная сеть - это система компьютеров, объединенных каналами передачи данных для эффективного предоставления различных информационно-вычислительных услуг пользователям сети посредством организации удобного и надежного доступа к ресурсам.

Одна из первых возникших при развитии вычислительной техники задач, потребовавшая создания сети хотя бы из двух ЭВМ - обеспечение многократно большей, чем могла дать в то время одна машина, надежности при управлении ответственным процессом в режиме реального времени. Вот например ситуации, в которых объединение нескольких ЭВМ необходимо:

В простейшем, самом дешевом учебном компьютерном классе, лишь одна из ЭВМ - рабочее место преподавателя - имеет дисковод, позволяющий сохранять на диске программы и данные всего класса, и принтер, с помощью которого можно распечатывать тексты. Для обмена информацией между рабочим местом преподавателя и рабочими местами учеников нужна сеть.

Для продажи железнодорожных или авиационных билетов, в которой одновременно участвуют сотни кассиров по всей стране, нужна сеть, связывающая сотни ЭВМ и выносных терминалов на пунктах продажи билетов.

Сегодня существует множество компьютерных баз и банков данных по самым разным аспектам человеческой деятельности. Для доступа к хранимой в них информации нужна компьютерная сеть.

Сети ЭВМ распространяются в жизни людей - и в профессиональной деятельности и в быту - самым неожиданным и массовым образом. Знания о сетях и навыки работы в них становятся необходимыми множеству людей.

Сети ЭВМ породили новые технологии обработки информации - сетевые технологии. В простейшем случае сетевые технологии позволяют совместно использовать ресурсы - накопители большой емкости, печатающие устройства, доступ в Internet, базы данных. Наиболее современные и перспективные подходы к сетям связаны с использованием коллективного разделения труда при совместной работе с информацией - управлении учреждением или предприятием, разработке различных документов, проектов.

Организация с помощью сети групповой и коллективной работы имеет большое значение. Группы состоят из пользователей, которые работают в одном отделе или занимаются работой над одним проектом. В локальных сетях можно назначать группы пользователей, а затем предоставлять каждой группе доступ к специальным каталогам и ресурсам, недоступным другим пользователям. Это проще, чем определять права доступа для каждого пользователя, а также облегчает передачу сообщений и электронной почты сразу всем членам группы.

Локальные сети в зависимости от предназначения и соответствующего аппаратного обеспечения могут иметь различные топологии (архитектуру или конфигурацию).

В первую очередь необходимо выбрать способ организации физических связей, то есть топологий. Под топологией вычислительной сети понимается конфигурация графа, вершинам которого соответствует компьютеры сети, а ребрам - физические связи между ними. Выбор топологии локальных связей существенно влияет на многие характеристики сети. Например, наличие резервных связей повышает надежность сети и делает возможным балансирование загрузки отдельных каналов. Простота присоединения новых узлов, свойственная некоторым топологиям, делает сеть легко расширяемой.

Экономические соображения часто приводят к выбору топологии, для которых характерна минимальная суммарная длина линии связи.

В данной работе рассмотрены основные из видов топологий ЛВС с анализом их характеристик, а основное внимание исследования направлено на анализ локальной сети с топологией "звезда", на примере конкретной организации.

Основной целью работы является анализ структур и процессов функционирования локальных компьютерных сетей, конфигурация которых соответствует звездообразной топологии.

Данная цель определила разработку и решение следующих задач:

более подробно рассмотреть организацию локальной сети;

изучить аппаратные средства ЛКС;

дать определение и привести классификацию топологий локальных сетей;

проанализировать характеристики сетевых технологий со звездообразной топологией локальных сетей;

для более глубокого анализа основных свойств ЛКС с топологией "звезда" изучить в качестве примера локальную сеть организации.

Таким образом, актуальность работы не вызывает сомнений, поскольку сеть очень важна в плане повышения производительности рабочих мест то есть организации в целом, не говоря уже об использовании общих периферийных устройств и простоте обслуживании ЛВС.

Данная работа посвящена анализу основных и косвенных факторов, содержащихся в структуре и участвующих в функционировании ЛВС.

1. Организация локальной вычислительной сети

1.1 Место и роль локальных сетей

Передача информации между компьютерами существует, наверное, с самого момента возникновения вычислительной техники. Она позволяет организовать совместную работу отдельных компьютеров, решать одну задачу с помощью нескольких компьютеров, специализировать каждый из компьютеров на выполнении какой-то одной функции, совместно использовать ресурсы и решать множество других проблем. Способов и средств обмена информацией за последнее время предложено множество: от простейшего переноса файлов с помощью дискеты до всемирной компьютерной сети Internet, способной связать все компьютеры мира. Какое же место во всей этой иерархии отводится локальным сетям?

Чаще всего термин "локальные сети" (LAN, Local Area Network) понимают буквально, то есть под локальными понимаются такие сети, которые имеют небольшие, локальные размеры, соединяют близко расположенные компьютеры. Однако достаточно посмотреть на характеристики некоторых локальных сетей, чтобы понять, что такое определение не слишком точно. Например, некоторые локальные сети легко обеспечивает связь на расстоянии нескольких километров или даже десятков километров. Это уже размеры не комнаты, не здания, не близко расположенных зданий, а, может быть, целого города. С другой стороны, по глобальной сети (WAN, Wide Area Network или GAN, Global Area Network) вполне могут связываться компьютеры, находящиеся на соседних столах в одной комнате, но ее почему-то никто не называет локальной сетью. Близко расположенные компьютеры могут также связываться с помощью кабеля, соединяющего разъемы внешних интерфейсов (RS232-C, Centronics) или даже без кабеля по инфракрасному каналу. Но такая связь также не называется локальной сетью. [10]

Неверно и определение локальной сети как малой сети, которая связывает небольшое количество компьютеров. Действительно, в реальности наиболее часто локальная сеть связывает от двух до нескольких десятков компьютеров. Но предельные возможности некоторых локальных сетей гораздо выше: максимальное число абонентов может достигать тысячи. Называть такую сеть малой, наверное, неправильно.

Некоторые авторы определяют локальную сеть как "систему для непосредственного соединения многих компьютеров". При этом подразумевается, что информация передается от компьютера к компьютеру без посредников и по единой среде передачи. Однако говорить о единой среде передачи в современной локальной сети не приходится. Например, в пределах одной сети могут использоваться как электрические кабели различных типов, так и оптоволоконные кабели. Определение передачи "без посредников" также не слишком четко, ведь в современных локальных сетях используются самые разнообразные концентраторы, коммутаторы, маршрутизаторы, мосты, которые порой производят довольно сложную обработку передаваемой информации. Не совсем понятно, считать их посредниками или нет.

Наверное, наиболее точно было бы определить как локальную такую сеть, которая позволяет пользователям не замечать связи. Компьютеры, связанные локальной сетью, объединяются, по сути, в один виртуальный компьютер, ресурсы которого могут быть доступны всем пользователям, причем этот доступ не менее удобен, чем к ресурсам, входящим непосредственно в каждый отдельный компьютер. Под удобством в первую очередь понимается в данном случае высокая реальная скорость доступа, при которой обмен информацией между приложениями осуществляется незаметно для пользователя. При таком определении ни медленные глобальные сети, ни медленная связь через последовательный или параллельный порты не подпадают под понятие локальной сети.

Из такого определения сразу же следует, что скорость передачи по локальной сети должна обязательно расти по мере роста быстродействия наиболее распространенных компьютеров. Именно это мы и наблюдаем: если еще сравнительно недавно вполне приемлемой считалась скорость обмена в 1-10 Мбит/с, то сейчас среднескоростной считается сеть, работающая на скорости 100 Мбит/с и активно разрабатываются средства для скорости 1000 Мбит/с и даже больше. При меньших скоростях передачи связь станет узким местом, будет чрезмерно замедлять работу объединенного сетью виртуального компьютера.

Таким образом, главное отличие локальной сети от любой другой - высокая скорость обмена. Но это не единственное отличие, не менее важны и другие факторы.

Например, принципиально необходим низкий уровень ошибок передачи. Ведь даже очень быстро переданная, но искаженная ошибками информация бессмысленна - ее придется передавать еще раз. Поэтому локальные сети обязательно используют специально прокладываемые качественные линии связи.

Принципиальное значение имеет и такая характеристика сети, как возможность работы с большими нагрузками, то есть с большой интенсивностью обмена (или, как еще говорят, с большим трафиком). Если механизм управления обменом, используемый в сети, не слишком эффективен, то компьютеры могут чрезмерно долго ждать своей очереди на передачу, и даже если передача будет производиться затем на высочайшей скорости и полностью безошибочно, то для пользователя сети это все равно обернется неприемлемой задержкой доступа ко всем сетевым ресурсам.

Любой механизм управления обменом может гарантированно работать только тогда, когда заранее известно, сколько компьютеров (абонентов, узлов) может быть подключено к сети. При включении непредусмотренно большого числа абонентов забуксует вследствие перегрузки любой механизм. Наконец, сетью в истинном смысле этого слова можно назвать только такую систему передачи данных, которая позволяет объединять хотя бы до нескольких десятков компьютеров, но никак не два, как в случае связи через стандартные порты.

Таким образом, можно сформулировать следующие отличительные признаки локальной сети:

высокая скорость передачи, большая пропускная способность;

низкий уровень ошибок передачи (или, что то же самое, высококачественные каналы связи). Допустимая вероятность ошибок передачи данных должна быть порядка 10"7 - 10-8;

эффективный, быстродействующий механизм управления обменом;

ограниченное, точно определенное число компьютеров, подключаемых к сети. [16]

При таком определении понятно, что глобальные сети отличаются от локальных тем, что рассчитаны на неограниченное число абонентов и используют, как правило, не слишком качественные каналы связи и сравнительно низкую скорость передачи, а механизм управления обменом в них в принципе не может быть гарантированно быстрым. В глобальных сетях гораздо важнее не качество связи, а сам факт ее существования.

Нередко выделяют еще один класс компьютерных сетей - городские сети (MAN, Metropolitan Area Network), которые обычно бывают ближе к глобальным сетям, хотя иногда имеют некоторые черты локальных сетей - например, высококачественные каналы связи и сравнительно высокие скорости передачи. В принципе городская сеть может быть действительно локальной, со всеми ее преимуществами.

Правда, сейчас уже нельзя провести четкую и однозначную границу между локальными и глобальными сетями. Большинство локальных сетей имеет выход в глобальную сеть, но характер передаваемой информации, принципы организации обмена, режимы доступа к ресурсам внутри локальной сети, как правило, сильно отличаются от тех, что приняты в глобальной сети. И хотя все компьютеры локальной сети в данном случае включены также и в глобальную сеть, специфики локальной сети это не отменяет. Возможность выхода в глобальную сеть остается всего лишь одним из ресурсов, разделяемых пользователями локальной сети.

По локальной сети может передаваться самая разная цифровая информация: данные, изображения, телефонные разговоры, электронные письма и т.д. Кстати, именно задача передачи изображений, особенно полноцветных динамических изображений, предъявляет самые высокие требования к быстродействию сети. Чаще всего локальные сети используются для разделения (то есть совместного использования) таких ресурсов, как дисковое пространство, принтеры и выход в глобальную сеть, но это всего лишь незначительная часть тех возможностей, которые предоставляют средства локальных сетей. Например, они позволяют осуществлять обмен информацией между компьютерами разных типов. Абонентами (узлами) сети могут быть не только компьютеры, но и другие устройства, например принтеры, плоттеры, сканеры. Локальные сети дают возможность организовать систему параллельных вычислений на всех компьютерах сети, что позволяет многократно ускорить решение сложных математических задач. С их помощью можно также управлять работой сложной технологической системы или исследовательской установки с нескольких компьютеров одновременно.

Однако локальные сети имеют и некоторые недостатки, о которых всегда следует помнить. Помимо дополнительных материальных затрат на покупку оборудования и сетевого программного обеспечения, на прокладку соединительных кабелей и обучение персонала, необходимо также иметь специалиста, который будет заниматься контролем за работой сети, модернизацией сети, управлением доступом к ресурсам, устранением возможных неисправностей - то есть администратора сети. Сети ограничивают возможности перемещения компьютеров, так как при этом может понадобиться перекладка соединительных кабелей. Кроме того, сети представляют собой прекрасную среду для распространения компьютерных вирусов, поэтому вопросам защиты придется уделять гораздо больше внимания, чем в случае автономного использования компьютеров.

Здесь же упомянем о таких важнейших понятиях теории сетей, как сервер и клиент.

Сервером называется абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует ресурсы других абонентов, то есть служит только сети. Серверов в сети может быть несколько, и совсем не обязательно сервер - это самый мощный компьютер. Выделенный сервер - это сервер, занимающийся только сетевыми задачами. Невыделенный сервер может заниматься помимо обслуживания сети и другими задачами. Специфический тип сервера - это сетевой принтер.

Клиентом называется абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает, то есть сеть его обслуживает. Компьютер-клиент также часто называют рабочей станцией. В принципе каждый компьютер может быть одновременно как клиентом, так и сервером.

Под сервером и клиентом часто понимают также не сами компьютеры, а работающие на них программные приложения. В этом случае то приложение, которое только отдает ресурс в сеть, является сервером, а то приложение, которое только пользуется сетевыми ресурсами, является клиентом. [27]

1.2 Структура ЛВС

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится прежде всего к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей, не слишком важна, так как каждый сеанс связи может производиться по своему собственному пути. [30]

Топология определяет требования к оборудованию, тип используемого кабеля, возможные и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий, их достоинствах и недостатках, наверное, надо всем.

Существует три основных топологии сети:

шина (bus), при которой все компьютеры параллельно подключаются к одной линии связи и информация от каждого компьютера одновременно передается всем остальным компьютерам:

Рис.1.1 Сетевая топология "шина"

Звезда (star), при которой к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует свою отдельную линию связи:

Рис.1.2 Сетевая топология "звезда"

кольцо (ring), при которой каждый компьютер передает информацию всегда только одному компьютеру, следующему в цепочке, а получает информацию только от предыдущего в цепочке компьютера, и эта цепочка замкнута в "кольцо":

Рис.1.3 Сетевая топология "кольцо"

На практике нередко используют и комбинации базовых топологий, но большинство сетей ориентированы именно на эти три.

1.3 Типы ЛВС

Несмотря на определенные сходства, сети разделяются на два типа: одноранговые и на основе сервера или двухранговые (Рис.1.4).

Различия между одноранговыми сетями и сетями на основе сервера имеют принципиальное значение, поскольку определяют разные возможности этих сетей. Выбор типа сети зависит от многих факторов: размера предприятия; необходимого уровня безопасности; вида бизнеса; уровня доступности административной поддержки; объема сетевого трафика; потребностей сетевых пользователей; финансовых затрат.

Одноранговые сети.

В одноранговой сети все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного сервера. Как правило, каждый компьютер функционирует и как клиент, и как сервер; иначе говоря, нет отдельного компьютера, ответственного за администрирование всей сети. Все пользователи самостоятельно решают, какие данные на своем компьютере сделать общедоступными по сети.

Одноранговые сети называют также рабочими группами. Рабочая группа это небольшой коллектив, поэтому в одноранговых сетях чаще всего не более 10 компьютеров.

Одноранговые сети относительно просты.

Поскольку каждый компьютер является одновременно и клиентом, и сервером, нет необходимости в мощном центральном сервере или в других компонентах, обязательных для более сложных сетей. Одноранговые сети обычно дешевле сетей на основе сервера, но требуют более мощных (и более дорогих) компьютеров. [4]

Рис.1.4 (а) - Одноранговая сеть, (б) - Двухранговая сеть

В одноранговой сети требования к производительности и к уровню защиты для сетевого программного обеспечения, как правило, ниже, чем в сетях с выделенным сервером. Если выполнение каких-либо серверных функций является основным назначением компьютера (например, предоставление файлов в общее пользование всем остальным пользователям сети или организация совместного использования факса, или предоставление всем пользователям сети возможности запуска на данном компьютере своих приложений), то такой компьютер называется выделенным сервером. В зависимости от того, какой ресурс сервера является разделяемым, он называется файл-сервером, факс-сервером, принт-сервером, сервером приложений и т.д.

В такие операционные системы, как Novell NetWare или Microsoft Windows NT, встроена поддержка одноранговых сетей. Поэтому, чтобы установить одноранговую сеть, дополнительного программного обеспечения не требуется.

Одноранговая сеть характеризуется рядом стандартных решений: компьютеры расположены на рабочих столах пользователей, пользователи сами выступают в роли администраторов и обеспечивают защиту информации; для объединения компьютеров в сеть применяется простая кабельная система.

Одноранговая сеть вполне подходит там, где: количество пользователей не превышает 10 человек, пользователи расположены компактно, вопросы защиты данных не критичны; в обозримом будущем не ожидается значительного расширения фирмы и, следовательно, сети.

Если эти условия выполняются, то, скорее всего, выбор одноранговой сети будет правильным (чем сети на основе сервера).

Несмотря на то, что одноранговые сети вполне удовлетворяют потребностям небольших фирм, иногда возникают ситуации, когда их использование может оказаться неуместным.

Сетевое администрирование решает ряд задач, в том числе: управление работой пользователей и защитой данных; обеспечение доступа к ресурсам; поддержка приложений и данных; установка и модернизация прикладного программного обеспечения.

В типичной одноранговой сети системный администратор, контролирующий всю сеть, не выделяется. Каждый пользователь сам администрирует свой компьютер.

Все пользователи могут "поделиться" своими ресурсами с другими. К совместно используемым ресурсам относятся каталоги, принтеры, факс-модемы и другие сетевые компоненты.

В одноранговой сети каждый компьютер должен: большую часть своих вычислительных ресурсов предоставлять локальному пользователю (сидящему за этим компьютером); для поддержки доступа к ресурсам удаленного пользователя (обращающегося к серверу по сети) подключать дополнительные вычислительные ресурсы. [18]

Сеть на основе сервера требует более мощных серверов, поскольку они должны обрабатывать запросы всех клиентов сети.

Защита подразумевает установку пароля на разделяемый ресурс, например на каталог. Централизованно управлять защитой в одноранговой сети очень сложно, так как каждый пользователь устанавливает ее самостоятельно, и предоставляемые ресурсы могут находиться на всех компьютерах, а не только на центральном сервере. Такая ситуация представляет серьезную угрозу для всей сети, кроме того, некоторые пользователи могут вообще не установить защиту. Если вопросы конфиденциальности являются принципиальными, предпочтительнее выбрать сеть на основе сервера.

Поскольку в одноранговой сети каждый компьютер функционирует и как клиент, и как сервер, пользователи должны обладать достаточным уровнем знаний, чтобы работать и как пользователи, и как администраторы своего компьютера.

Сети на основе сервера.

Если к сети подключено более 10 пользователей, то одноранговая сеть, где компьютеры выступают в роли и клиентов, и серверов, может оказаться недостаточно производительной. Поэтому большинство сетей использует выделенные серверы. Выделенным называется такой сервер, который функционирует только как сервер (исключая функции клиента или рабочей станции. Они специально оптимизированы для быстрой обработки запросов от сетевых клиентов и для управления защитой файлов и каталогов. Сети на основе сервера стали промышленным стандартом, и именно они будут приводиться обычно в качестве примера.

С увеличением размеров сети и объема сетевого трафика необходимо увеличивать количество серверов. Распределение задач среди нескольких серверов гарантирует, что каждая задача будет выполняться самым эффективным способом из всех возможных.

Круг задач, которые должны выполнять серверы, многообразен и сложен. Чтобы приспособиться к возрастающим потребностям пользователей, серверы в больших сетях стали специализированными.

Сервер спроектирован так, чтобы предоставлять доступ к множеству файлов и принтеров, обеспечивая при этом высокую производительность и защиту.

Администрирование и управление доступом к данным осуществляется централизованно. Ресурсы, как правило, расположены также централизованно, что облегчает их поиск и поддержку.

Основным аргументом при выборе сети на основе сервера является, как правило, защита данных. В таких сетях проблемами безопасности может заниматься один администратор: он формирует политику безопасности и применяет ее в отношении каждого пользователя сети. В сетях с выделенным сервером нетрудно обеспечить резервное копирование.

Сети на основе сервера способны поддерживать тысячи пользователей. В сети на основе сервера резко снижаются требования к аппаратному обеспечению клиентских машин. [12]

1.4 Топология сети

Топологию сети обуславливает ее характеристики. Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки.

Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.

Все сети строятся на основе трех базовых топологий: шина, кольцо, звезда. Хотя сами по себе базовые топологии несложны, в реальности часто встречаются довольно сложные комбинации, объединяющие свойства нескольких топологий. [3]

Топология "шина" (или, как ее еще называют, "общая шина") самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов. При таком соединении компьютеры могут передавать только по очереди, так как линия связи единственная. В противном случае передаваемая информация будет искажаться в результате наложения (конфликта, коллизии). Таким образом, в шине реализуется режим полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).

В топологии "шина" отсутствует центральный абонент, через которого передается вся информация, что увеличивает ее надежность (ведь при отказе любого центра перестает функционировать вся управляемая этим центром система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями. Правда, надо учесть, что к каждому компьютеру (кроме двух крайних) подходит два кабеля, что не всегда удобно.

Так как разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента, аппаратура сетевого адаптера при топологии "шина" получается сложнее, чем при других топологиях. Однако из-за широкого распространения сетей с топологией "шина" (Ethernet, Arcnet) стоимость сетевого оборудования получается не слишком высокой. [16]

"Шине" не страшны отказы отдельных компьютеров, так как все остальные компьютеры сети могут нормально продолжать обмен. Может показаться, что шине не страшен и обрыв кабеля, поскольку в этом случае мы получим две вполне работоспособные шины. Однако из-за особенностей распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных согласующих устройств - терминаторов, показанных на рис.1.1 в виде прямоугольников.

Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. Так что при разрыве или повреждении кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой.

Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть. Любой отказ сетевого оборудования в шине очень трудно локализовать, так как все адаптеры включены параллельно, и понять, какой из них вышел из строя, не так-то просто.

Рис.1.5 Соединение сегментов сети типа "шина" с помощью репитера

При прохождении по линии связи сети с топологией "шина" информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи, кроме того, каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования. Для увеличения длины сети с топологией "шина" часто используют несколько сегментов (каждый из которых представляет собой шину), соединенных между собой с помощью специальных восстановителей сигналов - репитеров, или повторителей (на рис.1.5 показано соединение двух сегментов).

Однако такое наращивание длины сети не может продолжаться бесконечно, так как существуют еще и ограничения, связанные с конечной скоростью распространения сигналов по линиям связи.

"Кольцо" - это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов. Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает) приходящий к нему сигнал, то есть выступает в роли репитера, поэтому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в данном случае нет, все компьютеры могут быть одинаковыми. Однако довольно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен. [6]

Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, ведущего передачу в данный момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на "кольцо". В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

Подключение новых абонентов в "кольцо" обычно совершенно безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии "шина", максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно является самой устойчивой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

Так как сигнал в кольце проходит через все компьютеры сети, выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу всей сети в целом. Точно так же любой обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Кольцо наиболее уязвимо к повреждениям кабеля, поэтому в этой топологии обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

В то же время крупное преимущество кольца состоит в том, что ретрансляция сигналов каждым абонентом позволяет существенно увеличить размеры всей сети в целом (порой до нескольких десятков километров). Кольцо в этом отношении существенно превосходит любые другие топологии. Недостатком кольца (по сравнению со звездой) можно считать то, что к каждому компьютеру сети необходимо подвести два кабеля.

Иногда топология "кольцо" выполняется на основе двух кольцевых линий связи, передающих информацию в противоположных направлениях. Цель подобного решения - увеличение (в идеале - вдвое) скорости передачи информации. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится). [2]

В сети, построенной по звездообразной топологии, каждое сетевое устройство (компьютер, принтер и т.п.) подключаются к центральному устройству (концентратору, коммутатору) который обеспечивает связь между ними.

Данный вид топологии отличает большая надежность, поскольку обрыв одного кабеля не влечет за собой выход из строя всей сети, как в предыдущих топологиях. Возможная скорость передачи данных при использовании данной топологии определяется только возможностями кабеля и активного оборудования, используемого в качестве центрального устройства.

1.5 Аппаратное обеспечение ЛВС

Среди аппаратного обеспечения сети различают активное и пассивное.

Активное оборудование ЛВС.

Среди активного оборудования ЛВС можно выделить следующие основные типы устройств:

Сетевая интерфейсная карта (NIC - network interface card)

Повторитель (Repeater)

Мост (Bridge)

Концентратор или Хаб (Hub)

Коммутатор или переключатель (Switch)

Маршрутизатор (Router)

Сетевые интерфейсные карты, которые иногда называют сетевыми картами (network board) или адаптерами (adapter), представляют собой устройства, устанавливаемые в компьютер для организации сетевого интерфейса. Они являются обязательной частью любой ЛВС, поскольку без них реализация сети не возможна. Физически NIC может представлять собой как карту, вставляемую внутрь компьютера или ноутбука (с PCI, ISA или PCMCI интерфейсом), так и внешнее устройство, подключаемое к компьютеру через LPT. В последнее время получили распространение USB-адаптеры, позволяющие подключать компьютер в сеть на большой скорости без длительной настройки.

Повторители в настоящее время в "чистом виде" не применяются. Это устройство служит для усиления сигнала, передающегося по сетевому кабелю, что позволяет строить более протяженные линии связи. Повторитель имеет всего два порта (коаксиальных или для витой пары).

Мост используется в тех случаях, когда требуется разделить ЛВС на две независимые логически части. Основной функцией моста является ограничение распространения данных, передающихся по сети. Мост производит анализ пакета данных, решая, какой части сети он предназначен. Таким образом, мост не пропускает пакеты из одной части сети в другую, если они другой части не предназначены. Это позволяет уменьшить нагрузку на сеть.

Другой функцией моста, как ни странно, является объединение сетей с различной скоростью передачи данных.

Концентратор произошел от повторителя, целиком переняв его функции. Единственным отличием классического концентратора от повторителя является количество портов. Существуют концентраторы с 5, 8, 16 и большим количеством портов. В настоящее время применяются концентраторы, рассчитанные на две скорости передачи данных, в этом случае на них ложатся еще и функции моста (в части объединения сетей с разной скоростью).

Коммутатор перенял все функции у моста, концентратора и повторителя, добавив к ним много дополнительных. Данное устройство является "интеллектуальным", производя анализ пришедшего пакета на предмет выявления адресата, после чего отправляет пакет на тот порт, где находится адресат. Среди дополнительных свойств можно назвать возможность логического объединения портов в группы, позволяя на одном коммутаторе строить независимые физически сети (VLAN - виртуальные LAN), возможность управления отдельными портами (отключать/включать порты, настраивать список доступных пользователей конкретных портов).

Фактически, концентраторы и коммутаторы в настоящее время являются наиболее популярными устройствами ЛВС.

Маршрутизатор в ЛВС практически не применяется, в основном его поле деятельности - WAN. Служит для объединения различных ЛВС в общую сеть, используя глобальные линии связи или сети (например, Internet). Наряду с коммутатором является одним из самых сложных сетевых устройств. [10]

Пассивное оборудование (кабели).

При создании ЛВС компьютеры объединяются в единую структуру различными типами кабелей. Промышленностью выпускается огромное количество типов кабелей, например, крупнейшая кабельная фирма Belden предлагает более 2000 их наименований. Все выпускаемые кабели можно разделить на три большие группы:

кабели на основе витых пар проводов (twisted pair), которые делятся на экранированные (shielded twisted pair, STP) и неэкранированные (unshielded twisted pair, UTP);

коаксиальные кабели (coaxial cable);

оптоволоконные кабели (fiber optic).

Каждый тип кабеля имеет свои преимущества и недостатки, так что при выборе типа кабеля надо учитывать как особенности решаемой задачи, так и особенности конкретной сети, в том числе и используемую топологию.

Кабели на основе витых пар.

Витые пары проводов используются в самых дешевых и на сегодняшний день, пожалуй, самых популярных кабелях. Кабель на основе витых пар представляет собой несколько пар скрученных изолированных медных проводов в единой диэлектрической (пластиковой) оболочке. Он довольно гибкий и удобный для прокладки.

Обычно в кабель входит две витые пары (Рис.1.5) или четыре витые пары.

Неэкранированные витые пары характеризуются слабой защищенностью от внешних электромагнитных помех, а также слабой защищенностью от подслушивания с целью, например, промышленного шпионажа. Перехват передаваемой информации возможен как с помощью контактного метода (посредством двух иголочек, воткнутых в кабель), так и с помощью бесконтактного метода, сводящегося к радиоперехвату излучаемых кабелем электромагнитных полей. Для устранения этих недостатков применяется экранирование.

Рис.1.6 Кабель с витыми парами

В случае экранированной витой пары STP каждая из витых пар помещается в металлическую оплетку-экран для уменьшения излучений кабеля, защиты от внешних электромагнитных помех и снижения взаимного влияния пар проводов друг на друга (crosstalk - перекрестные наводки). Естественно, экранированная витая пара гораздо дороже, чем неэкранированная, а при ее использовании необходимо применять и специальные экранированные разъемы, поэтому встречается она значительно реже, чем неэкранированная витая пара.

Основные достоинства неэкранированных витых пар - простота монтажа разъемов на концах кабеля, а также простота ремонта любых повреждений по сравнению с другими типами кабеля. Все остальные характеристики у них хуже, чем у других кабелей. Например, при заданной скорости передачи затухание сигнала (уменьшение его уровня по мере прохождения по кабелю) у них больше, чем у коаксиальных кабелей. Если учесть еще низкую помехозащищенность, то становится понятным, почему линии связи на основе витых пар, как правило, довольно короткие (обычно в пределах 100 метров). В настоящее время витая пара используется для передачи информации на скоростях до 100 Мбит/с и ведутся работы по повышению скорости передачи до 1000 Мбит/с. [7]

Согласно стандарту EIA/TIA 568, существуют пять категорий кабелей на основе неэкранированной витой пары (UTP):

Кабель категории 1 - это обычный телефонный кабель (пары проводов не витые), по которому можно передавать только речь, но не данные. Данный тип кабеля имеет большой разброс параметров (волнового сопротивления, полосы пропускания, перекрестных наводок).

Кабель категории 2 - это кабель из витых пар для передачи данных в полосе частот до 1 МГц. Кабель не тестируется на уровень перекрестных наводок. В настоящее время он используется очень редко. Стандарт EIA/TIA 568 не различает кабели категорий 1 и 2.

Кабель категории 3 - это кабель для передачи данных в полосе часто до 16 МГц, состоящий из витых пар с девятью витками проводов на метр длины. Кабель тестируется на все параметры и имеет волновое сопротивление 100 Ом. Это самый простой тип кабелей, рекомендованный стандартом для локальных сетей. Сейчас он имеет наибольшее распространение.

Кабель категории 4 - это кабель, передающий данные в полосе частот до 20 МГц. Используется редко, так как не слишком заметно отличается от категории 3. Стандартом рекомендуется вместо кабеля категории 3 переходить сразу на кабель категории 5. Кабель категории 4 тестируется на все параметры и имеет волновое сопротивление 100 Ом. Кабель был разработан для работы в сетях по стандарту IEEE 802.5

Кабель категории 5 - самый совершенный кабель в настоящее время, рассчитанный на передачу данных в полосе частот до 100 МГц. Состоит из витых пар, имеющих не менее 27 витков на метр длины (8 витков на фут). Кабель тестируется на все параметры и имеет волновое сопротивление 100 Ом. Рекомендуется применять его в современных высокоскоростных сетях типа Fast Ethernet и TPFDDI. Кабель категории 5 примерно на 30-50% дороже, чем кабель категории 3.

Кабель категории 6 - перспективный тип кабеля для передачи данных в полосе частот до 200 МГц.

Кабель категории 7 - перспективный тип кабеля для передачи данных в полосе частот до 600 МГц.

Чтобы кабель был пригодным для соединения с компьютером или периферией его сначала обжимают. При этом золоченые игольчатые контакты разъема прокалывают изоляцию каждого провода, входят между его жилами и обеспечивают надежное и качественное соединение. Надо учитывать, что при установке разъемов стандартом допускается расплетение витой пары кабеля на длину не более одного сантиметра. Для обжима используют кримпер (Рис.1.7). При монтаже кабеля витой пары должен выдерживаться максимально допустимый радиус изгиба (8 внешних диаметров кабеля) - сильный изгиб может привести к увеличению внешних наводок на сигнал или привести к разрушению оболочки кабеля. При монтаже экранированной витой пары необходимо следить за целостностью экрана по всей длине кабеля. Растяжение или изгиб приводит к разрушению экрана, что влечёт уменьшение сопротивляемости наводкам. Дренажный провод должен быть соединен с экраном разъема.

Рис.1.7 Обжимной инструмент - кримпер

Существует 2 схемы обжимки кабеля: прямой кабель и перекрёстный (кросс-овер) кабель. Первая схема используется для соединения компьютера со свитчем/хабом, вторая для соединения двух компьютеров напрямую и для соединения некоторых старых моделей хабов/свитчей (uplink порт).

Бело-оранжевая жила меняется с бело-зелёной, оранжевая с зелёной (для 100-мегабитного соединения); синяя жила меняется с бело-коричневой, бело-синяя с коричневой (для гигабитного соединения, для 100 мегабит их можно обжать в любом порядке). Использование кабеля, обжатого не по стандарту, может привести к тому, что кабель работать не будет, или будет очень большой процент потерь (в зависимости от длины кабеля), а также - ситуациям полной проверки кабеля для определения назначения тех или иных пар. Для проверки правильности обжатия кабеля, помимо визуального контроля, существуют специальные устройства - кабельные тестеры. Такое устройство состоит из передатчика и приёмника. Передатчик поочерёдно подаёт сигнал на каждую из восьми жил кабеля, дублируя эту передачу зажиганием одного из восьми светодиодов, а на приёмнике, подсоединённому к другому концу линии, соответственно загорается один из восьми светодиодов. Если на передаче и на приёме светодиоды загораются подряд, значит, кабель обжат без ошибки. [19]

При использовании 100-мегабитного соединения используются только 2 из 4 пар, а именно оранжевая и зелёная. Синяя и коричневая пары в таком случае могут быть использованы для подключения второго компьютера по тому же кабелю. Каждый конец кабеля раздваивают на два по две пары, и получают как бы два кабеля, но под одной изоляцией. Однако данная схема подключения может снизить скорость и качество передачи информации. При использовании гигабитного соединения используются 4 пары проводников. Также существуют ограничения на выбор схемы перекрёстного соединения жил, накладываемые стандартом Power over Ethernet (РОЕ), однако данный стандарт ещё до конца не утверждён. При прямом соединении жил в кабеле ("один к одному"), данный стандарт будет работать автоматически.

После того как кабель обжимают, используют специальные коннекторы для дальнейшего соединения. Registered jack (RJ, читается "ар - джей") - это стандартизированный физический интерфейс, используемый для соединения телекоммуникационного оборудования (обычно - телефонов) или в компьютерных сетях. Стандартные варианты этого разъёма называются RJ11, RJ14, RJ25, RJ45 и так далее.

Чаще всего витые пары используются для передачи данных в одном направлении, то есть в топологиях типа "звезда" или "кольцо". Топология "шина" обычно ориентируется на коаксиальный кабель. Поэтому внешние терминаторы, согласующие неподключенные концы кабеля, для витых пар практически никогда не применяются.

Кабели выпускаются с двумя типами внешних оболочек:

кабель в поливинилхлоридной (ПВХ, PVC) оболочке дешевле и предназначен для работы кабеля в сравнительно комфортных условиях эксплуатации;

кабель в тефлоновой оболочке дороже и предназначен для более жестких условий эксплуатации.

Кабель в ПВХ-оболочке называется еще non-plenum, а кабель в тефлоновой оболочке - plenum. Термин plenum обозначает здесь пространство под фальшполом и над подвесным потолком, где очень удобно размещать кабели сети. Для прокладки в этих скрытых от глаз пространствах как раз удобнее кабель в тефлоновой оболочке, который, в частности, горит гораздо хуже, чем ПВХ-кабель, и не выделяет при горении так много ядовитых газов.

Еще один важный параметр любого кабеля, который жестко не определяется стандартом, но может существенно повлиять на работоспособность сети, - это скорость распространения сигнала в кабеле, то есть задержка распространения сигнала в кабеле в расчете на единицу длины.

Производители кабелей иногда указывают величину задержки на метр длины, а иногда - скорость распространения сигнала относительно скорости света (или NVP - Nominal Velocity of Propagation, как ее часто называют в документации). Связаны эти две величины простой формулой:

t3=l/ (3 1010 NVP),

где t3 - величина задержки на метр длины кабеля в наносекундах. Например, если NVP=0,65 (65% от скорости света), то задержка t будет равна 5,13 нс/м. Типичная величина задержки большинства современных кабелей составляет около 5 нс/м. [9]

Коаксиальные кабели.

Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального провода и металлической оплетки, разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку (Рис.1.8).

Коаксиальный кабель до недавнего времени был распространен наиболее широко, что связано с его высокой помехозащищенностью (благодаря металлической оплетке), а также более высокими, чем в случае витой пары, допустимыми скоростями передачи данных (до 500 Мбит/с) и большими допустимыми расстояниями передачи (до километра и выше). К нему труднее механически подключиться для несанкционированного прослушивания сети, он также дает заметно меньше электромагнитных излучений вовне. Однако монтаж и ремонт коаксиального кабеля существенно сложнее, чем витой пары, а стоимость его выше (он дороже примерно в 1,5-3 раза по сравнению с кабелем на основе витых пар). Сложнее и установка разъемов на концах кабеля. Поэтому его сейчас применяют реже, чем витую пару.

Основное применение коаксиальный кабель находит в сетях с топологией типа "шина". При этом на концах кабеля обязательно должны устанавливаться терминаторы для предотвращения внутренних отражений сигнала, причем только один из терминаторов должен быть заземлен. Без заземления металлическая оплетка не защищает сеть от внешних электромагнитных помех и не снижает излучение передаваемой по сети информации во внешнюю среду. Но при заземлении оплетки в двух или более точках из строя может выйти не только сетевое оборудование, но и компьютеры, подключенные к сети. Терминаторы должны быть обязательно согласованы с кабелем, то есть их сопротивление должно быть равно волновому сопротивлению кабеля. Например, если используется 50-омный кабель, для него подходят только 50-омные терминаторы.

Рис.1.8 Коаксиальный кабель

Реже коаксиальные кабели применяются в сетях с топологией "звезда" и "пассивная звезда" (например, в сети Arcnet). В этом случае проблема согласования существенно упрощается, так как внешних терминаторов на свободных концах не требуется.

Волновое сопротивление кабеля указывается в сопроводительной документации. Коаксиальный кабель категории RG-8 и RG-11, а также RG - 58 используют для прокладки локальных сетей и подключения к интернету. В системах телевизионных сетей используют преимущественно коаксиальный кабель категории RG-59 и RG-59/U. В военной промышленности используют коаксиальный кабель типа RG-58C/U. Коаксиальный кабель RG-58/U является сплошным центральным проводником, а в кабеле категории RG-58A/U сконструирован многожильный центральный проводник. Кроме этого, существует огромное количество разновидностей коаксиального кабеля, которые используют для широкополосной передачи данных, магистральных линий, в системах видеонаблюдения, прокладки систем кабельного и спутникового телевидения и многих других областях передачи данных. Но марок коаксиального кабеля значительно меньше, чем кабелей на основе витых пар. Он не считается особо перспективным. Не случайно в сети Fast Ethernet не предусмотрено применение коаксиальных кабелей. Однако во многих случаях классическая шинная топология (а не пассивная звезда) очень удобна. Как уже отмечалось, она не требует применения дополнительных устройств - концентраторов. [19]

Существует два основных типа коаксиального кабеля:

тонкий (thin) кабель, имеющий диаметр около 0,5 см, более гибкий;

толстый (thick) кабель, имеющий диаметр около 1 см, значительно более жесткий. Он представляет собой классический вариант коаксиального кабеля, который уже почти полностью вытеснен более современным тонким кабелем.

Тонкий кабель используется для передачи на меньшие расстояния, чем толстый, так как в нем сигнал затухает сильнее. Зато с тонким кабелем гораздо удобнее работать: его можно оперативно проложить к каждому компьютеру, а толстый требует жесткой фиксации на стене помещения. Подключение к тонкому кабелю (с помощью разъемов BNC байонетного типа) проще и не требует дополнительного оборудования, а для подключения к толстому кабелю надо использовать специальные довольно дорогие устройства, прокалывающие его оболочки и устанавливающие контакт как с центральной жилой, так и с экраном. Толстый кабель примерно вдвое дороже, чем тонкий. Поэтому тонкий кабель применяется гораздо чаще.


Подобные документы

  • Разработка проекта пассивной оптической сети доступа с топологией "звезда". Организация широкополосного доступа при помощи технологии кабельной модемной связи согласно стандарту Euro-DOCSIS. Перечень оборудования, необходимого для построения сети.

    курсовая работа [2,7 M], добавлен 27.11.2014

  • Топология сети: общее понятие и разновидности. Активные и пассивные топологии, их главные особенности. Методы расширения сети. Расширение сети с топологией "звезда", обзор основных способов. Попарное соединение устройств при организации локальной сети.

    презентация [106,4 K], добавлен 25.10.2013

  • Обзор существующих принципов построения локальных вычислительных сетей. Структурированные кабельные системы (СКС), коммутационное оборудование. Проект локальной вычислительной сети: технические требования, программное обеспечение, пропускная способность.

    дипломная работа [1,8 M], добавлен 25.02.2011

  • Теоретическое обоснование построения вычислительной локальной сети. Анализ различных топологий сетей. Проработка предпосылок и условий для создания вычислительной сети. Выбор кабеля и технологий. Анализ спецификаций физической среды Fast Ethernet.

    курсовая работа [686,7 K], добавлен 22.12.2014

  • Особенности проектирования и модернизация корпоративной локальной вычислительной сети и способы повышения её работоспособности. Физическая структура сети и сетевое оборудование. Построение сети ГУ "Управление Пенсионного фонда РФ по г. Лабытнанги ЯНАО".

    дипломная работа [259,1 K], добавлен 11.11.2014

  • Выбор компьютеров и сервера. План помещения и его характеристика. Проектировка локальной вычислительной сети для трехэтажного здания районного суда. Топология типа "Звезда". Экономический расчет необходимого оборудования для работоспособности сети.

    курсовая работа [1,0 M], добавлен 11.07.2012

  • Особенности локальной вычислительной сети и информационной безопасности организации. Способы предохранения, выбор средств реализации политики использования и системы контроля содержимого электронной почты. Проектирование защищенной локальной сети.

    дипломная работа [1,6 M], добавлен 01.07.2011

  • Построение информационной системы для автоматизации документооборота. Основные параметры будущей локальной вычислительной сети. Схема расположения рабочих станций при построении. Протокол сетевого уровня. Интеграция с глобальной вычислительной сетью.

    курсовая работа [330,8 K], добавлен 03.06.2013

  • Краткая характеристика компании и ее деятельности. Выбор топологии локальной вычислительной сети для подразделений предприятия. Организация ЛВС в офисах. Обоснование сетевой технологии. Сводная ведомость оборудования. Расчет времени доступа к станции.

    курсовая работа [1,2 M], добавлен 11.02.2011

  • Передача информации между компьютерами. Протокол передaчи. Виды сетей. Назначение локальной сети. Прямое соединение. Топология локальной сети. Локальные сети в организациях. Сетевая операциооная система.

    реферат [125,7 K], добавлен 17.09.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.