Исследование виртуальных частных сетей

Использование сети Internet в качестве магистрали для передачи корпоративного IP-трафика. Построение VPN на базе брандмауэров, маршрутизаторов и программного обеспечения. Симметричные и асимметричные криптосистемы. Основные современные методы шифрования.

Рубрика Программирование, компьютеры и кибернетика
Вид лекция
Язык русский
Дата добавления 17.11.2019
Размер файла 273,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

В последнее время в мире телекоммуникаций наблюдается повышенный интерес к так называемым Виртуальным Частным Сетям (Virtual Private Network - VPN). Это обусловлено необходимостью снижения расходов на содержание корпоративных сетей за счет более дешевого подключения удаленных офисов и удаленных пользователей через сеть Internet (см. рис. 1). Действительно, при сравнении стоимости услуг по соединению нескольких сетей через Internet, например, с сетями Frame Relay можно заметить существенную разницу в стоимости. Однако, необходимо отметить, что при объединении сетей через Internet, сразу же возникает вопрос о безопасности передачи данных, поэтому возникла необходимость создания механизмов позволяющих обеспечить конфиденциальность и целостность передаваемой информации. Сети, построенные на базе таких механизмов, и получили название VPN.

Рисунок 1. Виртуальная Частная сеть.

В свое реферате я попробую объяснить, что такое VPN, какими плюсами и минусами обладает данная технология и какие варианты реализации VPN существуют.

Что такое VPN

Что же такое VPN? Существует множество определений, однако главной отличительной чертой данной технологии является использование сети Internet в качестве магистрали для передачи корпоративного IP-трафика. Сети VPN предназначены для решения задач подключения конечного пользователя к удаленной сети и соединения нескольких локальных сетей. Структура VPN включает в себя каналы глобальной сети, защищенные протоколы и маршрутизаторы.

Как же работает Виртуальная Частная Сеть? Для объединения удаленных локальных сетей в виртуальную сеть корпорации используются так называемые виртуальные выделенные каналы. Для создания подобных соединений используется механизм туннелирования. Инициатор туннеля инкапсулирует пакеты локальной сети (в том числе, пакеты немаршрутизируемых протоколов) в новые IP-пакеты, содержащие в своем заголовке адрес этого инициатора туннеля и адрес терминатора туннеля. На противоположном конце терминатором туннеля производится обратный процесс извлечения исходного пакета.

Как уже отмечалось выше, при осуществлении подобной передачи требуется учитывать вопросы конфиденциальности и целостности данных, которые невозможно обеспечить простым туннелированием. Для достижения конфиденциальности передаваемой корпоративной информации необходимо использовать некоторый алгоритм шифрования, причем одинаковый на обоих концах туннеля.

Для того чтобы была возможность создания VPN на базе оборудования и программного обеспечения от различных производителей необходим некоторый стандартный механизм. Таким механизмом построения VPN является протокол Internet Protocol Security (IPSec). IPSec описывает все стандартные методы VPN. Этот протокол определяет методы идентификации при инициализации туннеля, методы шифрования, используемые конечными точками туннеля и механизмы обмена и управления ключами шифрования между этими точками. Из недостатков этого протокола можно отметить то, что он ориентирован на IP.

Другими протоколами построения VPN являются протоколы PPTP (Point-to-Point Tunneling Protocol), разработанный компаниями Ascend Communications и 3Com, L2F (Layer-2 Forwarding) - компании Cisco Systems и L2TP (Layer-2 Tunneling Protocol), объединивший оба вышеназванных протокола. Однако эти протоколы, в отличие от IPSec, не являются полнофункциональными (например, PPTP не определяет метод шифрования), поэтому мы, в основном, будем ориентироваться на IPSec.

Говоря об IPSec, нельзя забывать о протоколе IKE (Internet Key Exchange), позволяющем обеспечить передачу информации по туннелю, исключая вмешательство извне. Этот протокол решает задачи безопасного управления и обмена криптографическими ключами между удаленными устройствами, в то время, как IPSec кодирует и подписывает пакеты. IKE автоматизирует процесс передачи ключей, используя механизм шифрования открытым ключом, для установления безопасного соединения. Помимо этого, IKE позволяет производить изменение ключа для уже установленного соединения, что значительно повышает конфиденциальность передаваемой информации.

Как построить VPN

Существуют различные варианты построения VPN. При выборе решения требуется учитывать факторы производительности средств построения VPN. Например, если маршрутизатор и так работает на пределе мощности своего процессора, то добавление туннелей VPN и применение шифрования/дешифрования информации могут остановить работу всей сети из-за того, что этот маршрутизатор не будет справляться с простым трафиком, не говоря уже о VPN.

Опыт показывает, что для построения VPN лучше всего использовать специализированное оборудование, однако если имеется ограничение в средствах, то можно обратить внимание на чисто программное решение.

Рассмотрим некоторые варианты построения VPN:

VPN на базе брандмауэров

Брандмауэры большинства производителей поддерживают туннелирование и шифрование данных. Все подобные продукты основаны на том, что если уж трафик проходит через брандмауэр, то почему бы его заодно не зашифровать. К программному обеспечению собственно брандмауэра добавляется модуль шифрования. Недостатком данного метода можно назвать зависимость производительности от аппаратного обеспечения, на котором работает брандмауэр. При использовании брандмауэров на базе ПК надо помнить, что подобное решение можно применять только для небольших сетей с небольшим объемом передаваемой информации.

Рисунок 2. VPN на базе брандмауэра

В качестве примера решения на базе брандмауэров можно назвать FireWall-1 компании Check Point Software Technologies. FairWall-1 использует для построения VPN стандартный подход на базе IPSec. Трафик, приходящий в брандмауэр, дешифруется, после чего к нему применяются стандартные правила управления доступом. FireWall-1 работает под управлением операционных систем Solaris и Windows NT 4.0.

VPN на базе маршрутизаторов

Другим способом построения VPN является применение для создания защищенных каналов маршрутизаторов. Так как вся информация, исходящая из локальной сети, проходит через маршрутизатор, то целесообразно возложить на этот маршрутизатор и задачи шифрования.

Ярким примером оборудования для построения VPN на маршрутизаторах является оборудование компании Cisco Systems. Начиная с версии программного обеспечения IOS 11.3(3)T маршрутизаторы Cisco поддерживают протоколы L2TP и IPSec. Помимо простого шифрования проходящей информации Cisco поддерживает и другие функции VPN, такие как идентификация при установлении туннельного соединения и обмен ключами.

Рисунок 3. VPN на базе маршрутизаторов

Для построения VPN Cisco использует туннелирование с шифрованием любого IP-потока. При этом туннель может быть установлен, основываясь на адресах источника и приемника, номера порта TCP(UDP) и указанного качества сервиса (QoS).

Для повышения производительности маршрутизатора может быть использован дополнительный модуль шифрования ESA (Encryption Service Adapter).

Кроме того, компания Cisco System выпустила специализированное устройство для VPN, которое так и называется Cisco 1720 VPN Access Router (Маршрутизатор Доступа к VPN), предназначенное для установки в компаниях малого и среднего размера, а также в в отделениях крупных организаций.

VPN на базе программного обеспечения

Следующим подходом к построению VPN являются чисто программные решения. При реализации такого решения используется специализированное программное обеспечение, которое работает на выделенном компьютере и в большинстве случаев выполняет роль proxy-сервера. Компьютер с таким программным обеспечением может быть расположен за брандмауэром.

Рисунок 4. VPN на базе программного обеспечения

В качестве примера такого решения можно выступает программное обеспечение AltaVista Tunnel 97 компании Digital. При использовании данного ПО клиент подключается к серверу Tunnel 97, аутентифицируется на нем и обменивается ключами. Шифрация производится на базе 56 или 128 битных ключей Rivest-Cipher 4, полученных в процессе установления соединения. Далее, зашифрованные пакеты инкапсулируются в другие IP-пакеты, которые в свою очередь отправляются на сервер. В ходе работы Tunnel 97 осуществляет проверку целостности данных по алгоритму MD5. Кроме того, данное ПО каждые 30 минут генерирует новые ключи, что значительно повышает защищенность соединения.

Положительными качествами AltaVista Tunnel 97 являются простота установки и удобство управления. Минусами данной системы можно считать нестандартную архитектуру (собственный алгоритм обмена ключами) и низкую производительность.

VPN на базе сетевой ОС

Решения на базе сетевой ОС мы рассмотрим на примере системы Windows NT компании Microsoft. Для создания VPN Microsoft использует протокол PPTP, который интегрирован в систему Windows NT. Данное решение очень привлекательно для организаций использующих Windows в качестве корпоративной операционной системы. Необходимо отметить, что стоимость такого решения значительно ниже стоимости прочих решений. В работе VPN на базе Windows NT используется база пользователей NT, хранящаяся на Primary Domain Controller (PDC). При подключении к PPTP-серверу пользователь аутентифицируется по протоколам PAP, CHAP или MS-CHAP. Передаваемые пакеты инкапсулируются в пакеты GRE/PPTP. Для шифрования пакетов используется нестандартный протокол от Microsoft Point-to-Point Encryption c 40 или 128 битным ключом, получаемым в момент установки соединения. Недостатками данной системы являются отсутствие проверки целостности данных и невозможность смены ключей во время соединения. Положительными моментами являются легкость интеграции с Windows и низкая стоимость.

VPN на базе аппаратных средств

Вариант построения VPN на специальных устройствах может быть использован в сетях, требующих высокой производительности. Примером такого решения служит продукт cIPro-VPN компании Radguard

Рисунок 5. VPN на базе аппаратных средств

Данный продукт использует аппаратное шифрование передаваемой информации, способное пропускать поток в 100 Мбит/с. cIPro-VPN поддерживает протокол IPSec и механизм управления ключами ISAKMP/Oakley. Помимо прочего, данное устройство поддерживает средства трансляции сетевых адресов и может быть дополнено специальной платой, добавляющей функции брандмауэра

Проблемы в VPN

Основной проблемой сетей VPN является отсутствие устоявшихся стандартов аутентификации и обмена шифрованной информацией. Эти стандарты все еще находятся в процессе разработки и потому продукты различных производителей не могут устанавливать VPN-соединения и автоматически обмениваться ключами. Данная проблема влечет за собой замедление распространения VPN, так как трудно заставить различные компании пользоваться продукцией одного производителя, а потому затруднен процесс объединения сетей компаний-партнеров в, так называемые, extranet-сети.

Как можно заметить из вышесказанного, продукты построения VPN могут оказаться узким местом в сети. Это происходит из-за того, что для поддержки множества соединений и шифрования информации, передаваемой по этим соединениям, требуется высокая производительность используемого оборудования (и/или программного обеспечения). Это является еще одним проблемным моментом в построении VPN.

Еще одним уязвимым местом VPN можно считать отсутствие единых, надежных способов управления такими сетями, что может стать кошмаром для сетевых администраторов.

И, наконец, отсутствие (или слабое развитие) механизмов обеспечения качества сервиса в сети Internet является проблемой построения сетей VPN, требующих для некоторых приложений гарантированной доставки информации за ограниченное время.

Криптография и шифрование

Что такое шифрование

Шифрование -- это способ изменения сообщения или другого документа, обеспечивающее искажение (сокрытие) его содержимого. (Кодирование - это преобразование обычного, понятного, текста в код. При этом подразумевается, что существует взаимно однозначное соответствие между символами текста(данных, чисел, слов) и символьного кода - в этом принципиальное отличие кодирования от шифрования. Часто кодирование и шифрование считают одним и тем же, забывая о том, что для восстановления закодированного сообщения, достаточно знать правило подстановки(замены). Для восстановления же зашифрованного сообщения помимо знания правил шифрования, требуется и ключ к шифру. Ключ понимается нами как конкретное секретное состояние параметров алгоритмов шифрования и дешифрования. Знание ключа дает возможность прочтения секретного сообщения. Впрочем, как вы увидите ниже, далеко не всегда незнание ключа гарантирует то, что сообщение не сможет прочесть посторонний человек.). Шифровать можно не только текст, но и различные компьютерные файлы - от файлов баз данных и текстовых процессоров до файлов изображений.

Шифрование используется человечеством с того самого момента, как появилась первая секретная информация, т. е. такая, доступ к которой должен быть ограничен.

Идея шифрования состоит в предотвращении просмотра истинного содержания сообщения(текста, файла и т.п.) теми , у кого нет средств его дешифрования. А прочесть файл сможет лишь тот, кто сможет его дешифровать.

Шифрование появилось примерно четыре тысячи лет тому назад. Первым известным применением шифра (кода) считается египетский текст, датированный примерно 1900 г. до н. э., автор которого использовал вместо обычных (для египтян) иероглифов не совпадающие с ними знаки.

Один из самых известных методов шифрования носит имя Цезаря, который если и не сам его изобрел, то активно им пользовался. Не доверяя своим посыльным, он шифровал письма элементарной заменой А на D, В на Е и так далее по всему латинскому алфавиту. При таком кодировании комбинация XYZ была бы записана как АВС, а слово «ключ» превратилось бы в неудобоваримое «нобъ»(прямой код N+3).

Спустя 500 лет шифрование стало повсеместно использоваться при оставлении текстов религиозного содержания, молитв и важных государственных документов.

Со средних веков и до наших дней необходимость шифрования военных, дипломатических и государственных документов стимулировало развитие криптографии. Сегодня потребность в средствах, обеспечивающих безопасность обмена информацией, многократно возросла.

Большинство из нас постоянно используют шифрование, хотя и не всегда знают об этом. Если у вас установлена операционная система Microsoft, то знайте, что Windows хранит о вас (как минимум) следующую секретную информацию:

* пароли для доступа к сетевым ресурсам (домен, принтер, компьютеры в сети и т.п.);

* пароли для доступа в Интернет с помощью DialUр;

* кэш паролей (в браузере есть такая функция -- кэшировать пароли, и Windows сохраняет все когда-либо вводимые вами в Интернете пароли);

* сертификаты для доступа к сетевым ресурсам и зашифрованным данным на самом компьютере.

Эти данные хранятся либо в рwl-файле (в Windows 95), либо в SAM-файле (в Windows NT/2000/XР). Это файл Реестра Windows, и потому операционная система никому не даст к нему доступа даже на чтение. Злоумышленник может скопировать такие файлы, только загрузившись в другую ОС или с дискеты. Утилит для их взлома достаточно много, самые современные из них способны подобрать ключ за несколько часов.

Основные понятия и определения криптографии

Итак, криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возможно только при знании ключа.

Перечислю вначале некоторые основные понятия и определения.

Алфавит - конечное множество используемых для кодирования информации знаков.

Текст - упорядоченный набор из элементов алфавита.

В качестве примеров алфавитов, используемых в современных ИС можно привести следующие:

алфавит Z33 - 32 буквы русского алфавита и пробел;

алфавит Z256 - символы, входящие в стандартные коды ASCII и КОИ-8;

бинарный алфавит - Z2 = {0,1};

восьмеричный алфавит или шестнадцатеричный алфавит;

Шифрование - преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом.

Дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный.

Ключ - информация, необходимая для беспрепятственного шифрования и дешифрования текстов.

Криптографическая система представляет собой семейство T преобразований открытого текста. xлены этого семейства индексируются, или обозначаются символом k; параметр k является ключом. Пространство ключей K - это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд букв алфавита.

Криптосистемы разделяются на симметричные и с открытым ключом ( или асимметричесские) .

В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ.

В системах с открытым ключом используются два ключа - открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения.

Термины распределение ключей и управление ключами относятся к процессам системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.

Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию без знания ключа (т.е. криптоанализу). Имеется несколько показателей криптостойкости, среди которых:

количество всех возможных ключей;

среднее время, необходимое для криптоанализа.

Преобразование Tk определяется соответствующим алгоритмом и значением параметра k. Эффективность шифрования с целью защиты информации зависит от сохранения тайны ключа и криптостойкости шифра.

Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, защищенность и т.д. Программная реализация более практична, допускает известную гибкость в использовании.

Для современных криптографических систем защиты информации сформулированы следующие общепринятые требования:

зашифрованное сообщение должно поддаваться чтению только при наличии ключа;

число операций, необходимых для определения использованного ключа шифрования по фрагменту шифрованного сообщения и соответствующего ему открытого текста,

должно быть не меньше общего числа возможных ключей;

число операций, необходимых для расшифровывания информации путем перебора всевозможных ключей должно иметь строгую нижнюю оценку и выходить за пределы возможностей современных компьютеров (с учетом возможности использования сетевых вычислений);

знание алгоритма шифрования не должно влиять на надежность защиты;

незначительное изменение ключа должно приводить к существенному изменению вида зашифрованного сообщения даже при использовании одного и того же ключа;

структурные элементы алгоритма шифрования должны быть неизменными;

дополнительные биты, вводимые в сообщение в процессе шифрования, должен быть полностью и надежно скрыты в шифрованном тексте;

длина шифрованного текста должна быть равной длине исходного текста;

не должно быть простых и легко устанавливаемых зависимостью между ключами, последовательно используемыми в процессе шифрования;

любой ключ из множества возможных должен обеспечивать надежную защиту информации;

алгоритм должен допускать как программную, так и аппаратную реализацию, при этом изменение длины ключа не должно вести к качественному ухудшению алгоритма шифрования.

Симметричные и асимметричные криптосистемы

Прежде чем перейти к отдельным алгоритмам, рассмотрим вкратце концепцию симметричных и асимметричных криптосистем. Сгенерировать секретный ключ и зашифровать им сообщение -- это еще полдела. А вот как переслать такой ключ тому, кто должен с его помощью расшифровать исходное сообщение? Передача шифрующего ключа считается одной из основных проблем криптографии.

Оставаясь в рамках симметричной системы, необходимо иметь надежный канал связи для передачи секретного ключа. Но такой канал не всегда бывает доступен, и потому американские математики Диффи, Хеллман и Меркле разработали в 1976 г. концепцию открытого ключа и асимметричного шифрования.

В таких криптосистемах общедоступным является только ключ для процесса шифрования, а процедура дешифрования известна лишь обладателю секретного ключа. Например, когда я хочу, чтобы мне выслали сообщение, то генерирую открытый и секретный ключи. Открытый посылаю вам, вы шифруете им сообщение и отправляете мне. Дешифровать сообщение могу только я, так как секретный ключ я никому не передавал. Конечно, оба ключа связаны особым образом (в каждой криптосистеме по-разному), и распространение открытого ключа не разрушает криптостойкость системы. сеть маршрутизатор программный шифрование

В асимметричных системах должно удовлетворяться следующее требование: нет такого алгоритма (или он пока неизвестен), который бы из криптотекста и открытого ключа выводил исходный текст.

Основные современные методы шифрования

Среди разнообразнейших способов шифровании можно выделить следующие основные методы:

* Алгоритмы замены или подстановки -- символы исходного текста заменяются на символы другого (или того же) алфавита в соответствии с заранее определенной схемой, которая и будет ключом данного шифра. Отдельно этот метод в современных криптосистемах практически не используется из-за чрезвычайно низкой криптостойкости.

* Алгоритмы перестановки -- символы оригинального текста меняются местами по определенному принципу, являющемуся секретным ключом. Алгоритм перестановки сам по себе обладает низкой криптостойкостью, но входит в качестве элемента в очень многие современные криптосистемы.

* Алгоритмы гаммирования -- символы исходного текста складываются с символами некой случайной последовательности. Самым распространенным примером считается шифрование файлов «имя пользователя.рwl», в которых операционная система Microsoft Windows 95 хранит пароли к сетевым ресурсам данного пользователя (пароли на вход в NT-серверы, пароли для DialUр-доступа в Интернет и т.д.). Когда пользователь вводит свой пароль при входе в Windows 95, из него по алгоритму шифрования RC4 генерируется гамма (всегда одна и та же), применяемая для шифрования сетевых паролей. Простота подбора пароля обусловливается в данном случае тем, что Windows всегда предпочитает одну и ту же гамму.

* Алгоритмы, основанные на сложных математических преобразованиях исходного текста по некоторой формуле. Многие из них используют нерешенные математические задачи. Например, широко используемый в Интернете алгоритм шифрования RSA основан на свойствах простых чисел.

* Комбинированные методы. Последовательное шифрование исходного текста с помощью двух и более методов.

Криптографический стандарт DES

В 1973 г. Национальное бюро стандартов США начало разработку программы по созданию стандарта шифрования данных на ЭВМ. Был объявлен конкурс среди фирм разработчиков США, который выиграла фирма IBM, представившая в 1974 году алгоритм шифрования, известный под названием DES(Data Encryption Standart).

В этом алгоритме входные 64-битовые векторы, называемые блоками открытого текста, Преобразуются в выходные 64-битовые векторы, называемые блоками шифротекста, с помощью двоичного 56-битового ключа К. Число различных ключей DES-алгоритма равно 256>7*1016.

Алгоритм реализуется в течение 16 аналогичных циклов шифрования, где на I-ом цикле используется цикловой ключ Ki , представляющий собой алгоритмически вырабатываемую выборку 48 битов из 56 битов ключа Ki, I=1,2,…,16.

Алгоритм обеспечивает высокую стойкость, однако недавние результаты показали, что современная технология позволяет создать вычислительное устройство стоимостью около 1 млн. долларов США, способное вскрыть секретный ключ с помощью полного перебора в среднем за 3,5 часа.

Из-за небольшого размера ключа было принято решение использовать DES-алгоритм для закрытия коммерческой(несекретной) информации. Практическая реализация перебора всех ключей в данных условиях экономически не целесообразна, так как затраты на реализацию перебора не соответствуют ценности информации, закрываемой шифром.

DES-алгоритм явился первым примером широкого производства и внедрения технических средств в области защиты информации. Национальное бюро стандартов США проводит проверку аппаратных реализаций DES-алгоритма, предложенных фирмами-разработчиками, на специальном тестирующем стенде. Только после положительных результатов проверки производитель получает от Национального бюро стандартов сертификат на право реализации своего продукта. К настоящему времени аттестовано несколько десятков изделий, выполненных на различной элементарной базе.

Достигнута высокая скорость шифрования. Она составляет в лучших изделиях 45 Мбит/с. Цена некоторых аппаратных изделий ниже 100 долларов США.

Основные области применения DES-алгоритма:

хранение данных на компьютерах (шифрование файлов, паролей);

аутентификация сообщений (имея сообщение и контрольную группу, несложно убедиться в подлинности сообщения;

электронная система платежей (при операциях с широкой клиентурой и между банками);

Электронный обмен коммерческой информацией( обмен данными между покупателями, продавцом и банкиром защищен от изменений и перехвата.

Позднее появилась модификация DESa -- Triple Des («тройной DES» -- так как трижды шифрует информацию «обычным» DESом) свободен от основного недостатка прежнего варианта -- короткого ключа; он здесь в два раза длиннее. Но зато, как оказалось, Triple DES унаследовал другие слабые стороны своего предшественника: отсутствие возможности для параллельных вычислений при шифровании и низкую скорость.

ГОСТ 28147-89

В 1989 году в СССР был разработан блочный шифр для использования в качестве государственного стандарта шифрования данных. Разработка была принята и зарегистрирована как ГОСТ 28147-89. Алгоритм был введен в действие в 1990 году. И хотя масштабы применения этого алгоритма шифрования до сих пор уточняются, начало его внедрения, в частности в банковской системе , уже положено. Алгоритм несколько медлителен, но обладает весьма высокой стойкостью.

В общих чертах ГОСТ 28147 аналогичен DES. Блок-схема алгоритма ГОСТ отличается от блок-схемы DES-алгоритма лишь отсутствием начальной перестановки и число циклов шифрования (32 в ГОСТ против 16 в DES-алгоритме).

Ключ алгоритма ГОСТ -- это массив, состоящий из 32-мерных векторов X1, X2,…X8. Цикловой ключ i-го цикла Ki равен Xs, где ряду значений i от 1 до 32 соответствует следующий ряд значений s:

1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,8,7,6,5,4,3,2,1.

В шифре ГОСТ используется 256-битовый ключ и объем ключевого пространства составляет 2256. Ни на одной из существующих в настоящее время или предполагаемых к реализации в недалеком будущем компьютерной системе общего применения нельзя подобрать ключ за время, меньшее многих сотен лет. Российский стандарт проектировался с большим запасом, по стойкости он на много порядков превосходит американский стандарт DES с его реальным размером ключа в 56 бит о и объемом ключевого пространства всего 256( и неудивительно: его ключ длиной 32 байта (256 бит) вчетверо больше ключа DES. Необходимое же на перебор всех ключей время при этом возрастает не в четыре раза, а в 25632-8=25624, что выливается уже в астрономические цифры), чего явно недостаточно. В этой связи DES может представлять скорее исследовательский или научный, чем практический интерес.

Выводы

В 3 главе были рассмотрены несколько различных методов шифрования. Алгоритмы 3.1-3.4 в «чистом виде» использовались раньше, а в наши дни они заложены практически в любой, даже самой сложной программе шифрования. Каждый из рассмотренных методов реализует собственный способ криптографической защиты информации и имеет собственные достоинства и недостатки, но их общей важнейшей характеристикой является стойкость. Под этим понимается минимальный объем зашифрованного текста, статистическим анализом которого можно вскрыть исходный текст. Таким образом, по стойкости шифра можно определить предельно допустимый объем информации, зашифрованной при использовании одного ключа. При выборе криптографического алгоритма для использования в конкретной разработке его стойкость является одним из определяющих факторов.

Все современные криптосистемы спроектированы таким образом, чтобы не было пути вскрыть их более эффективным способом, чем полным перебором по всему ключевому пространству, т.е. по всем возможным значениям ключа. Ясно, что стойкость таких шифров определяется размером используемого в них ключа.

Приведу оценки стойкости рассмотренных выше методов шифрования. Моноалфавитная подстановка является наименее стойким шифром, так как при ее использовании сохраняются все статистические закономерности исходного текста. Уже при длине в 20-30 символов указанные закономерности проявляются в такой степени, что, как правило, позволяет вскрыть исходный текст. Поэтому такое шифрование считается пригодным только для закрывания паролей, коротких сигнальных сообщений и отдельных знаков.

Стойкость простой полиалфавитной подстановки (из подобных систем была рассмотрена подстановка по таблице Вижинера) оценивается значением 20n, где n -- число различных алфавитов используемых для замены. При использовании таблицы Вижинера число различных алфавитов определяется числом букв в ключевом слове. Усложнение полиалфавитной подстановки существенно повышает ее стойкость. Стойкость гаммирования однозначно определяется длинной периода гаммы. В настоящее время реальным становится использование бесконечной гаммы, при использовании которой теоретически стойкость зашифрованного текста также будет бесконечной. Можно отметить, что для надежного закрытия больших массивов информации наиболее пригодны гаммирование и усложненные перестановки и подстановки. При использовании комбинированных методов шифрования стойкость шифра равна произведению стойкостей отдельных методов. Поэтому комбинированное шифрование является наиболее надежным способом криптографического закрытия. Именно такой метод был положен в основу работы всех известных в настоящее время шифрующих аппаратов.

Алгоритм DES был утвержден еще долее 20 лет назад, однако за это время компьютеры сделали немыслимый скачок в скорости вычислений, и сейчас не так уж трудно сломать этот алгоритм путем полного перебора всех возможных вариантов ключей (а в DES используется всего 8-байтный ),что недавно казалось совершенно невозможным.

ГОСТ 28147-89 был разработан еще спецслужбами Советского Союза, и он моложе DES всего на 10 лет; при разработке в него был заложен такой запас прочности, что данный ГОСТ является актуальным до сих пор.

Рассмотренные значения стойкости шифров являются потенциальными величинами. Они могут быть реализованы при строгом соблюдении правил использования криптографических средств защиты. Основными из этих првил являются: сохранение в тайне ключей, исключения дублирования(т.е. повторное шифрование одного и того же отрывка текста с использованием тех же ключей) и достаточно частая смена ключей.

Размещено на Allbest.ru


Подобные документы

  • Криптография и шифрование. Симметричные и асимметричные криптосистемы. Основные современные методы шифрования. Алгоритмы шифрования: замены (подстановки), перестановки, гаммирования. Комбинированные методы шифрования. Программные шифраторы.

    реферат [57,7 K], добавлен 24.05.2005

  • Значение применения криптоалгоритмов в современном программном обеспечении. Классификация методов и средств защиты информации, формальные, неформальные средства защиты. Традиционные симметричные криптосистемы. Принципы криптографической защиты информации.

    методичка [359,6 K], добавлен 30.08.2009

  • Проблематика построения виртуальных частных сетей (VPN), их классификация. Анализ угроз информационной безопасности. Понятия и функции сети. Способы создания защищенных виртуальных каналов. Анализ протоколов VPN сетей. Туннелирование на канальном уровне.

    дипломная работа [2,6 M], добавлен 20.07.2014

  • Традиционные симметричные криптосистемы. Основные понятия и определения. Методы шифрования. Метод перестановок на основе маршрутов Гамильтона. Асимметричная криптосистема RSA. Расширенный алгоритм Евклида. Алгоритмы электронной цифровой подписи Гамаля.

    курсовая работа [235,6 K], добавлен 06.01.2017

  • Основы безопасности виртуальных частных сетей (ВЧС). ВЧС на основе туннельного протокола PPTP. Шифрование и фильтрация ВЧС. Туннелирование по протоколу L2TP. Создание виртуального частного подключения в Windows. Использование программы Sniffer Pro.

    дипломная работа [2,0 M], добавлен 24.11.2010

  • Основные виды сетевых атак на VIRTUAL PERSONAL NETWORK, особенности их проведения. Средства обеспечения безопасности VPN. Функциональные возможности технологии ViPNet(c) Custom, разработка и построение виртуальных защищенных сетей (VPN) на ее базе.

    курсовая работа [176,0 K], добавлен 29.06.2011

  • Разработка программного обеспечения, которое позволяет посетителям и работникам организации при помощи портативного устройства или стационарного компьютера подключаться к сети Internet по средствам WEB интерфейса. Основные пользовательские требования.

    дипломная работа [1,6 M], добавлен 04.04.2014

  • Симметричные криптосистемы как способ шифрования, в котором для шифрования и расшифровывания применяется один и тот же криптографический ключ. Разбор и реализация шифрования алгоритма: простая и двойная перестановка, перестановка "магический квадрат".

    курсовая работа [3,3 M], добавлен 11.03.2013

  • Анализ существующих решений для построения сети. Сравнение программной и аппаратной реализации маршрутизаторов. Анализ виртуальных локальных сетей. Построение сети с привязкой к плану-схеме здания. Программирование коммутатора и конфигурирование сети.

    дипломная работа [1,4 M], добавлен 16.08.2012

  • Шифрование как метод защиты информации. История развития криптологии. Классификация алгоритмов шифрования, симметричные и асимметричные алгоритмы. Использование инструментов криптографии в Delphi-приложениях. Краткая характеристика среды Delphi 7.

    курсовая работа [48,5 K], добавлен 19.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.