Основные платформы ЭВМ и области их использования

Средства разработки офисных приложений: платформы Digital, IBM, Apple, Hewlett-Packard, суперкомпьютеры. Наиболее распространенные конфигурации PC. Характеристика вариантов конфигурации контроллеров. Использование ЭВМ в различных сферах жизнедеятельности.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 12.11.2017
Размер файла 62,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основные платформы ЭВМ и области их использования

Введение

Корпорация Digital Equipment, не когда признанный лидер в области разработки и производства мини-ЭВМ, "опоздала" на рынок IBM-совместимых ПК. Чтобы наверстать упущенное, в конце 80 - начале 90-х годов фирма сосредоточила немалые силы на разработке революционного по тем временам 64-разрядного RISC-процессора Alpha AXP. Эта 64-разрядная суперскалярная архитектура, впервые увидев свет в 1992 г. (133-МГц процессор Alpha 21064), в сочетании с новой полностью 64-разрядной UNIX-подобной операционной системой OSF-1 на какое-то время обеспечила корпорации Digital лидерство в области мощных рабочих станций и серверов, в первую очередь предназначенных для научных расчетов, моделирования, САПР и других отраслей, требующих большого количества вычислений с плавающей точкой.

К сегодняшнему дню на рынок вступает уже третье поколение процессоров Alpha (21264). Их тактовые частоты возросли до 700 МГц, а быстродействие - до 50 и более единиц SPECfp95 (тесты производительности, широко применяемые для оценки скорости выполнения операций с плавающей точкой UNIX-серверами и рабочими станциями). Современные Alpha-серверы и рабочие станции строятся на процессорах 21164 и оснащаются одной из трех операционных систем - Digital UNIX ("наследница по прямой" версии 3.0 OSF-1), Windows NT или OpenVMS.

Особенно важно с точки зрения будущего, что корпорация Intel собирается ввести в состав своего нового 64-разрядного процессора Merced элементы архитектуры Alpha и поддержку ее системы команд, обеспечивая таким образом преемственность и плавное "перетекание" архитектурных решений Digital в огромный мир ПК, рабочих станций и серверов на процессорах Intel.

1.Семейство Alpha-серверов Digital

В конце октября 1997 г. корпорация Digital Equipment объявила о выпуске новых серверов своего 64-разрядного семейства, охватывающего диапазон от серверов для рабочих групп или Web-серверов интрасетей до мощнейших многопроцессорных серверов масштаба предприятия. В начале диапазона находятся однопроцессорные системы AlphaServer 800 с 333-МГц процессором 21164, в конце - серверы AlphaServer 8400, в которые может устанавливаться до 14 процессоров с тактовой частотой 21164 612 МГц.

Все Alpha-серверы могут оснащаться как собственными ОС Digital UNIX или OpenVMS фирмы Digital, так и получающей все более широкое распространение Microsoft Windows NT, причем Alpha - единственная 64-разрядная архитектура, для которой новые версии Windows NT появляются почти одновременно с соответствующими версиями для архитектуры x86. Однако эксплуатационные показатели (например, максимально допустимое число работающих пользователей) при работе в Digital UNIX пока более чем в полтора раза превышают соответствующие показатели для Windows NT.

Каждый представитель семейства AlphaServer оснащается полным комплектом программного обеспечения, необходимого для создания и поддержания полноценного узла Web: это Web-сервер, пакеты создания и редактирования страниц, серверы-посредники, брандмауэры и т.п. Все системы содержат мощный интегрированный инструментальный пакет Digital ServerWORKS, позволяющий легко осуществлять все операции по администрированию сетей и серверов. Кроме того, существуют специальные варианты комплектации моделей AlphaServer 800, 1200 и 4100, работающих под управлением Digital UNIX, как машин для размещения Web-узлов: в этом случае с ними поставляется серверное ПО Netscape SuiteSpot, обеспечивающее создание и администрирование интрасетей и других компьютерных сред на основе Web-технологий.

AlphaServer 800

Эти компактные однопроцессорные системы, построенные соответственно на 500-МГц (модель 5/500) и 333-МГц (модель 5/333) процессорах Alpha 21164, комплектуются 2-Гбайт ОЗУ с ECC, 4,3-Гбайт жесткими дисками UltraSCSI с "горячей" заменой, 12X накопителями CD-ROM, встроенным пультом дистанционного администрирования и др. До шести таких систем могут быть установлены в один стандартный шкаф фирмы Digital. Начальная цена (в США) модели 5/500 составляет около 15,5 тыс. долл., а модели 5/333 - 7,5 тыс. долл.

AlphaServer 1200

Это система, выпускаемая как в одно-, так и в двухпроцессорной конфигурации с 533-МГц (модель 5/533) или 400-МГц (модель 5/400) процессорами 21164. Двухпроцессорный 533-МГц вариант с SMP, оснащенный 2-Гбайт ОЗУ и 4,3-Гбайт диском, стоит менее 17 тыс. долл. Система имеет 256-разрядную шину обмена процессор-память с пропускной способностью более 1 Гбайт/с, контроллер UltraSCSI, встроенный контроллер Ethernet 10/100 Мбит/с. Внутри корпуса предусмотрено место для установки дисков с "горячей" заменой общей емкостью до 30 Гбайт и шесть стандартных гнезд PCI. По тесту SPECweb96, оценивающему производительность UNIX-систем при работе в качестве Web-серверов, однопроцессорный AlphaServer 1200 5/533 заметно превосходит конкурирующие системы аналогичного класса.

AlphaServer 4000 и 4100

Системы AlphaServer 4000 и 4100 могут содержать от одного до четырех процессоров Alpha 21164 с тактовой частотой 533 или 466 МГц, при этом на каждый процессор приходится по 4 Мбайт внешней кэш-памяти. В AlphaServer 4100 предусмотрено 8 гнезд PCI, двухканальный контроллер Ultra Wide SCSI, стандартно устанавливаемый 4,3-Гбайт диск с возможностью расширения внутренней дисковой памяти до 510 Гбайт, 12X накопитель CD-ROM и т.д. Эти серверы среднего уровня с 4 (модель 4000) или 8 (модель 4100) Гбайт оперативной памяти реализуют 64-разрядную технологию "очень большой памяти" (VLM64), которая позволяет во много раз ускорить вычисления, сократить время поиска данных, увеличить число одновременно обслуживаемых пользователей или запросов к Internet. Начальная цена 533-МГц моделей немногим превышает 40 тыс. долл. Во II квартале 1998 г. в эти системы начнут устанавливать 600-МГц процессоры.

AlphaServer 8200 и 8400

Эти самые мощные представители семейства Alpha-серверов Digital не уступают по своим возможностям многим мейнфреймам и даже суперкомпьютерам, при том, что начальная цена двухпроцессорной системы не превышает 120 тыс. долл. Эти серверы могут строиться на 437-МГц (модель 5/440) и 612-МГц (модель 5/625) процессорах 21164, причем в систему 8200 их может устанавливаться до 6, а в 8400 - до 14. Каждый процессор оснащается 4-Мбайт внешней кэш-памятью. Максимальный объем ОЗУ, скорость обмена процессора с которым достигает 1,2 Гбайт/с, для моделей 8200 составляет 12, а для 8400 - 28 Гбайт, максимальная емкость внутренней дисковой памяти - соответственно 364 и 437 Гбайт, внешней - до 85 Тбайт. В системах 8200 может быть до 132, а в системах 8400 - до 144 гнезд PCI плюс до 8 гнезд EISA.

Для этих систем предлагается широчайший выбор контроллеров ввода-вывода, вариантов кластеризации, средств обеспечения высокой готовности и т.д. Их мощность позволяет строить на их основе центры обработки данных крупных предприятий, сверхпосещаемые узлы Web, в частности поисковые системы (одна из самых известных поисковых систем в Internet, AltaVista, построена на базе серверов AlphaServer 8400) и другие вычислительные установки, требующие максимальной производительности.

2.Системная плата для OEM-поставщиков

Для тех компаний-сборщиков, которые хотят освоить сектор рынка ПК наивысшей производительности (или рабочих станций и серверов начального уровня), компания Digital Semiconductor предлагает интересный вариант: системную плату AlphaPC 164LX на базе процессора AlphaPC 21164, позволяющую использовать все стандартные комплектующие изделия, применяемые при сборке обычных ПК - память SDRAM, 32- и 64-разрядные платы PCI, источники питания, корпуса ATX и т.д. - и операционную систему Windows NT.

Плата AlphaPC 164LX может работать с микропроцессорами 21164, имеющими тактовые частоты 466, 533 и 600 МГц. В качестве интерфейса между ЦП, системной памятью, внешним кэшем и шиной PCI используется микросхема 21174. Подсистема памяти на SDRAM позволяет установить в двух 128-разрядных банках один или два 168-контактных модуля DIMM общей емкостью от 32 до 512 Мбайт. Внешний кэш, который в данном случае играет роль кэша третьего уровня (двухуровневый кэш предусмотрен внутри процессора), имеет размер 2 Мбайт и шину 128-разрядную. На плате предусмотрены два 32- и два 64-разрядных гнезда PCI и 2 гнезда ISA (применяется мост PCI-ISA Intel 82378ZB), PCI IDE контроллер CMD PCI0646, универсальный контроллер ввода-вывода SMC FDC37C935, содержащий контроллер НГМД, два УАПП для последовательных портов, параллельный порт, управление мышью и клавиатурой и часы реального времени. BIOS хранится в 1-Мбайт флэш-ПЗУ.

Корпорация IBM, в начале 80-х гг. не в первый (и, будем надеяться, не в последний) раз инициировавшая революцию в области информационных технологий, выпустив IBM PC, не переставала работать и по двум другим основным направлениям - разработке и изготовлению больших машин (мейнфреймов) и малых ЭВМ, предназначенных в первую очередь для обслуживания коммерческих организаций. В 1990 г., следуя за возникшей тогда "модой", фирма создает UNIX-рабочую станцию RS/6000 на RISC-процессоре POWER собственной разработки. Так родилось четвертое направление ее деятельности, интенсивно и весьма успешно развивающееся по сей день. Примерно в тот же период времени линия малых вычислительных систем для бизнеса System/36, развиваемая IBM с середины 70-х гг., была переведена на 64-разрядные процессоры PowerPC AS и под названием AS/400 начала триумфальное шествие по отделам автоматизации крупных и средних компаний. С тех пор "дерево" процессоров с архитектурой POWER и PowerPC сильно разрослось и стало довольно ветвистым, а сама архитектура подверглась значительным усовершенствованиям.

Сохраняя свою репутацию одного из крупнейших разработчиков операционных систем и используя накопленный за прошедшие десятилетия опыт, корпорация IBM "позволяет себе" по каждому из упомянутых четырех направлений своей деятельности иметь отдельную операционную систему: OS/2 для ПК на процессорах x86, MVS для мейнфреймов, AIX для RS/6000 и OS/400 для AS/400.

AS/400

Как с гордостью говорят о ней представители IBM, AS/400 - единственная на сегодняшний день в мире полностью 64-разрядная компьютерная система. Под словом "полностью" подразумевается, что в этой системе абсолютно все компоненты 64-разрядные: процессор, операционная система, СУБД и все прикладные программы. Вообще AS/400 отличается от UNIX-систем аналогичного класса чрезвычайно высокой степенью интеграции всех основных компонентов: СУБД DB2/400 является неотъемлемой частью операционной системы OS/400, а средства обслуживания системных операций и запросов к базе данных реализованы на аппаратном уровне (точнее, на уровне микрокода).

Ориентация в первую очередь на прикладные программы, которая всегда была фундаментальным принципом разработки системы AS/400, определила остроумный и необычный способ ее построения, обеспечивающий практически полную независимость приложений от аппаратной платформы, на которой они работают. Достигается это за счет наличия так называемого независимого от технологии машинного интерфейса, TIMI (Technology Independent Machine Interface) - "прокладки" между ОС и микропрограммным уровнем процессорной подсистемы.

В традиционных системах компиляторы переводят исходные тексты прикладных программ непосредственно в двоичные коды, исполнимые на конкретном процессоре. Поэтому при смене процессора требуется по меньшей мере перекомпиляция приложений, а во многих случаях и переписывание их, с тем чтобы учесть особенности новой платформы. Процесс этот весьма трудоемок и может растягиваться на месяцы и даже годы. Пользователям традиционных компьютерных систем это может показаться невероятным, но в системе AS/400 перевод всех приложений на другую платформу занимает не более одного выходного дня (или ночи) и не требует вмешательства оператора. Такая возможность обеспечивается благодаря тому, что прикладная программа компилируется не в конечный исполнимый код, а в специальный объект, называемый "шаблоном программы" (Program Template), понятный для TIMI, который, в свою очередь, зная особенности аппаратной платформы, переводит его в исполнимый код. Тем самым достигается не только обычная для большинства систем совместимость "снизу вверх", но и крайне необычная совместимость "сверху вниз", которая может оказаться необходимой в крупных организациях, использующих несколько систем AS/400 разных поколений.

Структура системы AS/400

В AS/400 давно уже используются преимущества 64-разрядной адресации и концепции "очень большой (оперативной) памяти" (VLM - very large memory), которые рекламируются сейчас как последнее достижение разработчиками UNIX-систем. Более того, концепция VLM изначально присуща AS/400, в которой все объекты считаются размещенными в одноуровневой памяти и адресуются с помощью 128-разрядных именованных указателей.

Системы AS/400 строятся на трех модификациях 64-разрядного RISC-процессора PowerPC AS - вариации архитектуры PowerPC, учитывающей особенности AS/400, в частности одноуровневую память и необходимость обслуживания коммерческих расчетов (например, команды десятичной арифметики): A10 и A35 для малых и средних систем и A30 c 256-разрядной внутренней шиной данных для систем высшего уровня. Модельный ряд AS/400 простирается от систем стоимостью менее 10 тыс. долл., рассчитанных на 10 -20 пользователей, до больших систем, на которых могут одновременно работать (и тому есть примеры в России) до 2 тыс. пользователей. Эти модели различаются по производительности почти в170 раз. Такая масштабируемость достигается благодаря возможности наращивания практически всех ресурсов системы, в том числе количества системных шин (таких оптоволоконных шин с полосой пропускания более 1 Гбит/с в системе может быть до 19).

Еще одно преимущество AS/400 - чрезвычайно высокий уровень защищенности данных и других системных ресурсов благодаря аппаратной реализации защитных функций. До сих пор не было зафиксировано ни одного случая несанкционированного проникновения в системы AS/400.

Неоценимое для серьезных пользователей из сферы крупного и среднего бизнеса свойство AS/400 - ее высокая надежность. По оценкам независимых консалтинговых компаний, надежность одиночной системы AS/400 составляет 99,8%, что выше надежности не только одиночной UNIX-системы (98,5%), но и кластера таких систем (99,5%). Несмотря на это, недавно появились кластеры AS/400, позволившие поднять надежность до фантастической цифры 99,98% (средняя длительность незапланированного простоя за год - 1,7 ч).

На основании сказанного выше может сложиться впечатление, что AS/400 - некая "вещь в себе", чрезвычайно "закрытая" система. Однако это не так: OS/400 скорее тяготеет к операционным системам "открытого" типа. Она содержит около 90% интерфейсов, определенных спецификацией UNIX-систем SUS (Single UNIX Specification), обеспечивает работу со всеми сетевыми протоколами, определенными для открытых систем (TCP/IP, SNA, IPX и др.), поддерживает стандарты работы с базами данных SQL и ODBC и т.д. Клиентом AS/400 может быть ПК с любой операционной системой. В последних версиях OS/400 предусмотрены все необходимые средства работы с Internet и интрасетями, обеспечивающие доступ через эти сети к традиционным приложениям и базам данных AS/400, причем в качестве клиента может выступать любой ПК с Web-браузером. Нередки случаи использования AS/400 в качестве Web-серверов и серверов для Internet-коммерции. В настоящее время лаборатория AS/400 в Рочестере, шт. Миннесота, ведет работы по аппаратной реализации языка Java.

Системы AS/400 очень хорошо подходят для организации больших распределенных сетей - весьма распространенной ситуации для крупных корпораций и банков (например, сетей, объединяющих центральные управления и множество филиалов крупных банков). Благодаря высокой степени интеграции и однородности программных и аппаратных средств, а также наличию развитых подсистем организации работы многоуровневых сетей с централизованным управлением как встроенных в OS/400, так и автономных AS/400 позволяет заметно сократить эксплуатационные затраты и количество обслуживающего персонала. Существуют работающие сети, состоящие из более чем тысячи серверов AS/400, причем в некоторых из этих систем все серверы и сама сеть управляются из одной точки.

RS/6000

Если системы AS/400 ориентированы в первую очередь на сектор деловых и финансовых расчетов, то RS/6000 - на научные, технические и инженерные расчеты, хотя они и делят с AS/400 часть коммерческого рынка. Системы RS/6000, как и другие подобные семейства, представлены в широком спектре от серверов (или рабочих станций: часто сервером и рабочей станцией может быть одна и та же машина с немного различающимися вариантами комплектации) начального уровня стоимостью менее 10 тыс. долл. до серверов масштаба предприятия и сверхмощных наращиваемых вычислительных систем RS/6000 SP, которые могут объединять до 4096 самостоятельных узлов RS/6000. Существует даже рабочая станция RS/6000, выполненная в виде ноутбука. В системах RS/6000 используются процессоры, принадлежащие к обеим ветвям архитектуры POWER - PowerPC (32-разрядные модели 603e, 604e и 64-разрядная RS64) с симметричной многопроцессорной обработкой (SMP) и 64-разрядный POWER2 SuperChip (P2SC) без SMP. В системах на процессорах PowerPC применяется системная шина PCI, а в системах на P2SC - Micro Channel.

Несмотря на то что эталонная модель архитектуры POWER обязательно реализуется во всех моделях процессоров, внутренние архитектуры и системы команд различных ветвей семейства POWER могут довольно заметно различаться. В результате неизбежно возникает проблема совместимости программного обеспечения. В случае RS/6000 она решается на уровне двоичной совместимости. Существует так называемый общий режим компиляции (Common Mode), обеспечивающий безусловную переносимость полученного исполнимого кода на любую платформу RS/6000. Понятно, что такой код не всегда будет наилучшим образом использовать преимущества конкретной платформы. Если это необходимо, могут использоваться режимы компиляции Power, PowerPC и Power2, создающие исполнимый код с учетом особенностей каждой архитектуры, но и "привязывающие" его к соответствующему процессору. Совместимость различных моделей семейства RS/6000 обеспечивается также единством их операционной среды: на всех машинах RS/6000, от ноутбуков до сверхмощных SP, используется операционная система AIX (ее последняя версия 4.3 появилась сравнительно недавно). Версия AIX 4.3 позволяет старым 32-разрядным и новым 64-разрядным приложениям работать "бок о бок", не мешая друг другу. Она позволяет даже разрабатывать 64-разрядные приложения на 32-разрядных системах RS/6000.

В ОС AIX 4.3 предусмотрены удобные графические средства администрирования систем и сетей с применением HTML, все необходимое для использования Internet-технологий, включая электронную коммерцию, средства разработки Java-приложений и Java-компилятор типа JIT. В ней реализована версия 6 Internet-протокола (IPV6), обеспечивающая более высокую надежность и защищенность передачи данных.

Системы RS/6000 находят широкое применение в самых разных отраслях промышленности, в сферах науки, финансов, в государственных учреждениях. Приведем некоторые примеры. На заводе ГАЗ рабочие станции RS/6000 применялись при проектировании хорошо зарекомендовавшего себя полуторатонного грузовика "Газель"; на ВАЗе они позволили сократить время внедрения 10-й модели "Жигулей" до 2 лет (для такого неповоротливого и консервативного образования, как ВАЗ, этот срок следует признать рекордным). Следуя за ведущими мировыми производителями автотехники, отдающими предпочтение САПР CATIA, работающей на RS/6000, этими системами оснащаются и такие крупнейшие наши автозаводы, как ЗИЛ и УралАЗ. Системы RS/6000 применяются в машиностроении не только в качестве рабочих станций проектировщиков, но и в управлении производством (такие системы, как R/3 и Baan), они находят применение в геологии, геофизике, нефтегазовой и химической промышленности, металлургии, энергетике. Из государственных учреждений, использующих RS/6000 как базу для работы геоинформационных систем и специализированных информационных систем на базе СУБД Oracle, Informix, SyBase и др., можно упомянуть Налоговую инспекцию РФ, ряд областных администраций и министерств.

Приведем характеристики некоторых последних моделей семейства RS/6000, относящихся к различным "весовым категориям".

3.Сервер начального уровня RS/6000 43P Model 140

Эта настольная система стоимостью менее 10 тыс. долл. может служить как графической рабочей станцией, так и сервером для рабочей группы. Она построена на 200-МГц процессоре PowerPC 604e (возможна также установка 233- и 332-МГц вариантов этого процессора), содержит 1-Мбайт вторичный кэш, 64-Мбайт оперативную память с ECC, расширяемую до 768 Мбайт, 2,1-Гбайт SCSI-диск (максимальный объем внутренней дисковой памяти - 18,1 Гбайт, внешней - 873 Гбайт). При использовании в качестве рабочей станции система может комплектоваться одним из трех мощных ускорителей трехмерной графики POWER GXT550P, GXT800P или GXT1000. Предусмотрен также специальный порт для подключения графического планшета.

4.Рабочая станция/сервер среднего класса RS/6000 Model 397

Будучи высокопроизводительной системой двойного назначения (рабочая станция или/и сервер), Model 397 стоимостью около 35 тыс. долл. занимает промежуточное положение между системами начального уровня и серверами масштаба предприятия. Система настольного исполнения построена на одном процессоре POWER2 SC с тактовой частотой 160 МГц и оснащена 128 Мбайт ECC-памятью (с возможностью расширения до 1 Гбайт), 4,5-Гбайт диском (максимальный объем внутренней дисковой памяти 27,3 Гбайт, внешней - 3,4 Тбайт). Несмотря на сравнительно низкую по современным понятиям тактовую частоту, процессор POWER2 SC, оптимизированный для выполнения вычислений с плавающей точкой, демонстрирует показатель SPECfp95, равный 25,8 - больше чем 600-МГц процессор Alpha 21164 (20,8 единиц)! Таким образом, система 397 прекрасно подходит для применений, где требуются большие объемы нецелочисленных расчетов.

5.Сервер масштаба предприятия аRS/6000 Model S70

Эта 64-разрядная система с SMP обеспечивает производительность, наращиваемость и надежность, достаточные для самых требовательных к ресурсам современных систем электронной коммерции. Система Model S70 размещается в двух рядом стоящих блоках - комплексе центральной электроники (CEC), содержащем от одного до трех 64-разрядных 125-МГц 4-процессорных модулей с SMP PowerPC RS64 (таким образом, общее число процессоров в системе может быть равно 4, 8 или 12), и стандартной 19-дюйм стойки ввода-вывода. При необходимости в системе может быть установлено еще до трех таких стоек.

В блоке CEC установлен также высокоскоростной многоканальный коммутатор пакетов, контроллер памяти и два 512-разрядных порта памяти, общая полоса пропускания которых доходит до 2,7 Гбайт/с. Стандартно в системе устанавливается 512-Мбайт память типа SDRAM с ECC, которую можно расширить до 16 Гбайт. В распоряжении каждого процессора имеется 4-Мбайт статическая кэш-память с ECC. Каждая стойка ввода-вывода может содержать до двух выдвижных "ящиков" с устройствами ввода-вывода (всего не более 4 ящиков на систему). Базовый ящик содержит 4,5-Гбайт НЖМД Fast Wide SCSI, 20X накопитель CD-ROM, 1,44-Мбайт НГМД, два SCSI-адаптера PCI и сервисный процессор, причем свободными в нем остаются 11 гнезд для 32- и 64-разрядных PCI-адаптеров, два отсека для устройств памяти различного назначения и 11 отсеков для дисков с "горячей" заменой. Максимальный объем внутренней дисковой памяти составляет 218,4 Гбайт, внешней - 1,3 Тбайт при использовании SCSI-устройств и 14 Тбайт при использовании SSA-устройств.

Ключевой компонент обеспечения высокой готовности системы S70 - отдельный сервисный процессор, который может функционировать даже при полном отказе основной системы, собирая информацию о состоянии и потенциально аварийных условиях в ней. При возникновении подобных ситуаций сервисный процессор может без вмешательства оператора соединиться с сервисным центром и передать туда необходимые данные о системе, после чего специалист может дистанционно принять меры по выведению из эксплуатации "подозрительного" устройства или выполнить другие необходимые операции.

6.Параллельная вычислительная система RS/6000 SP

Наращиваемая параллельная система RS/6000 SP - это самая мощная система на базе RS/6000, предназначенная для самых требовательных к вычислительным ресурсам применений, где необходима переработка колоссальных массивов данных, выполнение огромного объема вычислений в короткие сроки или в реальном масштабе времени и т.п. - в общем, для решения наиболее сложных научных, технических и коммерческих задач. Эти системы используются в финансовом моделировании, вычислительной гидродинамике, численном анализе, системах добычи данных, поддержки принятия решений, он-лайновой обработки транзакций и многих других. Узлы Web более чем 80 крупных компаний и организаций во всем мире строятся на этих системах.

Система SP позволяет "бросить" на выполнение конкретной вычислительной задачи десятки и сотни процессорных узлов одновременно, во много раз сокращая время ее решения. Достаточно сказать, что знаменитая "Deep Blue", выигравшая шахматный матч у чемпиона мира Анатолия Карпова, была не чем иным, как системой RS/6000 SP с 64 узлами.

Базовым элементом структуры SP является процессорный узел, который представляет собой законченную систему RS/6000 на основе процессоров P2SC или PowerPC, работающую под управлением ОС AIX. Предусмотрены три типа узлов - "тонкий" (120- или 160-МГц процессор P2SC, 64-Мбайт ОЗУ, расширяемое до 1 Гбайт, до четырех 4,5-Гбайт НЖМД), "широкий" (135-МГц P2SC, 64-Мбайт/2-Гбайт ОЗУ, дисковая память 4,5/36,4 Гбайт) и "высокий" (2, 4, 6 или 8 200-МГц процессор PowerPC 604e с SMP, 2-Мбайт вторичная кэш-память на процессор, 256-Мбайт/4-Гбайт ОЗУ, дисковая память 4,5/18 Гбайт). Все узлы имеют шину Micro Channel с пропускной способностью 160 Мбайт/с (высокий узел - две такие шины) с разным количеством свободных гнезд: 2 для "тонкого", 7 для "широкого" и 14 для "высокого" узлов. Узлы трех типов могут в различных комбинациях устанавливаться в низкие или высокие стойки. В высокую стойку в зависимости от их типов может быть установлено до 16 узлов. Стойки соединяются между собой, образуя систему из максимально 128 узлов (по специальному заказу может устанавливаться до 512 узлов), причем только 64 из них могут быть "высокими" (SMP) узлами.

Узлы объединяются между собой с помощью многоканального коммутатора, имеющего пропускную способность 110 Мбайт/с между любой парой узлов. Систему можно разбить на функционально законченные совокупности узлов, например, два узла могут работать в качестве сервера Lotus Notes, а десять других - обрабатывать параллельную базу данных. Разумеется, в системе SP предусмотрен максимум средств обеспечения высокой надежности и готовности: избыточные источники питания, RAID-диски, сервисные процессоры и т.п.

Системный администратор управляет всей параллельной системой с одного пульта, называемого управляющей рабочей станцией, которая представляет собой систему RS/6000 с программным обеспечением поддержки параллельных систем PSSP, позволяющим выполнять все задачи по администрированию системы SP.

Самая большая система RS/6000 SP установлена в Лаборатории Лоуренса Ливермора Министерства энергетики США. Она состоит из 4096 узлов. После ожидаемого в 1998 г. перевода ее на новое поколение процессоров POWER3, которые уже объявлены к выпуску фирмой IBM, она будет выполнять 3 триллиона операций с плавающей точкой в секунду и станет, как предполагается, самым быстродействующим компьютером в мире.

Современные "Маки" мало похожи на те компьютеры, которые когда-то поразили воображение основателей Apple в исследовательских лабораториях Xerox. Но за все годы своего существования Macintosh не утерял главного - любовь своих пользователей.

Как известно, Macintosh - это не компьютер, это религия. Привязанность пользователей к своим "Макам" не имеет никакого разумного объяснения, но именно это обстоятельство позволило Apple пережить самые тяжелые времена, когда, казалось бы, крах неизбежен. Сегодня Apple обрела относительную финансовую стабильность и в значительной мере обновила свои изделия. Если всего полгода назад многим пользователям Macintosh казался компьютером, отставшим в развитии от Windows-совместимых ПК по меньшей мере на полтора-два года, то современные "Маки" вполне способны составить продукции Wintel достойную конкуренцию.

Технологические новинки, которые появились в течение прошедшего года, можно перечислять очень долго. Здесь и 350-МГц системы, и Mac OS 8, и совсем новые компьютеры на базе процессора PowerPC G3. Чтобы подробно их описать, не хватит не только этого, но и, пожалуй, еще двух-трех номеров журнала, поэтому мы ограничимся лишь кратким описанием современных моделей Macintosh.

Заметим сразу, что "комплектность" моделей у Apple идет по нарастающей, и если в одной из систем появилось некое устройство, то, значит, все последующие тоже будут им оснащены. Во избежание повторений функциональные возможности такого рода описываются лишь один раз, в той модели, в которой они впервые появляются.

По всей видимости, Apple и IBM все еще придерживаются общего подхода к ОС Unix: обе компании поддерживают среду Power Open, которая будет основываться на версии AIX ОС Unix компании IBM. Стремясь придать мощный импульс продвижению семейства процессоров PowerPC, компании IBM и Apple Computer, согласно источникам, близким к обеим компаниям, сделали еще несколько шагов к тому, чтобы объединиться для поддержки единого стандарта на аппаратные средства. Хотя соглашение еще не получило окончательного оформления, утверждают, что эта сделка одобрена в принципе, и ее заключение - лишь вопрос времени.

В настоящее время IBM и Apple придерживаются различных подходов к созданию PowerPC-систем. Вновь объявленные Macintosh на PowerPC компании Apple работают с ОС System 7 и используют шинную архитектуру Nubus, в то время как системы, подготавливаемые к выпуску группой Power Personal Systems компании IBM и другими поставщиками, будут отвечать спецификациям эталонной PowerPC-платформы (PowerPC Reference Platform - Prep). В платформах Prep используется шина PCI. IBM не будет поддерживать System 7.

"Общая платформа Prep означает серьезные компромиссы для обеих компаний", - заявил один из источников, близких к переговорам, просивший не называть его имени. Он и другие обозреватели полагают, что окончательное согласование деталей единой платформы, вероятно, произойдет позднее в этом году.

Единая платформа настольных PowerPC-ПК предоставит пользователям преимущества стандартных аппаратных средств, в том числе сниженные цены на системы, более широкий выбор поставщиков, обширный рынок программных средств и улучшенную совместимость. Кроме того, по мнению аналитиков, она значительно усилит позиции PowerPC в борьбе против Intel, в особенности если даст пользователям возможность выполнять свои программы, не заботясь о несовместимости аппаратуры.

"Смогут ли системы IBM работать с ОС System 7? - спрашивает Рэндэл Джуйсто (Randal Giusto), аналитик из компании BIS Strategic Decisions (Норвелл, шт. Массачусетс). - Если это возможно, то такая договоренность, безусловно, в интересах как конечных пользователей, так и независимых поставщиков программных средств". "Единая стратегия будет большим благом, - считает Рич Дэвис (Rich Davis), консультант по техническим вопросам компании Pacific Bell (Сакраменто, шт. Калифорния). - Мы имеем дело с организациями, часть которых использует системы Apple, а другие - машины с MS-DOS. Возможно, что они придут к одной и той же промежуточной платформе". Дэвис сообщил, что его фирма интересуется работами IBM по проекту PowerPC, рассчитывая сопоставить этот процессор по критерию цена/производительность с Pentium. Питер Хатсук (Pieter Hartsook), редактор бюллетеня "The Hartsook Letter", полагает, что компании Apple следовало бы создать платформу, которая позволяла бы применять ОС System 7 на машинах IBM. "Им необходимо исключить продукты Microsoft из состава PowerPC-платформы, - заметил Хатсук. - Уже имеется платформа Intel". В области программного обеспечения вскоре может быть сделан решающий шаг вперед. По имеющимся сведениям, в настоящее время между Apple и IBM ведутся переговоры о предоставлении фирмой IBM лицензии на свое микроядро WorkPlace OS компании Apple, которая затем дополнит его оболочкой, включающей ее собственный интерфейс и служебные программы. "В последнее время IBM и Apple вели длительные переговоры и не только о платформе Prep, но и о программном обеспечении, - сообщил один из источников, близких к переговорам. - Они поняли, что нужны друг другу". Переговоры между партнерами по PowerPC-альянсу, включая компанию Motorola, проходили, мягко говоря, не в очень дружеской атмосфере, в частности вновь в этом году создалась тупиковая ситуация, что заставило Apple временно покинуть стол переговоров. Для обозревателей это не было неожиданностью. Представитель Apple заявил: "Мы продолжаем вести с IBM переговоры о дополнении эталонной PowerPC-платформы особенностями, свойственными Macintosh, и передовыми технологиями с целью создать новое определение ПК". Он добавил, что Apple, как и было объявлено в прошлом году, заменит в системах следующего поколения Power Macintosh шинную архитектуру Nubus на архитектуру PCI, предусмотренную в платформе Рrep. Если Apple успеет захватить значительную долю рынка системами Power Macintosh прежде чем IBM займет его часть собственными PowerPC-системами, то компания может добиться за столом переговоров некоторых компромиссов в отношении архитектуры.

"Я полагаю, что IBM будет непросто продвинуть PowerPC-системы во все секторы рынка, за исключением систем для крупных предприятий, где Apple в конечном итоге потребуется помощь, - сказал Вилл Захманн (Will Zachmann), президент компании Canopus Research (Дуксбери, шт. Массачусетс). - Но настольные системы Apple сможет продавать в больших количествах без особых хлопот".

Кроме того, разрабатывается мостовое устройство, которое позволит использовать настольные PowerPC-системы обеих компаний. Хатсук заметил, что необходимость быстрого выхода на рынок может подтолкнуть Apple в качестве кратковременного решения перенести ОС System 7 на первые PowerPC-системы IBM.

Архитектура Hewlett-Packard PA-RISC не случайно пользуется славой одной из самых совершенных вычислительных платформ - многие идеи, которые сегодня воспринимаются как нечто само собой разумеющееся, впервые были реализованы именно в процессрах HP.

Первоначально перед проектировщиками PA-RISC стояла задача разработать универсальную архитектуру, которая будет охватывать три основных семейства изделий HP: бизнес-компьютеры HP3000, высокопроизводительные серверы и рабочие станции серии HP9000, а также контроллеры HP1000. Эффективность выполнения операций с плавающей точкой поначалу не слишком беспокоила создателей PA-RISC (тогда этот проект носил кодовое название Spectrum; наименование Precision Architecture, HP-PA, или просто PA, он получил несколько позже). Однако впоследствии эволюция этой архитектуры пошла по иному пути, и сегодня PA-RISC пользуется репутацией одной из самых совершенных вычислительных платформ.

Очевидно, что разработать систему, которая будет обладать высоким быстродействием при выполнении вычислений с плавающей точкой, - задача далеко не тривиальная. На ее решение пока не замахивалась даже Intel, предпочитая совершенствовать функциональные модули выполнения целочисленных операций (один из самых наглядных тому примеров - технология MMX). Кстати, даже при беглом знакомстве с PA-RISC становится очевидно, как много ее особенностей переняли разработчики Intel, создававшие Pentium Pro и Pentium II, - это и большой (до 1 Мбайт) кэш первого уровня, и многокристальная конструкция, при которой кэш функционирует на тактовой частоте процессора, и предиктивное исполнение команд программы (с изменением порядка их следования).

Первым процессором с архитектурой PA-RISC считается PA-7100. Этот ЦП был выполнен по многокристальной технологии, где кэш-память была вынесена за пределы основного кристалла. Такое решение позволило значительно увеличить ее емкость, однако усложнило технологию производства ЦП. Тактовая частота PA-7100, который изготавливался по 0,8-мкм технологии, составляла 125 МГц, на кристалле размером 14x14 мм было размещено 850 тыс. транзисторов. Производительность PA-7150 достигала 136 SPECint92 и 201 SPECfp92.

Несколько позже был выпущен процессор PA-7100LC в нескольких вариантах, рассчитанных на тактовые частоты 60, 80 и 100 МГц, а затем - PA-7200, который изготавливался по 0,5-технологии мкм и содержал уже 1,3 млн. транзисторов при практически неизменной площади кристалла (14x15 мм). Первым процессором PA-RISC, в котором все компоненты процессора были расположены на одном кристалле, стал ЦП PA-7300LC.

В марте 1995 г. был анонсирован процессор PA-8000/. Это последний процессор, в котором "глобально" была изменена архитектура PA-RISC. Несмотря на то что совсем недавно появились процессоры PA-8200 и PA 8500, ЦП PA-9000 мы уже не увидим - в планах HP после PA-8500 следует Merced - 64-разрядный процессор, проектируемый фирмой HP совместно с Intel.

В то же время, PA-8000 - это первый полностью 64-разрядный процессор семейства PA-RISC. Последующие модели - PA-8200 и PA-8500 - в основном развивают его функциональную схему. Значительная производительность процессоров семейства PA-8x00 объясняется прежде всего высокой степенью параллелизма, изначально заложенного в их конструкцию.

Их архитектура предусматривает наличие большого числа исполнительных устройств: два АЛУ, выполняющих целочисленные операции, два устройства для сдвига и слияния данных, два для умножения и сложения чисел с плавающей точкой, два для деления и вычисления квадратного корня и два для загрузки и записи.

Как уже говорилось, в известных пределах ЦП PA-8000 способны выполнять команды не в их "естественном" порядке, а так, как их сгруппировали блоки управления загрузкой отдельных устройств. В каждом такте процессора могут выполняться до четырех команд, которые затем поступают в 56-строчный буфер переупорядочивания, IRB. Он позволяет избежать ситуации, когда основные функциональные устройства процессора оказываются незагруженными. IRB состоит из двух блоков по 28 строк каждый; в одном буферизуются команды, предназначенные для целочисленных блоков или устройств вычислений с плавающей точкой, а в другом - команды загрузки регистров/записи в память. ЦП способен одновременно анализировать все команды, содержащиеся в буфере переупорядочивания, и в каждом такте подавать до четырех готовых для выполнения команд на входы соответствующих АЛУ. Процессоры PA-8000 содержат полный набор средств выполнения 64-разрядных операций, включая адресную арифметику, а также арифметику с фиксированной и плавающей точкой.

В РА-8000 используются сразу два метода предсказания условных переходов: статический, основанный на неких "известных" процессору правилах, и динамический, основанный на анализе таблицы истории переходов BHT (Branch History Table).

Отличительной особенностью PA-RISC всегда считался большой кэш, в PA-8000 его емкость составляет 0,5 Мбайт для команд и 1 Мбайт для данных. Доступ к двум банкам кэша производится через буфер переупорядочивания адресов (ARB). Поступающие в него адреса, которые были вычислены модулями сумматора адресов, располагаются в соответствии с заранее известными приоритетами, а затем передаются в заданное АЛУ.

Еще одна интересная особенность процессоров PA-8x00 - наличие Multimedia Acceleration Extension (MAX), специального подмножества команд, предназначенного для повышения производительности при выполнении мультимедиа-программ (нужно оговориться, что HP вкладывает в этот термин несколько иной смысл - это не столько аудио- или видеоклипы, а любая информация, которой присущ некий внутренний порядок, позволяющий упростить ее обработку, например, матрицы).

Кристалл PA-8000 изготовлен по 0,5-мкм CMOS-технологии, напряжение питания составляет 3,3 В, а тактовая частота - 180 МГц.

Процессор PA-8200, анонсированный в конце 1996 г., отличается прежде всего более высокой тактовой частотой (от 200 МГц). Кроме того, в два раза увеличилась емкость кэш-памяти команд и данных (до 2 Мбайт), емкости буферов TLB (с 96 до 120 строк) и BHT (c 256 до 1024). В результате внесенных в PA-8200 изменений удастся повысить производительность приложений на 35-75% (эти и нижеследующие оценки производительности относятся к тактовой частоте 220 МГц).

ЦП PA-8500 - самый новый в семействе PA-RISC. Этот ЦП изготавливается по 0,25-мкм, технологии что позволило увеличить тактовую частоту и емкость кэш-ОЗУ первого уровня.

Все компьютеры HP делятся на "классы", которые могут содержать несколько моделей. Четкую грань между разными семействами провести достаточно трудно, поскольку почти всегда "маломощную" модель можно "нарастить" до самой производительной и обратно. Поэтому в дальнейшем мы (как и HP) будем использовать только понятие "класса", подразумевая определенное постоянство комплектности системы, в пределах которой могут варьироваться лишь тип или быстродействие ЦП, некоторые компоненты графической подсистемы, объем ОЗУ и накопителей.

7.Супер-компьютеры

Архитектура современных суперЭВМ

Диалектическая спираль развития компьютерных технологий совершила свой очередной виток - опять, как и десять лет назад, в соответстви и с требованиями жизни, в моду входят суперкомпьютерные архитектуры. Безусловно, это уже не те монстры, которые помнят ветераны - новые технологии и требовательный рынок коммерческих применений существенно изменили облик современного суперкомпьютера, Теперь это не огромные шкафы с уникальной аппаратурой, вокруг которой колдуют шаманы от информатики, а вполне эргономичные системы с унифицированным программным обеспечением, совместимые со своими младшими собратьями.

Что такое суперЭВМ? Компьютеры с производительностью свыше 10 000 млн. теоретических операций в сек. (MTOPS), согласно определению Госдепартамента США, считаются суперкомпьютерами.

Следует отметить и другие основные признаки, характеризующие суперЭВМ, среди которых кроме высокой производительности:

* самый современный технологический уровень (например, GaAs-технология);

* специфические архитектурные решения, направленные на повышение быстродей- ствия (например, наличие операций над векторами);

* цена, обычно свыше 1-2 млн. долл.

Вместе с тем, существуют компьютеры, имеющие все перечисленные выше характеристики суперЭВМ, за исключением цены, которая для них составляет от нескольких сотен до 2 млн. долларов. Речь идет о мини-суперЭВМ, обладающим высокой производительностью, уступающей, однако, большим суперЭВМ. При этом у минисуперкомпьютеров, как правило, заметно лучше соотношение цена/производительность и существенно ниже эксплуатационные расходы: система охлаждения, электропитания, требования к площади помещения и др. С точки зрения архитектуры минисуперкомпьютеры не представляют собой некоторое особенное направление, поэтому в дальнейшем они отдельно не рассматриваются.

Сферы применения суперкомпьютеров

Для каких применений нужна столь дорогостоящая техника? Может показаться, что с ростом производительности настольных ПК и рабочих станций, а также серверов, сама потребность в суперЭВМ будет снижаться. Это не так. С одной стороны, целый ряд приложений может теперь успешно выполняться на рабочих станциях, но с другой стороны, время показало, что устойчивой тенденцией является появление все новых приложений, для которых необходимо использовать суперЭВМ.

Прежде всего следует указать на процесс проникновения суперЭВМ в совершенно недоступную для них ранее коммерческую сферу. Речь идет не только скажем, о графических приложениях для кино и телевидения, где требуется все та же высокая производительность на операциях с плавающей запятой, а прежде всего о задачах, предполагающих интенсивную (в том числе,и оперативную) обработку транзакций для сверхбольших БД. В этот класс задач можно отнести также системы поддержки принятия решений и организация информационных складов. Конечно, можно сказать, что для работы с подобными приложениями в первую очередь необходимы высокая производительность ввода-вывода и быстродействие при выполнении целочисленных операций, а компьютерные системы, наиболее оптимальные для таких приложений, например, MPP-системы Himalaya компании Tandem, SMP-компьютеры SGI CHAL ENGE, AlphaServer 8400 от DEC - это не совсем суперЭВМ. Но следует вспомнить, что такие требования возникают, в частности, со стороны ряда приложений ядерной физики, например, при обработке результатов экспериментов на ускорителях элементарных частиц. А ведь ядерная физика - классическая область применения суперЭВМ со дня их возникновения.

Как бы то ни было, наметилась явная тенденция к сближению понятий "мэйнфрейм", "многопроцессорный сервер" и "суперЭВМ". Нелишне заметить, что это происходит на фоне начавшегося во многих областях массированного перехода к централизации и укрупнению в противоположность процессу разукрупненияи децентрализации.

Традиционной сферой применения суперкомпьютеров всегда были научные исследования: физика плазмы и статистическая механика, физика конденсированных сред, молекулярная и атомная физика, теория элементарных частиц, газовая динамика и теория турбулентности, астрофизика. В химии - различные области вычислительной химии: квантовая химия (включая расчеты электронной структуры для целей конструирования новых материалов, например, катализаторов и сверхпроводников), молекулярная динамика, химическая кинетика, теория поверхностных явлений и химия твердого тела,конструирование лекарств. Естественно, что ряд областей применения находится на стыках соответствующих наук, например, химии и биологии, и перекрывается с техническими приложениями. Так, задачи метеорологии, изучение атмосферных явлений и, в первую очередь, задача долгосрочного прогноза погоды, для решения которой постоянно не хватает мощностей современных суперЭВМ, тесно связаны с решением ряда перечисленных выше проблем физики. Среди технических проблем, для решения которых используются суперкомпьютеры, укажем на задачи аэрокосмической и автомобильной промышленности, ядерной энергетики, предсказания и разработки месторождений полезных ископаемых, нефтедобывающей и газовой промышленности (в том числе проблемы эффективной эксплуатации месторождений, особенно трехмерные задачи их исследования), и, наконец, конструирование новых микропроцессоров и компьютеров, в первую очередь самих суперЭВМ.

Суперкомпьютеры традиционно применяются для военных целей. Кроме очевидных задач разработки оружия массового уничтожения и конструирования самолетов и ракет, можно упомянуть, например, конструирование бесшумных подводных лодок и др. Самый знаменитый пример - это американская программа СОИ. Уже упоминавшийся MPP-компьютер Министерства энергетики США будет применяться для моделирования ядерного оружия, что позволит вообще отменить ядерные испытания в этой стране.

Анализируя потенциальные потребности в суперЭВМ существующих сегодня приложений, можно условно разбить их на два класса. К первому можно отнести приложения, в которых известно, какой уровень производительности надо достигнуть в каждом конкретном случае, например, долгосрочный прогноз погоды. Ко второму можно отнести задачи, для которых характерен быстрый рост вычислительных затрат с увеличением размера исследуемого объекта. Например, в квантовой химии неэмпирические расчеты электронной структуры молекул требуют затрат вычислительных ресурсов, пропорциональных N^4 или И^5, где N условно характеризует размер молекулы. Сейчас многие молекулярные системы вынужденно исследуются в упрощенном модельном представлении. Имея в резерве еще более крупные молекулярные образования (биологические системы, кластеры и т.д.), квантовая химия дает пример приложения, являющегося "потенциально бесконечным" пользователем суперкомпьютерных ресурсов.

Есть еще одна проблема применения суперЭВМ, о которой необходимо сказать - это визуализация данных, полученных в результате выполнения расчетов. Часто, например, при решении дифференциальных уравнений методом сеток, приходится сталкиваться с гигантскими объемами результатов, которые в числовой форме человек просто не в состоянии обработать. Здесь во многих случаях необходимо обратиться к графической форме представления информации. В любом случае возникает задача транспортировки информации по компьютерной сети. Решению этого комплекса проблем в последнее время уделяется все большее внимание. В частности, знаменитый Национальный центр суперкомпьютерных приложений США (NCSA) совместно с компанией Silicon Graphics ведет работы по программе "суперкомпьютерного окружения будущего". В этом проекте предполагается интегрировать возможности суперкомпьютеров POWER CHALLENGE и средств визуализации компании SGI со средствами информационной супермагистрали.

Архитектура современных суперЭВМ

Приведем классическую систематику Флинна.

В соответствии с ней, все компьютеры делятся на четыре класса в зависимости от числа потоков команд и данных. К первому классу (последовательные компьютеры фон Неймана) принадлежат обычные скалярные однопроцессорные системы: одиночный поток команд - одиночный поток данных (SISD). Персональный компьютер имеет архитектуру SISD, причем не важно, используются ли в ПК конвейеры для ускорения выполнения операций.

Второй класс характеризуется наличием одиночного потока команд, но множественного nomoka данных (SIMD). К этому архитектурному классу принадлежат однопроцессорные векторные или, точнее говоря, векторно-конвейерные суперкомпьютеры, например, Cray-1. В этом случае мы имеем дело с одним потоком (векторных) команд, а потоков данных - много: каждый элемент вектора входит в отдельный поток данных. К этому же классу вычислительных систем относятся матричные процессоры, например, знаменитый в свое время

ILLIAC-IV. Они также имеют векторные команды и реализуют векторную обработку, но не посредством конвейеров, как в векторных суперкомпьютерах, а с помощью матриц процессоров.


Подобные документы

  • Характеристика предприятия, оценка его конкурентоспособности. Экономическая безопасность предприятия. Сущность и задачи розничной торговли. Виды переоценки. Адаптация платформы 1С:Предприятие. Структура конфигурации. Режим проведения торговых операций.

    дипломная работа [1,2 M], добавлен 14.01.2012

  • Разработка на основе экономической информационной системы (на примере платформы "1С: Предприятие 8") конфигурации для учета продаж в студенческом киоске. Интеграция соответствующих прикладных решений (конфигураций) программы в универсальной рабочей среде.

    курсовая работа [3,3 M], добавлен 21.06.2023

  • Понятие объектов конфигурации как составных элементов, из которых складывается прикладное решение. Состав основных объектов конфигурации, поддерживаемых технологической платформой "1С: Предприятие", и их характеристика. Анализ свойств конфигурации.

    презентация [1,9 M], добавлен 12.06.2013

  • Обзор существующих технологий разработки программного обеспечения. Описание платформы NET Framework. Принцип работы платформы: компиляция исходного кода; процесс загрузки и исполнения кода; IL-код и верификация. Новые возможности платформы NET Framework.

    реферат [30,7 K], добавлен 01.03.2011

  • Исследование и верификация системы на архитектурном и алгоритмическом уровне. Аппаратная эмуляция, контроль эквивалентности. Аналоговое и смешанное моделирование систем на кристалле. Матрица конфигурации Questa, обобщенная структурная схема платформы.

    контрольная работа [274,4 K], добавлен 18.01.2014

  • Google Android как программный стек для мобильных устройств, который включает операционную систему, программное обеспечение промежуточного слоя и пользовательские приложения. Структура платформы и ее основные элементы: ядро, программы, каркас приложений.

    реферат [600,4 K], добавлен 08.01.2015

  • Отличительные черты смартфонов и коммуникаторов от обычных мобильных телефонов, их дополнительные возможности. Назначение и конфигурация платформы J2ME, ее функции. Порядок проектирования приложения для мобильного телефона на основе платформы J2ME.

    дипломная работа [3,6 M], добавлен 05.09.2009

  • Комплексный подход к организации ИТ-операций. Упрощение ИТ-инфраструктуры и сокращение расходов. Повышение производительности приложений. Конфигурации серверов IBM, их характеристика. Дополнительное оборудование для сервера, программное обеспечение.

    курсовая работа [1,4 M], добавлен 25.03.2015

  • Понятие и характеристика основных систем электронных платежей, используемые методики и средства. Порядок и основные принципы создания соответствующей платформы. Главные показатели ее производительности, оценка значения на современном этапе и перспективы.

    презентация [264,0 K], добавлен 30.05.2014

  • Знакомство с особенностями и этапами разработки приложения для платформы Android. Рассмотрение функций персонажа: бег, прыжок, взаимодействие с объектами. Анализ блок-схемы алгоритма генерации платформ. Способы настройки функционала рабочей области.

    дипломная работа [3,4 M], добавлен 19.01.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.