Оперативные запоминающие устройства персонального компьютера

Устройства для хранения информации. Структура оперативных запоминающих устройств. Долговременное хранение: параметры диска; назначение дорожки, сектора, кластера. Программы для обслуживания диска: форматирование, сканирование, дефрагментация, очистка.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 03.03.2017
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.Allbest.ru/

Содержание

Введение

1. Понятие хранения информации. Виды и устройства для хранения

2. Оперативное хранение, структура ОЗУ, назначение ячейки и разряда (бита). Минимальный объем информации, хранимой в ОЗУ

3. Долговременное хранение, виды устройств такого хранения

4. Виды и структура диска. Назначение дорожки, сектора, кластера. Основные параметры диска

5. Программы для обслуживания диска: форматирование, сканирование, дефрагментация, очистка. Назначение этих действий и программ для их выполнения

Заключение

Список использованной литературы

Введение

Мы живем в веке, в котором человек стремится использовать каждую минуту максимально продуктивно, каждый из нас все больше и больше требователен к технике, которой пользуется ежедневно. Ведь именно она должна отвечать требованиям современного человека, то есть записывающие устройства должны иметь высокую скорость обработки и записи данных, а с увеличением огромного количества информации это становится все труднее.

Сегодня во всем мире трудно представить область, какой либо человеческой жизнедеятельности, где не используется компьютерные технологии. Каждый человек, работа которого каким бы то ни было образом связана с компьютером, должен хотя бы приблизительно представлять устройство и принцип работы ПК.

Устройства памяти являются одним из основных составляющих персонального компьютера, предназначенные для хранения программ и обрабатываемых данных. Различают устройства внешней и внутренней памяти, каждые из которых отличаются своими принципами действия и характеристиками.

В своей работе я предлагаю рассмотреть различные запоминающие устройства персонального компьютера. Провести сравнения по видам оперативной памяти, выявить преимущества и недостатки, сделать выводы.

1. Понятие хранения информации. Виды и устройства для хранения

Хранение информации - это ее запись во вспомогательные запоминающие устройства на различных носителях для последующего использования.

Хранение является одной из основных операций, осуществляемых над информацией, и главным способом обеспечения ее доступности в течение определенного промежутка времени.

Основное содержание процесса хранения и накопления информации состоит в создании, записи, пополнении и поддержании информационных массивов и баз данных в активном состоянии.

В результате реализации такого алгоритма, документ, независимо от формы представления, поступивший в информационную систему, подвергается обработке и после этого отправляется в хранилище (базу данных), где он помещается на соответствующую "полку" в зависимости от принятой системы хранения. Результаты обработки передаются в каталог.

Устройства хранения информации делятся на 2 вида:

- внешние (периферийные) устройства;

- внутренние устройства Ефимова О. Практикум по компьютерной технологии / О. Ефимова, В. Морозова. - М.: АБФ, 1998. С.- 343.

К внешним устройствам относятся магнитные диски, CD, DVD, BD, cтримеры, жесткий диск (винчестер), а также флэш-карта. Внешняя память дешевле внутренней, создаваемой обычно на основе полупроводников. Кроме того, большинство устройств внешней памяти может переноситься с одного компьютера на другой. Главный их недостаток в том, что они работают медленнее устройств внутренней памяти.

К внутренним устройствам относятся оперативная память, кэш-память, CMOS-память, BIOS. Главным достоинством является скорость обработки информации. Но в то же время устройства внутренней памяти довольно дорогостоящи.

В любом компьютере обязательно есть устройства, которые хранят информацию. Устройства хранения информации в компьютере разделяются на оперативную память (память, которая нужна для хранения промежуточных результатов вычислений) и долговременную -- здесь хранятся файлы (определение довольно грубое но, суть отражает верно).

В оперативной памяти компьютера любая информация хранится только до выключения компьютера. Если вам нужно сохранить документ и вернуться к работе над ним завтра, его нужно записать на долговременное устройство хранения, обычно - на диск. Вот самые распространенные типы дисков и устройств хранения.

1. Дискеты: 3,5-дюймовые дискеты емкостью 1,44 Мбайт когда-то были «вездесущим» средством хранения информации, но сейчас они безнадежно устарели. Можете считать, что дисковод для них в вашем компьютере необязателен.

2. Карты памяти SD/xD/MS: даже сейчас, после ухода дискет со сцены, во многих корпусах компьютеров есть отсек, предназначенный для установки дисководов. Почему бы не установить в этот отсек считыватель для карт памяти? С помощью этого считывателя вы можете считывать данные с карт памяти для фотоаппаратов (и записывать тоже). Устройства для работы с картами памяти (кардридеры - дословно «читатель карт») стоят очень недорого, и обычные кардридеры позволят работать со множеством разных карт - SD, xD, CF, Memory Stick и т.д.

3. Жесткие диски, или винчестеры: купите самый емкий жесткий диск, какой сможете себе позволить. Цифровые фотографии всегда занимают больше места, чем вы рассчитывали, а музыкальная коллекция вашего сына наверняка занимает больше, чем весь архив ЦРУ. Хотя в целом считается, что более дорогие жесткие диски надежнее дешевых, индивидуальные результаты бывают разными, и трудно утверждать что-то наверняка. Глушаков С.В., Мельников И.В. «Персональный компьютер. Учебный курс» Издательство «АСТ» Москва

Быстродействие, т.е. скорость, с которой жесткий диск записывает и считывает данные, менее важно, чем емкость. Быстродействие станет более важным, если вы будете регулярно работать с большими объемами данных, например с видеозаписями. Однако стоит подумать о том, чтобы за несколько дополнительных долларов купить винчестер с новым интерфейсом SATA этот интерфейс быстро приходит на смену устаревшему и более медленному IDE (также известному как ATA или PATA). Кроме того, кабели SATA уже и гибче, чем широкие и неудобные кабели IDE.

Также обратите внимание на внешние жесткие диски, которые обычно подключаются к компьютеру через USB-кабель (внешние жесткие диски). Они работают почти так же быстро, как внутренние жесткие диски, и их можно подключать к компьютеру и отключать по мере необходимости. Кроме того, они не вносят своего вклада в нагрев, что находится в корпусе компьютера.

Если вы покупаете новый винчестер, пусть его установит в компьютер продавец. При установке жесткого диска нужно обращать внимание на ряд мелочей, малопонятных неспециалисту.

4. Приводы CD и DVD: эти приводы позволяют читать и записывать диски с различной информацией (от текстовых документов до музыки и видео) на обычные компакт-диски (CD) помещается порядка 700 Мбайт данных; на DVD помещается порядка 4,5 Гбайт, а на двухслойные DVD - около 8 Гбайт. Не жадничайте - купите себе привод, поддерживающий двухслойные DVD (DVD+RW DL), даже если двухслойные диски дорого стоят. Если вы не знаете, как установить этот привод, купите себе внешний USB-вариант - Windows отлично работает с такими приводами.

Многие старые CD-проигрыватели (например, в музыкальных центрах или автомагнитолах) не могут читать перезаписываемые диски (CD-RW). Для таких приводов нужны однократно записываемые CD (CD-RW).

Если вы хотите записывать на новом компьютере диски CD или DVD и затем проиграть их на устройствах, которые у вас уже есть, лучше перед покупкой запишите тестовый диск и проверьте, будет ли он нормально воспроизводится. Многие дешевые DVD-проигрыватели запросто могут работать с дисками, целиком заполненными MP3-музыкой. Однако есть модели, и среди дорогих - которые не воспринимают такие диски совсем. Единственный способ проверить возможности вашего проигрывателя -- провести эксперимент.

5. USB флеш-накопители: замечательные вещи! Размером с пачку жевательной резинки и при этом способны вместить море данных. Существуют флеш-накопители емкостью 16 Гбайт и более - это несколько DVD-дисков. Кроме того, эти устройства не боятся ударов и магнитных полей, а возможность подключения через порт USB означает минимум возни с ними при переносе данных между разными компьютерами. Windows обнаруживает такой накопитель сразу после его подключения к порту USB. Выбирая такой флеш-накопитель определенного объема, берите самый дешевый: в более дорогих моделях того же объема обычно добавляются малоиспользуемые возможности Ефимова О. Практикум по компьютерной технологии / О. Ефимова, В. Морозова - М.: АБФ, 1998.

Приведенный выше список отнюдь не является исчерпывающим - существует множество более экзотических устройств хранения информации: магнитооптические, ленточные накопители и т.д.

2. Оперативное хранение, структура ОЗУ, назначение ячейки и разряда (бита). Минимальный объем информации, хранимой в ОЗУ

Сокращенно оперативную память компьютера называют ОЗУ (оперативное запоминающее устройство) или RAM (random access memory - память с произвольным доступом).

Название RAM более точно отражает строение и назначение устройства.

Назначение ОЗУ

Хранение данных и команд для дальнейшей их передачи процессору для обработки. Информация может поступать из оперативной памяти не сразу на обработку процессору, а в более быструю, чем ОЗУ, кэш-память процессора.

Хранение результатов вычислений, произведенных процессором.

Считывание (или запись) содержимого ячеек.

Особенности работы ОЗУ

Оперативная память может сохранять данные лишь при включенном компьютере. Поэтому при его выключении обрабатываемые данные следует сохранять на жестком диске или другом носителе информации. При запуске программ информация поступает в ОЗУ, например, с жесткого диска компьютера. Пока идет работа с программой она присутствует в оперативной памяти (обычно). Как только работа с ней закончена, данные перезаписываются на жесткий диск. Глушаков С.В., Мельников И.В. «Персональный компьютер. Учебный курс» Издательство «АСТ» г. Москва, 2000 год. С.- 394 Другими словами, потоки информации в оперативной памяти очень динамичны.

ОЗУ представляет собой запоминающее устройство с произвольным доступом. Это означает, что прочитать/записать данные можно из любой ячейки ОЗУ в любой момент времени. Для сравнения, например, магнитная лента является запоминающим устройством с последовательным доступом Воройский Ф.С. Систематизированный толковый словарь по информатике / Ф.С. Воройский/. - М.: Либерия, 1998. С.- 284.

Логическое устройство оперативной памяти

Оперативная память состоит их ячеек, каждая из которых имеет свой собственный адрес. Все ячейки содержат одинаковое число бит. Соседние ячейки имеют последовательные адреса. Адреса памяти также как и данные выражаются в двоичных числах.

Обычно одна ячейка содержит 1 байт информации (8 бит, то же самое, что 8 разрядов) и является минимальной единицей информации, к которой возможно обращение. Однако многие команды работают с так называемыми словами. Слово представляет собой область памяти, состоящую из 4 или 8 байт (возможны другие варианты).

Типы оперативной памяти

Принято выделять два вида оперативной памяти: статическую (SRAM) и динамическую (DRAM). SRAM используется в качестве кэш-памяти процессора, а DRAM - непосредственно в роли оперативной памяти компьютера.

SRAM состоит из триггеров. Триггеры могут находиться лишь в двух состояниях: «включен» или «выключен» (хранение бита). Триггер не хранит заряд, поэтому переключение между состояниями происходит очень быстро. Однако триггеры требуют более сложную технологию производства. Это неминуемо отражается на цене устройства. Во-вторых, триггер, состоящий из группы транзисторов и связей между ними, занимает много места (на микроуровне), в результате SRAM получается достаточно большим устройством Леонтьев В. «Новейшая энциклопедия персонального компьютера 2006» Издательство «ОЛМА-ПРЕСС Образование», 2006 год. С.- 371.

В DRAM нет триггеров, а бит сохраняется за счет использования одного транзистора и одного конденсатора. Получается дешевле и компактней. Однако конденсаторы хранят заряд, а процесс зарядки-разрядки более длительный, чем переключение триггера. Как следствие, DRAM работает медленнее. Второй минус - это самопроизвольная разрядка конденсаторов. Для поддержания заряда его регенерируют через определенные промежутки времени, на что тратится дополнительное время Леонтьев В. «Персональный компьютер. Универсальный справочник пользователя 2000» Издательство «ОЛМА-ПРЕСС» г. Москва, 2000 год..

Вид модуля оперативной памяти

Общая схема модуля оперативной памяти

Внешне оперативная память персонального компьютера представляет собой модуль из микросхем (8 или 16 штук) на печатной плате. Модуль вставляется в специальный разъем на материнской плате.

По конструкции модули оперативной памяти для персональных компьютеров делят на SIMM (одностороннее расположение выводов) и DIMM (двустороннее расположение выводов). DIMM обладает большей скоростью передачи данных, чем SIMM. В настоящее время преимущественно выпускаются DIMM-модули.

Основными характеристиками ОЗУ являются информационная емкость и быстродействие. Емкость оперативной памяти на сегодняшний день выражается в гигабайтах.

Бит - это минимальная единица измерения информации, соответствующая одной двоичной цифре («0» или «1»).

Байт состоит из восьми бит. Используя один байт, можно закодировать один символ из 256 возможных (256 = 28). Таким образом, один байт равен одному символу, то есть 8 битам:

1 символ = 8 битам = 1 байту.

Изучение компьютерной грамотности предполагает рассмотрение и других, более крупных единиц измерения информации.

Таблица байтов:

1 байт = 8 бит

1 Кб (1 Килобайт) = 210 байт = 2*2*2*2*2*2*2*2*2*2 байт =

= 1024 байт (примерно 1 тысяча байт - 103 байт)

1 Мб (1 Мегабайт) = 220 байт = 1024 килобайт (примерно 1 миллион байт - 106 байт)

1 Гб (1 Гигабайт) = 230 байт = 1024 мегабайт (примерно 1 миллиард байт - 109 байт)

1 Тб (1 Терабайт) = 240 байт = 1024 гигабайт (примерно 1012 байт). Терабайт иногда называют тонна.

1 Пб (1 Петабайт) = 250 байт = 1024 терабайт (примерно 1015 байт).

1 Эксабайт = 260 байт = 1024 петабайт (примерно 1018 байт).

1 Зеттабайт = 270 байт = 1024 эксабайт (примерно 1021 байт).

1 Йоттабайт = 280 байт = 1024 зеттабайт (примерно 1024 байт).

В приведенной выше таблице степени двойки (210, 220, 230 и т.д.) являются точными значениями килобайт, мегабайт, гигабайт. А вот степени числа 10 (точнее, 103, 106, 109 и т.п.) будут уже приблизительными значениями, округленными в сторону уменьшения. Таким образом, 210 = 1024 байта представляет точное значение килобайта, а 103 = 1000 байт является приблизительным значением килобайта.

Такое приближение (или округление) вполне допустимо и является общепринятым.

Ниже приводится таблица байтов с английскими сокращениями (в левой колонке):

1 Kb ~ 103 b = 10*10*10 b= 1000 b - килобайт

1 Mb ~ 106 b = 10*10*10*10*10*10 b = 1 000 000 b - мегабайт

1 Gb ~ 109 b - гигабайт

1 Tb ~ 1012 b - терабайт

1 Pb ~ 1015 b - петабайт

1 Eb ~ 1018 b - эксабайт

1 Zb ~ 1021 b - зеттабайт

1 Yb ~ 1024 b - йоттабайт

Выше в правой колонке приведены так называемые «десятичные приставки», которые используются не только с байтами, но и в других областях человеческой деятельности. Например, приставка «кило» в слове «килобайт» означает тысячу байт, также как в случае с километром она соответствует тысяче метров, а в примере с килограммом она равна тысяче грамм.

Возникает вопрос: есть ли продолжение у таблицы байтов? В математике есть понятие бесконечности, которое обозначается как перевернутая восьмерка. Шменк А., Вэтьен А., Кёте Р. «Мультимедиа и виртуальные миры» Издательство «Слово/Slovo», 1998 год.С.- 284

Понятно, что в таблице байтов можно и дальше добавлять нули, а точнее, степени к числу 10 таким образом: 1027, 1030, 1033 и так до бесконечности. Но зачем это надо? В принципе, пока хватает терабайт и петабайт. В будущем, возможно, уже мало будет и йоттабайта.

Напоследок парочка примеров по устройствам, на которые можно записать терабайты и гигабайты информации. Есть удобный «терабайтник» - внешний жесткий диск, который подключается через порт USB к компьютеру. На него можно записать терабайт информации. Особенно удобно для ноутбуков (где смена жесткого диска бывает проблематична) и для резервного копирования информации. Лучше заранее делать резервные копии информации, а не после того, как все пропало.

Флешки бывают 1 Гб, 2 Гб, 4 Гб, 8 Гб, 16 Гб, 32 Гб и 64 Гб.

- CD-диски могут вмещать 650 Мб, 700 Мб, 800 Мб и 900 Мб.

- DVD-диски рассчитаны на большее количество информации: 4.7 Гб, 8.5 Гб, 9.4 Гб и 17 Гб Глушаков С.В., Мельников И.В. «Персональный компьютер. Учебный курс» Издательство «АСТ» г. Москва, 2000 год. С.- 168.

3. Долговременное хранение, виды устройств такого хранения

Устройства долговременного хранения данных на ПК относятся к внешней памяти устройства, позволяющие сохранять информацию для последующего ее использования независимо от состояния компьютера (включен или выключен). Устройства хранения данных могут использовать различные физические принципы хранения информации -- магнитный, оптический, электронный -- в любых их сочетаниях. Внешняя память принципиально отличается от внутренней (оперативной, постоянной и специальной) памяти способом доступа процессора (исполняемой программы) к ее содержимому.

Характерной особенностью внешней памяти является то, что ее устройства оперируют блоками информации, но никак не байтами или словами, как это позволяет оперативная память. Эти блоки обычно имеют фиксированный размер, кратный степени числа 2. Блок может быть переписан из внутренней памяти во внешнюю или обратно только целиком, и для выполнения любой операции обмена с внешней памятью требуется специальная процедура (подпрограмма). Процедуры обмена с устройствами внешней памяти привязаны к типу устройства, его контроллеру и способу подключения устройства к системе (интерфейсу).

Долговременная память -- это место длительного хранения данных (программ, результатов расчётов, текстов и т.д.), не используемых в данный момент в оперативной памяти компьютера. Внешняя память, в отличие от оперативной, является энергонезависимой. Носители внешней памяти, кроме того, обеспечивают транспортировку данных в тех случаях, когда компьютеры не объединены в сети (локальные или глобальные).

Для работы с внешней памятью необходимо наличие накопителя (устройства, обеспечивающего запись и (или) считывание информации) и устройства хранения -- носителя.

Основные виды накопителей:

- накопители на гибких магнитных дисках (НГМД);

- накопители на жестких магнитных дисках (НЖМД);

- накопители на магнитной ленте (НМЛ);

- накопители CD-ROM, CD-RW, DVD.

Им соответствуют основные виды носителей:

гибкие магнитные диски (Floppy Disk) (диаметром 3,5'' и ёмкостью 1,44 Мб; диаметром 5,25'' и ёмкостью 1,2 Мб (в настоящее время устарели и практически не используются, выпуск накопителей, предназначенных для дисков диаметром 5,25'', тоже прекращён), диски для сменных носителей;

жёсткие магнитные диски (Hard Disk);

кассеты для стримеров и других НМЛ;

диски CD-ROM, CD-R, CD-RW, DVD.

Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные - магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/записи цифровой информации. Поэтому, в связи с видом и техническим исполнением носителя информации, различают: электронные, дисковые и ленточные устройства. Могилев А.В. Информатика / А.В. Могилев, Н.И. Пак, Е.К. Хеннер/. - М.: Academia, 1999. С.- 214

4. Виды и структура диска. Назначение дорожки, сектора, кластера. Основные параметры диска

оперативный запоминающий информация диск

Форматирование дисков. Для того чтобы на диске можно было хранить информацию, диск должен быть отформатирован, то есть должна быть создана физическая и логическая структура диска.

Формирование физической структуры диска состоит в создании на диске концентрических дорожек, которые, в свою очередь, делятся на секторы. Для этого в процессе форматирования магнитная головка дисковода расставляет в определенных местах диска метки дорожек и секторов.

После форматирования гибкого диска 3,5" его параметры будут следующими (рис. 1):

· информационная емкость сектора - 512 байтов;

· количество секторов на дорожке - 18;

· дорожек на одной стороне - 80; сторон - 2.

Логическая структура гибких дисков. Логическая структура магнитного диска представляет собой совокупность секторов (емкостью 512 байтов), каждый из которых имеет свой порядковый номер (например, 100). Сектора нумеруются в линейной последовательности от первого сектора нулевой дорожки до последнего сектора последней дорожки.

Рис 1. Физическая структура дискеты

На гибком диске минимальным адресуемым элементом является сектор.

При записи файла на диск будет занято всегда целое количество секторов, соответственно минимальный размер файла - это размер одного сектора, а максимальный соответствует общему количеству секторов на диске. Файл записывается в произвольные свободные сектора, которые могут находиться на различных дорожках. Например, Файл_1 объемом 2 Кбайта может занимать сектора 34, 35 и 47, 48, а Файл_2 объемом 1 Кбайт - сектора 36 и 49.

Таблица 1

Логическая структура гибкого диска формата 3,5" (2-я сторона)

Для того чтобы можно было найти файл по его имени, на диске имеется каталог, представляющий собой базу данных.

Запись о файле содержит имя файла, адрес первого сектора, с которого начинается файл, объем файла, а также дату и время его создания (табл. 2).

Таблица 2

Структура записей в каталоге

Полная информация о секторах, которые занимают файлы, содержится в таблице размещения файлов (FAT - File Allocation Table). Количество ячеек FAT соответствует количеству секторов на диске, а значениями ячеек являются цепочки размещения файлов, то есть последовательности адресов секторов, в которых хранятся файлы.

Например, для двух рассмотренных выше файлов таблица FAT с 1 по 54 сектор принимает вид, представленный в табл. 3.

Таблица 3

Фрагмент FAT

Цепочка размещения для файла Файл_1 выглядит следующим образом: в начальном 34-м секторе хранится адрес 35, в 35-м секторе хранится адрес 47, в 47-м - 48, в 48-м - знак конца файла (К) Леонтьев В. «Новейшая энциклопедия персонального компьютера 2006» Издательство «ОЛМА-ПРЕСС Образование», 2006 год. С.- 328.

Для размещения каталога - базы данных и таблицы FAT на гибком диске отводятся секторы со 2 по 33. Первый сектор отводится для размещения загрузочной записи операционной системы. Сами файлы могут быть записаны, начиная с 34 сектора.

Жесткий диск имеет несколько «блинов» (дисков), на магнитную поверхность которых и записываются данные (смотрите рисунок выше).

Каждый блин имеет круглую форму и разметка такого блина выглядит так:

Рис. 2

Каждый диск разбит на треки (дорожки), а каждая дорожка поделена на сектора. Это конечно, очень упрощенная схема, но она дает представление о том, что такое сектор.

Сектор - это минимальная пронумерованная область диска, в которой могут храниться данные. Обычно размер одного сектора составляет 512 байт.

Для нормальной работы операционной системы на жестком диске создается файловая система. Файловая система использует сектора для хранения файлов, но из-за некоторых ограничений и особенностей различных файловых систем, сектора носителя информации обычно объединяются файловой системой в кластеры. Это означает, что кластер является минимальной областью файловой системы, предназначенной для хранения информации и он может состоять как из одного, так и из нескольких секторов.

Рис. 3

На этом рисунке замечательным образом продемонстрирована структура диска. Буквой «А» обозначена дорожка, буквой «В» -- геометрический сектор диска, а буквой «С» -- сектор дорожки. Далее из рисунка видно, что кластер «D» может занимать несколько секторов дорожки (кластер выделен на рисунке зеленым).

В различных файловых системах кластер мог иметь размеры от 512 байт (один сектор) до 64 кбайт (128 секторов). В наиболее популярной в настоящее время файловой системе NTFS размер кластера можно установить от 512 байт, до 4096 байт (4 сектора).

Размером кластера можно управлять в некоторых пределах -- его можно задать при форматировании носителя информации.

Накопители на дисках -- это устройства для чтения и записи с магнитных или оптических носителей. Назначение этих накопителей -- хранение больших объемов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство.

НЖМД и НГМД различаются лишь конструктивно, объемами хранимой информации и временем поиска, записи и считывания информации.

В качестве запоминающей среды у магнитных дисков используются магнитные материалы со специальными свойствами, позволяющими фиксировать два магнитных состояния -- два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры 0 и 1. Информация на магнитные диски записывается и считывается магнитными головками вдоль концентрических окружностей -- дорожек (треков). Количество дорожек на диске и их информационная емкость зависят от типа диска, конструкции накопителя, качества магнитных головок и магнитного покрытия. Каждая дорожка разбита на секторы. В одном секторе обычно размещается 512 байт данных. Обмен данными между накопителем на магнитном диске и оперативной памятью осуществляется последовательно целым числом секторов. Для жесткого магнитного диска используется также понятие цилиндра -- совокупности дорожек, находящихся на одинаковом расстоянии от центра диска.

Диски относятся к машинным носителям информации с прямым доступом. Это означает, что компьютер может обратиться к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни , находилась головка записи и чтения накопителя.

Все диски -- и магнитные, и оптические -- характеризуются своим диаметром (форм-фактором). Из гибких магнитных дисков наибольшее распространение получили диски диаметром 3,5(89 мм). Емкость этих дисков составляет 1,2 и 1,44 Мбайт.

Накопители на жестких магнитных дисках получили название «винчестер». Этот термин возник из жаргонного названия первой модели жесткого диска, имевшего 30 дорожек по 30 секторов каждая, что случайно совпало с калибром охотничьего ружья «винчестер». Емкость накопителя на жестком магнитном диске измеряется в Мбайтах и Гбайтах.

Накопители на магнитных дисках -- ZIP-диске -- переносные устройства емкостью 230-280 Мбайт.

В последние годы самое широкое распространение получили накопители на оптических дисках (CD-ROM). Благодаря маленьким размерам, большой емкости и надежности эти накопители становятся все более популярными. Емкость накопителей на оптических дисках -- от 640 Мбайт и выше.

Оптические диски делятся на неперезаписываемые лазерно-оптические диски, перезаписываемые лазерно-оптические диски и перезаписываемые магнитооптические диски. Неперезаписываемые диски поставляются фирмами-изготовителями с уже записанной на них информацией. Запись информации на них возможна только в лабораторных условиях, вне компьютера.

Кроме основной своей характеристики -- информационной емкости, дисковые накопители характеризуются и двумя временными показателями:

- временем доступа;

- скоростью считывания подряд расположенных байтов. Рыбачевская Г.И. Информатика. Рабочая тетрадь / Барнаул, 2009. С.- 64

5. Программы для обслуживания диска: форматирование, сканирование, дефрагментация, очистка. Назначение этих действий и программ для их выполнения

Основные операции, которые необходимо иногда проводить с жесткими дисками:

Разбиение на разделы. На жесткий диск может быть установлено одновременно несколько операционных систем. Для этого жесткий диск должен быть разбит на разделы, т.е. независимые области на диске, в каждом из которых может быть создана своя файловая система. Наиболее простой и традиционно используемой программой для этих целей в Windows является программа FDisk. ОС Windows 2000/XP имеют встроенную программу разбиения жестких дисков на разделы.

Форматирование. Оно делится на низкоуровневое (физическое), которое выполняется производителями и делит поверхности магнитных пластин на дорожки и сектора и высокоуровневое (логическое), которое заключается в разбиении на кластеры и размещении на диске файловой системы. Логическое форматирование выполняется стандартной программой ОС Windows Format (Форматирование дисков).

Проверка диска на наличие логических и физических ошибок. Если каким-то образом соответствие между тем, что записано в загрузочной области диска, и тем, что на самом деле находится на диске, нарушено, последствия могут быть непредсказуемы. Это может возникнуть вследствие сбоев ОС, и другого ПО. В частности, велика вероятность возникновения ошибок при некорректном завершении работы компьютера, при зависании системы и т.д. Обнаружить возникшие проблемы и предотвратить неприятности поможет стандартная программа Windows Проверка диска или ScanDisk. Но эта программа недостаточно мощна и функциональна. Поэтому при серьезных проблемах необходимо использовать более мощные средства (например, Norton Disk Doctor(NDD) из пакета Norton Utilities фирмы Symantec).

Дефрагментация. Как известно, с точки зрения быстродействия винчестер одно из самых слабых мест системы. К счастью, помогает тот факт, что данные, которые расположены "подряд", считать можно намного быстрее. Что значит "подряд"? Каждый файл на диске занимает определенное пространство. Это пространство разбито на блоки - кластеры. Каждый кластер принадлежит определенному файлу. Хорошо, если кластеры одного файла следуют подряд, но так бывает не всегда. Файлы на диске постоянно создаются и уничтожаются. Операционная система не всегда может выделить файлу место таким образом, чтобы его кластеры шли друг за другом. То есть файл может занимать несколько кластеров, разбросанных по разным местам диска. В этом случае говорят, что файл фрагментирован. При этом скорость чтения и записи файла замедляется заметно. Если на диске образуется много таких файлов, то скорость работы системы заметно падает. Для решения этой проблемы помогает стандартная программа Windows Дефрагментация диска или Defrag. Опять же можно порекомендовать использовать более мощное средство дефрагментации (например, Norton Speed Disk из Norton Utilities).

Очистка диска. При регулярной работе на компьютере иногда накапливается некоторый пользовательский и системный "мусор", который полезно периодически расчищать и ликвидировать. Для этого существует много различных программ, а в Windows существует утилита - Очистка диска. Ефимова О. Практикум по компьютерной технологии / О. Ефимова, В. Морозова/. - М.: АБФ, 1998. С.- 294

Виды форматирования. Существуют два различных вида форматирования дисков: полное и быстрое форматирование. Полное форматирование включает в себя как физическое форматирование (проверку качества магнитного покрытия дискеты и ее разметку на дорожки и секторы), так и логическое форматирование (создание каталога и таблицы размещения файлов). После полного форматирования вся хранившаяся на диске информация будет уничтожена.

Быстрое форматирование производит лишь очистку корневого каталога и таблицы размещения файлов. Информация, то есть сами файлы, сохраняется и в принципе возможно восстановление файловой системы.

Стандартное форматирование гибкого диска

1. В контекстном меню выбрать пункт Форматировать. Откроется диалоговая панель Форматирование. С помощью переключателя Способ форматирования выбрать пункт Полное.

В поле Метка можно ввести название диска. Для получения сведения о результатах форматирования установить флажок Вывести отчет о результатах. Щелкнуть по кнопке Начать.

2. После окончания форматирования диска появится информационная панель Результаты форматирования.

Рис. 4

Вы увидите, что доступный для размещения данных информационный объем диска оказался равен 1 459 664 байта (2047 секторов), а системные файлы и поврежденные сектора отсутствуют.

Рис. 5

В целях защиты информации от несанкционированного копирования можно задавать нестандартные параметры форматирования диска (количество дорожек, количество секторов и др.). Такое форматирование возможно в режиме MS-DOS.

Нестандартное форматирование гибкого диска

1. Ввести команду [Программы-Сеанс MS-DOS]. Появится окно приложения Сеанс MS-DOS.

2. Ввести команду нестандартного форматирования гибкого диска А: на котором будет 79 дорожек и 19 секторов на каждой дорожке:

Информационная емкость гибких дисков. Рассмотрим различие между емкостью неформатированного гибкого магнитного диска, его информационной емкостью после форматирования и информационной емкостью, доступной для записи данных.

Заявленная емкость неформатированного гибкого магнитного диска формата 3,5" составляет 1,44 Мбайт.

Рассчитаем общую информационную емкость отформатированного гибкого диска:

Количество секторов: N = 18 х 80 х 2 = 2880.

Информационная емкость:

512 байт х N = 1 474 560 байт = 1 440 Кбайт = 1,40625 Мбайт.

Однако для записи данных доступно только 2847 секторов, то есть информационная емкость, доступная для записи данных, составляет:

512 байт х 2847 = 1 457 664 байт = 1423,5 Кбайт » 1,39 Мбайт.

Логическая структура жестких дисков. Логическая структура жестких дисков несколько отличается от логической структуры гибких дисков. Минимальным адресуемым элементом жесткого диска является кластер, который может включать в себя несколько секторов. Размер кластера зависит от типа используемой таблицы FAT и от емкости жесткого диска.

На жестком диске минимальным адресуемым элементом является кластер, который содержит несколько секторов.

Таблица FAT16 может адресовать 216 = 65 536 кластеров. Для дисков большой емкости размер кластера оказывается слишком большим, так как информационная емкость жестких дисков может достигать 150 Гбайт.

Например, для диска объемом 40 Гбайт размер кластера будет равен:

40 Гбайт/65536 = 655 360 байт = 640 Кбайт.

Файлу всегда выделяется целое число кластеров. Например, текстовый файл, содержащий слово "информатика", составляет всего 11 байтов, но на диске этот файл будет занимать целиком кластер, то есть 640 Кбайт дискового пространства для диска емкостью 150 Гбайт. При размещении на жестком диске большого количества небольших по размеру файлов они будут занимать кластеры лишь частично, что приведет к большим потерям свободного дискового пространства.

Эта проблема частично решается с помощью использования таблицы FAT32, в которой объем кластера принят равным 8 секторам или 4 килобайтам для диска любого объема.

В целях более надежного сохранения информации о размещении файлов на диске хранятся две идентичные копии таблицы FAT.

Преобразование FAT16 в FAT32 можно осуществить с помощью служебной программы Преобразование диска в FAT32, которая входит в состав Windows.

Дефрагментация дисков. Замедление скорости обмена данными может происходить в результате фрагментации файлов. Фрагментация файлов (фрагменты файлов хранятся в различных, удаленных друг от друга кластерах) возрастает с течением времени, в процессе удаления одних файлов и записи других.

Так как на диске могут храниться сотни и тысячи файлов в сотнях тысяч кластеров, то фрагментированность файлов будет существенно замедлять доступ к ним (магнитным головкам придется постоянно перемещаться с дорожки на дорожку) и в конечном итоге приводить к преждевременному износу жесткого диска. Рекомендуется периодически проводить дефрагментацию диска, в процессе которой файлы записываются в кластеры, последовательно идущие друг за другом.

Дефрагментация диска

1. Для запуска программы Дефрагментация диска, необходимо из Главного меню ввести команду [Стандартные-Служебные-Дефрагментация диска].

2. Диалоговая панель Выбор диска позволяет выбрать диск, нуждающийся в процедуре дефрагментации. После нажатия кнопки ОК появится петель Дефрагментация диска.

3. Процесс дефрагментации диска можно визуально наблюдать, если щелкнуть по кнопке Сведения. Каждый квадратик соответствует одному кластеру, при этом неоптимизированные, уже оптимизированные, а также считываемые и записываемые в данный момент кластеры имеют различные цвета. Леонтьев В. «Персональный компьютер. Универсальный справочник пользователя 2000» Издательство «ОЛМА-ПРЕСС» г. Москва, 2000 год. С. - 257

Для эффективной очистки жесткого диска компьютера и оптимизации производительности всей системы рекомендуется использовать одну из лучших программ в своём классе -- CCleaner, непосредственно перед проведением дефрагментации. После очистки системы от мусорных файлов, дефрагментацию стоит доверить ещё одной высококлассной бесплатной программе этого разработчика -- Defraggler.

Заключение

Таким образом, в данной работе были рассмотрены основные виды памяти ПК, дана их классификация и краткая характеристика. Также были даны общие сведения о наиболее распространенной операционной системе, разработанной компанией Microsoft, Windows; сведения о графическом интерфейсе системы и его основных объектах.

Одним из основных элементов компьютера, позволяющим ему нормально функционировать, является память.

Все персональные компьютеры используют три вида памяти: оперативную, постоянную и внешнюю (различные накопители).

Внутренняя память компьютера - это место хранения информации, с которой он работает. Внешняя память (различные накопители) предназначена для долговременного хранения информации. Компьютерная память обеспечивает поддержку одной из наиважнейших функций современного компьютера, - способность длительного хранения информации. Вместе с центральным процессором запоминающее устройство являются ключевыми звеньями.

Список использованной литературы

1. Воройский Ф.С. Систематизированный толковый словарь по информатике/ Ф.С. Воройский - М.: Либерия, 1998.

2. Глушаков С.В., Мельников И.В. «Персональный компьютер. Учебный курс» Издательство «АСТ» г. Москва, 2000 год.

3. Ефимова О. Практикум по компьютерной технологии / О. Ефимова, В. Морозова - М.: АБФ, 1998

4. Информатика. Базовый курс./ С.В. Симоновича - СПб., 2001

5. Леонтьев В. «Персональный компьютер. Универсальный справочник пользователя 2000» Издательство «ОЛМА-ПРЕСС» г. Москва, 2000 год.

6. Леонтьев В. «Новейшая энциклопедия персонального компьютера 2006» Издательство «ОЛМА-ПРЕСС Образование», 2006 год

7. Могилев А.В. Информатика / А.В. Могилев, Н.И. Пак, Е.К. Хеннер - М.: Academia, 1999

8. Рыбачевская Г.И. Информатика. Рабочая тетрадь / Барнаул, 2009

9. Шменк А., Вэтьен А., Кёте Р. «Мультимедиа и виртуальные миры» Издательство «Слово/Slovo», 1998 год.

Размещено на Allbest.ru


Подобные документы

  • Cервисные программы – утилиты для различных вспомогательных операций. Форматирование диска — процесс разметки устройств хранения или носителей информации. Низкоуровневое и высокоуровневое форматирование. Порядок дефрагментации и тестирования диска.

    реферат [509,6 K], добавлен 05.12.2010

  • Структура персонального компьютера и принцип его работы. Состав и назначение основных блоков. Классификация компонентов: устройства ввода-вывода информации и ее хранения. Физические характеристики микропроцессора, оперативной памяти, жесткого диска.

    реферат [185,6 K], добавлен 02.06.2009

  • Организация и основные характеристики основной памяти персонального компьютера. Запоминающие устройства ЭВМ как совокупность устройств, обеспечивающих хранение и передачу данных. Хранение и обработка информации. Основные виды памяти компьютера.

    контрольная работа [52,0 K], добавлен 06.09.2009

  • Утилиты для дефрагментации жесткого диска. Измерение информации в байтах и битах. Запуск дефрагментации диска в операционной системе Windows XP. Создание контрольной точки восстановления перед дефрагментацией диска, вероятность ошибок при дефрагментации.

    реферат [402,4 K], добавлен 05.04.2010

  • Классификация и важнейшие принципы организации запоминающих устройств и систем памяти. Микросхемы оперативных (статических и динамических) и постоянных носителей информации. Их внутренняя структура, основы функционирования и тактовая диаграмма.

    реферат [706,5 K], добавлен 09.08.2011

  • Форматирование диска на низком уровне, создание физических структур: треков, секторов, управляющей информации. Разбиение объема винчестера на логические диски. Высокоуровневое форматирование, запись логических структур, ответственных за хранение файлов.

    статья [15,0 K], добавлен 05.04.2010

  • Жесткий диск (винчестер): общее понятие, предназначение, структура. Основные операции по обслуживанию дисков. Процесс форматирования диска. Логические и физические дефекты, возникающие на диске и методы их устранения. Дефрагментация и очистка винчестера.

    презентация [264,1 K], добавлен 23.10.2013

  • Составные части персонального компьютера. Основные компоненты системного блока и периферийные устройства. Устройство и назначение звуковой платы. Принцип работы оперативной памяти. Устройство и назначение жесткого диска. CD и DVD дисководы и USB-порты.

    презентация [1,7 M], добавлен 09.04.2011

  • Иерархия запоминающих устройств ЭВМ. Микросхемы и системы памяти. Оперативные запоминающие устройства. Принцип работы запоминающего устройства. Предельно допустимые режимы эксплуатации. Увеличение объема памяти, разрядности и числа хранимых слов.

    курсовая работа [882,6 K], добавлен 14.12.2012

  • Понятие архитектуры персонального компьютера, компоновка частей компьютера и связи между ними. Составляющие системного блока ПК. Функции центрального процессора, системной платы, оперативного запоминающего устройства, видеокарты и жесткого диска.

    реферат [30,7 K], добавлен 28.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.