Информатики как прикладная дисциплина

Структура информатики как прикладной дисциплины. Разработка методов и средств преобразования информации как главная функция информатики. Характеристики оперативной, постоянной и внешней памяти. Перевод чисел из десятичной системы счисления в двоичную.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 17.12.2014
Размер файла 73,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Информатика: предмет и задачи. Структура информатики

Информатика - наука о законах и методах организации и переработки информации в естественных и искусственных системах с применением ЭВМ.

Информатика в широком смысле представляет собой единство разнообразных отраслей науки, техники и производства, связанных с переработкой информации главным образом с помощью компьютеров и телекоммуникационных средств связи во всех сферах человеческой деятельности. Информатику в узком смысле можно представить как состоящую из трех взаимосвязанных частей - технических средств (hardware), программных средств (software), алгоритмических средств (brainware). В свою очередь, информатику как в целом, так и каждую ее часть обычно рассматривают с разных позиций: как отрасль народного хозяйства, фундаментальную науку, прикладную дисциплину.

Рис. 1. Структура информатики как отрасли, науки, прикладной дисциплины Валеев О. Информатика. - М: Инфра-М, 2013. С. 55.

Информатика как отрасль народного хозяйства состоит из однородной совокупности предприятий разных форм хозяйствования, где занимаются производством компьютерной техники, программных продуктов и разработкой современной технологии переработки информации.

Специфика и значение информатики как отрасли производства состоят в том, что от нее во многом зависит рост производительности труда в других отраслях народного хозяйства. Более того, для нормального развития этих отраслей производительность труда в самой информатике должна возрастать более высокими темпами, так как в современном обществе информация все чаще выступает как предмет конечного потребления: людям необходима информация о событиях, происходящих в мире, о предметах и явлениях, относящихся к их профессиональной деятельности, о развитии науки и самого общества. Дальнейший рост производительности труда и уровня благосостояния возможен лишь на основе использования новых интеллектуальных средств и человеко-машинных интерфейсов, ориентированных на прием и обработку больших объемов мультимедийной информации (текст, графика, видеоизображение, звук, анимация). При отсутствии достаточных темпов увеличения производительности труда в информатике может произойти существенное замедление роста производительности труда во всем народном хозяйстве. В настоящее время около 50% всех рабочих мест в мире поддерживается средствами обработки информации.

Информатика как фундаментальная наука занимается разработкой методологии создания информационного обеспечения процессов управления любыми объектами на базе компьютерных информационных систем. Цель фундаментальных исследований в информатике - получение обобщенных знаний о любых информационных системах, выявление общих закономерностей их построения и функционирования.

Информатики как прикладная дисциплина занимается:

изучением закономерностей в информационных процессах (накопление, переработка, распространение);

созданием информационных моделей коммуникаций в различных областях человеческой деятельности;

разработкой информационных систем и технологий в конкретных областях и выработкой рекомендаций относительно их жизненного цикла: для этапов проектирования и разработки систем, их производства, функционирования и т.д.

Главная функция информатики заключается в разработке методов и средств преобразования информации и их использовании в организации технологического процесса переработки информации.

Задачи информатики состоят в следующем:

исследование информационных процессов любой природы;

разработка информационной техники и создание новейшей технологии переработки информации на базе полученных результатов исследования информационных процессов;

решение научных и инженерных проблем создания, внедрения и обеспечения эффективного использования компьютерной техники и технологии во всех сферах общественной жизни Пригожин А.И. Информатика. - М.: МЦФЭР, 2012. С. 74-76..

2. Виды и основные характеристики памяти

Все ПК используют три вида памяти: оперативную, постоянную и внешнюю. Устройство для хранения информации называют основной памятью, которая состоит из оперативного запоминающего устройства (ОЗУ) и постоянного запоминающего устройства (ПЗУ).

Оперативное запоминающее устройство (ОЗУ или RAM) - быстрая, полупроводниковая, энергозависимая память. Объем ОЗУ обычно составляет от 32 до 512 Мбайт. Для несложных административных задач бывает достаточно и 32 Мбайт ОЗУ, но сложные задачи компьютерного дизайна могут потребовать от 512 Мбайт до 2 Гбайт ОЗУ. Ц Центральный процессор имеет оперативный (быстрый) доступ к данным, записанным в ОЗУ (на извлечение данных из ОЗУ требуется не более  нескольких наносекунд).  В ОЗУ хранятся исполняемая в данный момент программа и данные, с которыми она непосредственно работает. Это значит, что когда мы запускаем какую-либо компьютерную программу, находящуюся на диске, она копируется в оперативную память, после чего процессор начинает выполнять команды, изложенные в этой программе. Часть ОЗУ, называемая "видеопамять", содержит данные, соответствующие текущему изображению на экране. ОЗУ - это память, используемая как для чтения, так и для записи информации. При отключении электропитания информация в ОЗУ исчезает, что объясняется энергозависимостью.

От количества установленной в компьютере оперативной памяти напрямую зависит возможность, с какими программами вы сможете на нем работать. При недостаточном количестве оперативной памяти многие программы вовсе не будут работать, либо станут работать очень медленно.

Часто для оперативной памяти используют обозначение RAM, то есть память с произвольным доступом.

Полупроводниковая оперативная память в настоящее время делится на статическое ОЗУ (SRAM) и динамическое ОЗУ (DRAM).

Динамическая оперативная память используется в большинстве систем оперативной памяти ПК. Основное преимущество этого типа памяти состоит в том, что ее ячейки упакованы очень плотно, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большей емкости.

Ячейки памяти в микросхеме DRAM - это крошечные конденсаторы, которые удерживают заряды. Проблемы, связанные с памятью этого типа, вызваны тем, что она динамическая, т.е. должна постоянно регенерироваться, так как в противном случае электрические заряды в конденсаторах памяти будут  "стекать”, и данные будут потеряны.

Важнейшей характеристикой DRAM является быстродействие, а проще говоря, продолжительность цикла + время задержки + время доступа, где продолжительность цикла - время, затраченное на передачу данных, время задержки - начальная установка адреса строки и столбца, а время доступа - время поиска самой ячейки. Измеряется в наносекундах.

Существует тип памяти, совершенно отличный от других - статическая оперативная память. Она названа так потому, что, в отличие от динамической оперативной памяти, для сохранения ее содержимого не требуется периодической регенерации. Но это не единственное ее преимущество. SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры.

Микросхемы SRAM не используются для всей системной памяти потому, что по сравнению с динамической оперативной памятью быстродействие SRAM намного выше, но плотность ее намного ниже, а цена довольно высокая. Более низкая плотность означает, что микросхемы SRAM имеют большие габариты, хотя их информационная емкость намного меньше.

Несмотря на это, разработчики все-таки применяют память типа SRAM для повышения эффективности ПК. Но во избежание значительного увеличения стоимости устанавливается только небольшой объем высокоскоростной памяти SRAM, которая используется в качестве кэш-памяти.

Кэш является дополнительным быстродействующим хранилищем копий блоков информации из основной памяти, вероятность обращения к которым в ближайшее время велика. Кэш не может хранить копию всей основной памяти, поскольку его объем во много раз меньше объема основной памяти. Он хранит лишь ограниченное количество блоков данных и каталог  -- список их текущего соответствия областям основной памяти. Кроме того, кэшироваться может и не вся оперативная память, доступная процессору: во-первых, из-за технических ограничений может быть ограничен максимальный объем кэшируемой памяти; во-вторых, некоторые области памяти могут быть объявлены некэшируемыми (настройкой регистров чипсета или процессора). Если установлено оперативной памяти больше, чем, возможно, кэшировать, обращение к некэшируемой области ОЗУ будет медленным. Таким образом, увеличение объема ОЗУ, теоретически всегда благотворно влияющее на производительность, может снизить скорость работы определенных компонентов, попавших в некэшируемую память.

Основная память состоит из регистров. Регистр - это устройство для временного запоминания информации в оцифрованной (двоичной) форме. Запоминающим элементом в регистре является триггер - устройство, которое может находиться в одном из двух состояний, одно из которых соответствует запоминанию двоичного нуля, другое - запоминанию двоичной единицы. Триггер представляет собой крошечный конденсатор-батарейку, которую можно заряжать множество раз. Если такой конденсатор заряжен - он как бы запомнил значение "1", если заряд отсутствует - значение "0". Регистр содержит несколько связанных друг с другом триггеров. Число триггеров в регистре называется разрядностью компьютера. Производительность компьютера напрямую связана с разрядностью, которая бывает равной 8, 16, 32, 64, 128.

Постоянное запоминающее устройство - быстрая, энергонезависимая память. Информация заносится в нее один раз (обычно в заводских условиях) и сохраняется постоянно (при включенном и выключенном компьютере). В ПЗУ хранится информация, присутствие которой постоянно необходимо в компьютере.

В ПЗУ находятся:

тестовые программы, проверяющие при каждом включении компьютера правильность работы его блоков;

программы для управления основными периферийными устройствами -дисководом, монитором, клавиатурой;

информация о том, где на диске расположена операционная система Болотов С. П. Информатика. - Сыктывкар: Изд-во Сыктывкар. ун-та, 2013. С. 80-84..

Типы ПЗУ:

ПЗУ с масочным программированием это память, в которую информация записана раз и навсегда в процессе изготовления полупроводниковых интегральных схем. Постоянные запоминающие устройства применяются только в тех случаях, когда речь идет о массовом производстве, т.к. изготовление масок для интегральных схем частного применения обходится весьма недешево.

ППЗУ (программируемое постоянное запоминающее устройство). Программирование ПЗУ - это однократно выполняемая операция, т.е. информация, когда-то записанная в ППЗУ, впоследствии изменена быть не может.

СППЗУ (стираемое программируемое постоянное запоминающее устройство). При работе с ним, пользователь может запрограммировать его, а затем стереть записанную информацию.

ЭИПЗУ (электрически изменяемое постоянное запоминающее устройство). Его программирование и изменение осуществляются с помощью электрических средств. В отличие от СППЗУ для стирания информации, хранимой в ЭИПЗУ, не требуется специальных внешних устройств.

Центральный процессор при работе с ОЗУ должен указать адрес байта, который он желает прочитать из памяти или записать в память. Разумеется, из ПЗУ можно только читать данные. Прочитанные из ОЗУ или ПЗУ данные процессор записывает в свою внутреннюю память, устроенную аналогично ОЗУ, но работающую значительно быстрее и имеющую емкость не более десятков байт.

Процессор может обрабатывать только те данные, которые находятся в его внутренней памяти, в ОЗУ или в ПЗУ. Все эти виды устройства памяти называются устройствами внутренней памяти, они обычно располагаются непосредственно на материнской плате компьютера (внутренняя память процессора находится в самом процессоре).

Внешняя (долговременная) память -- это место длительного хранения данных (программ, результатов расчётов, текстов и т.д.), не используемых в данный момент в оперативной памяти компьютера. Внешняя память, в отличие от оперативной, является энергонезависимой. Носители внешней памяти, кроме того, обеспечивают транспортировку данных в тех случаях, когда компьютеры не объединены в сети (локальные или глобальные).

Для работы с внешней памятью необходимо наличие накопителя (устройства, обеспечивающего запись и (или) считывание информации) и устройства хранения -- носителя.

Основные виды накопителей:

накопители на гибких магнитных дисках (НГМД);

накопители на жестких магнитных дисках (НЖМД);

накопители на магнитной ленте (НМЛ);

накопители CD-ROM, CD-RW, DVD.

Им соответствуют основные виды носителей:

гибкие магнитные диски (Floppy Disk) (диаметром 3,5'' и емкостью 1,44 Мб; диаметром 5,25'' и емкостью 1,2 Мб (в настоящее время устарели и практически не используются, выпуск накопителей, предназначенных для дисков диаметром 5,25'', тоже прекращён)), диски для сменных носителей;

жесткие магнитные диски (Hard Disk);

кассеты для стримеров и других НМЛ;

диски CD-ROM, CD-R, CD-RW, DVD.

Накопители на гибких магнитных дисках (НГМД) предназначены для хранения небольших объемов информации. Следует оберегать от сильных магнитных полей и нагревания. Это носители произвольного (прямого) доступа к информации. Используются для переноса данных с одного компьютера на другой. Для работы с информации носитель должен быть отформатирован, т.е. должна быть произведена магнитная  разметка диска на дорожки и секторы. Скорость обмена информации зависит от скорости вращения дисковода. Для обращения к диску, вставленному в дисковод, присваивается имя  А:. Объем ГМД сравнительно небольшой (3,5 дюйма - 1,44 Мбайт). Рекомендуется делать копии содержимого ГМД.

Диски называются гибкими потому, что их рабочая поверхность изготовлена из эластичного материала и помещена в твердый защитный конверт. Для доступа к магнитной поверхности диска в защитном конверте имеется закрытое шторкой окно. Поверхность диска покрыта специальным магнитным слоем (1- намагниченный участок, 0 - не намагниченный). Информация записывается с двух сторон диска на дорожки в виде концентрических окружностей. Дорожки разбиваются на секторы. Современные дискетки имеют программную разметку. На каждом секторе выделяется участок для его идентификации, а на остальное место записываются данные. Дисковод снабжен двумя двигателями. Один обеспечивает вращение внутри защитного конверта. Второй перемещает головку записи/чтения вдоль радиуса поверхности диска. В защитном конверте имеется специальное окно защиты записи. С помощью бегунка это окно открывают, и дискета становится доступна только на чтение, а на запись доступа не будет. Это предохраняет информацию на диске от изменения и удаления.

Накопители на жестких магнитных дисках (НЖМД) - предназначены для хранения той информации, которая наиболее часто используется в работе - программ операционной системы, компиляторов, сервисных программ, прикладных программ пользователя, текстовых документов, файлов базы данных. Следует оберегать от ударов при установке и резких перемещений в пространстве. Это носители с произвольным доступом к информации. Для хранения информации разбивается на дорожки и секторы. Скорость обмена информации значительно выше, чем у гибких дисков. Объем ЖД измеряется от Мбайт до сотен Гбайт.

НЖМД встроены в дисковод и являются несъемными. Они представляют собой несколько алюминиевых дисков с магнитным покрытием, заключенных в единый корпус с электродвигателем, магнитными головками и устройством позиционирования. К магнитной поверхности диска подводится записывающая головка, которая перемещается по радиусу диска с внешней стороны к центру. Во время работы дисковода диск вращается. В каждом фиксированном положении головка взаимодействует с круговой дорожкой. На эти концентрические дорожки и производится запись двоичной информации. Благодаря хорошей защищенности от пыли, влаги и других внешних воздействий достигают высокой плотности записи, в отличие от дискет. Для обращения к НЖМД используется имя, задаваемое прописной латинской буквой, начиная с С:, но с помощью специальной системной программы можно разбить свой физический ЖД на несколько логических дисков, каждому из которых дается соответствующее имя. Накопители на жестких магнитных дисках часто называют винчестер - по первой модели ЖД, имевшего 30 дорожек по 30 секторов.

Накопители на магнитных лентах (НМЛ) используют для резервного (относительно медленного) копирования  и хранения больших объемов информации (архивы). Устройство для записи и считывания магнитных лент называется стример. Это устройство последовательного доступа к информации

Оптические (лазерные) CD и DVD диски предназначены для хранения любого вида информации, информацию на CD записывается с помощью лазерного луча, следует оберегать от царапин и загрязнения поверхности. Это носители прямого (произвольного) доступа к информации. Объем (ёмкость) CD составляет сотни Мбайт; DVD -более 1 Гбайта.  Более долговечны и надежны, чем магнитные диски.

CD - Compact Disk. Изготовляют из органических материалов с напылением на поверхность тонкого алюминиевого слоя. Лазерный диск имеет одну дорожку в виде спирали. Информация записывается  отдельными секторами мощным лазерным лучом, выжигающим на поверхности диска углубления, и представляет собой чередование впадин и выпуклостей. При считывании информации выступы отражают свет слабого лазерного луча и воспринимаются как «1», впадины поглощают луч и, воспринимаются как «0». Это бесконтактный способ считывания информации.  Срок хранения 50-100лет. Более популярными являются накопители CD-RW, которые позволяют записывать и перезаписывать диски CD-RW, записывать диски CD-R, читать диски CD-ROM, т.е. являются в определённом смысле универсальными. DVD - Digital Video Disk. Имеет те же размеры, что и CD. Объем - Гбайт. Может быть односторонним или двухсторонним, а на каждой стороне может быть 1 или 2 рабочих слоя Пригожин А.И. Информатика. - М.: МЦФЭР, 2012. С. 54-57..

информатика память оперативный двоичный

3. Задачи

а) Перевести следующие числа из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную системы счисления.

216(10); 136(10);

Выполнить вычисление.

1010101101(2) - 110011110 (2)

Решение:

1) 216(10) > (2)

Десятичное число

Делитель

Остаток

Цифры двоичного числа

216

2

0

а0

108

2

0

а1

54

2

0

а2

27

2

1

а3

13

2

1

а4

6

2

0

а5

3

2

1

а6

216(10) = а6 а5 а4 а3 а2 а1 а0 = 1011000(2)

216(10) > (8)

Десятичное число

Делитель

Остаток

Цифры двоичного числа

216

8

0

а0

27

8

3

а1

216(10) = а1 а0 = 30(8)

216(10) > (16)

Десятичное число

Делитель

Остаток

Цифры двоичного числа

216

8

D

а0

216(10) =а0 = D(16)

2) 136(10) > (2)

Десятичное число

Делитель

Остаток

Цифры двоичного числа

136

2

0

а0

68

2

0

а1

34

2

0

а2

17

2

1

а3

8

2

0

а4

4

2

0

а5

2

2

0

а6

136(10) = а6 а5 а4 а3 а2 а1 а0 = 0001000(2) = 1000(2)

136(10) > (8)

Десятичное число

Делитель

Остаток

Цифры двоичного числа

136

8

0

а0

17

8

1

а1

136(10) = а1 а0 = 10(8)

136(10) > (16)

Десятичное число

Делитель

Остаток

Цифры двоичного числа

136

16

8

а0

136(10) =а0 = 8(16)

Выполнить вычисление:

1010101101(2) - 110011110(2) = 100001111(2)

1

0

1

0

1

0

1

1

0

1

_

1

1

0

0

1

1

1

1

0

1

0

0

0

0

1

1

1

1

б) Создать программу VBA, реализующую алгоритм получения произведения ряда чисел от 1 до 11.

Решение:

Макрос:

Public Sub произведение_чисел()

Dim k As Integer, s As Long

a = 1

s = 1

Do While a <= 11

s = a * s

a = a + 1

Loop

Range("B2") = "произведение чисел"

Range("C2") = s

End Sub

в) Заполните 7 строк электронной таблицы MS Excel, имеющей следующие поля:

Фамилия клиента банка

Приход, руб.

Расход, руб.

Создать программу VBA, рассчитывающую увеличение остатка на счете каждого клиента на 5%.

Решение:

Макрос:

Public Sub Остаток()

Dim k As Integer, s As Long

i = 3

s = 0

a = 0

Do While Cells(i, 2) <> ""

s = Cells(i, 3) - Cells(i, 4)

a = s * 1.05

Cells(i, 5) = s

Cells(i, 6) = a

i = i + 1

Loop

Range("E2") = "остаток"

Range("F2") = "остаток +5%"

End Sub

Библиографический список

Болотов С. П. Информатика. - Сыктывкар: Изд-во Сыктывкар. ун-та, 2013.

Валеев О. Информатика. - М: Инфра-М, 2013.

Гаранова Н. Информатика. - М., 2012.

Пригожин А.И. Информатика. - М.: МЦФЭР, 2012.

Румянцева Н.А., Соломатина Н.А. Информатика. - М.: Инфра-М, 2013.

Размещено на Allbest.ru


Подобные документы

  • Общее представление о системах счисления. Перевод чисел в двоичную, восьмеричную и шестнадцатеричную системы счисления. Разбивка чисел на тройки и четверки цифр. Разряды символов числа. Перевод из шестнадцатеричной системы счисления в десятичную.

    практическая работа [15,5 K], добавлен 19.04.2011

  • Информатика как фундаментальная и прикладная дисциплина, ее функция и задачи, объекты приложения, структура, назначение, история развития. Место информатики в системе наук. Ее связь с развитием вычислительной техники. Содержание информационного процесса.

    реферат [59,7 K], добавлен 25.04.2013

  • Понятие информатики как научной дисциплины, история ее становления и развития, структура на современном этапе и оценка дальнейших перспектив. Характеристика и анализ содержания различных аспектов информатики: социальных, правовых, а также этических.

    контрольная работа [28,9 K], добавлен 10.06.2014

  • История развития информатики и вычислительной техники. Общие принципы архитектуры ПЭВМ, ее внутренние интерфейсы. Базовая система ввода-вывода. Материнская плата. Технологии отображения и устройства хранения информации. Объем оперативной памяти.

    презентация [9,3 M], добавлен 26.10.2013

  • Примеры правила перевода чисел с одной системы в другую, правила и особенности выполнения арифметических операций в двоичной системе счисления. Перевод числа с десятичной системы в двоичную систему счисления. Умножение целых чисел в двоичной системе.

    контрольная работа [37,3 K], добавлен 13.02.2009

  • Появление и развитие информатики. Ее структура и технические средства. Предмет и основные задачи информатики как науки. Определение информации и ее важнейшие свойства. Понятие информационной технологии. Основные этапы работы информационной системы.

    реферат [127,4 K], добавлен 27.03.2010

  • Составные части информатики и направления ее применения. Классы компьютеров, примеры команд. Принтер, сканер и плоттер. Виды топологий сетей. Системы счисления. Способы соединения с Интернетом. Категории программного обеспечения. Значение базы данных.

    шпаргалка [184,0 K], добавлен 16.01.2012

  • Исторические этапы возникновения кибернетики. Формирование информатики как науки и как технологии. История развития информатики в СССР и современной России. Характеристика автоматизированных систем управления. Роль информатики в деятельности человека.

    реферат [37,0 K], добавлен 01.05.2009

  • Основные определения и понятия информатики. Вычислительная техника, история и этапы ее развития. Методы классификации компьютеров, их типы и функции. Разновидности системного и прикладного программного обеспечения. Представление информации в ЭВМ.

    учебное пособие [35,3 K], добавлен 12.04.2012

  • Организация средствами Microsoft Excel автоматического выполнения операций над представлениями чисел в позиционных системах счисления. Разработка электронных таблиц. Перевод чисел в десятичную систему счисления. Перевод из десятичной системы.

    курсовая работа [27,2 K], добавлен 21.11.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.