Современная кибернетика, её использование

Понятие и сущность кибернетики, её история и развитие. Цели и задачи науки, её методы и управление ими. Концептуально-понятийная характеристика кибернетики, её значение. Исходные положения инфодинамики, её специфика, отличия кибернетики от информатики.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 09.11.2014
Размер файла 38,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ПЛАН

ВВЕДЕНИЕ

1. Развитие кибернетики

1.1 История кибернетики и управления

1.2 Кибернетика: концептуально-понятийная характеристика

2. Предмет науки кибернетики, ее цели и задачи

2.1 Методы кибернетики

2.2 Кибернетика и компьютеры

3.Значение и результаты развития кибернетики

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

В течение последних 30 лет кибернетика прошла через взлёты и падения, становилась всё более значимой в области изучения искусственного интеллекта и биологических машинных интерфейсов, то есть киборгов, но, лишившись поддержки, потеряла ориентиры дальнейшего развития.

Современная кибернетика началась в 1940-х как междисциплинарная область исследования, объединяющая системы управления, теории электрических цепей, машиностроение, логическое моделирование, эволюционную биологию, неврологию. Системы электронного управления берут начало с работы инженера Bell Labs Гарольда Блэка в 1927 году по использованию отрицательной обратной связи, для управления усилителями. Идеи также имеют отношения к биологической работе Людвига фон Берталанфи в общей теории систем.

В 1970-х новая кибернетика проявилась в различных областях, но особенно -- в биологии. Некоторые биологи под влиянием кибернетических идей Матурана и Варела, «осознали, что кибернетические метафоры программы, на которых базировалась молекулярная биология, представляли собой концепцию автономии, невозможную для живого существа. Следовательно, этим мыслителям пришлось изобрести новую кибернетику, более подходящую для организаций, которые человечество обнаруживает в природе -- организаций, не изобретённых им самим». Возможность того, что эта новая кибернетика применима к социальным формам организаций, остаётся предметом теоретических споров с 1980-х годов.

Ранние применения отрицательной обратной связи в электронных схемах включали управление артиллерийскими установками и радарными антеннами во время Второй мировой войны. Джей Форрестер, аспирант в Лаборатории Сервомеханизмов в Массачусетском технологическом институте, работавший во время Второй мировой войны с Гордоном С. Брауном над совершенствованием систем электронного управления для американского флота, позже применил эти идеи к общественным организациям, таким как корпорации и города как первоначальный организатор Школы индустриального управления Массачусетского технологического института в MIT Sloan School of Management. Также Форрестер известен как основатель системной динамики.

Многочисленные работы появились в смежных областях. В 1935 году российский физиолог П. К. Анохин издал книгу, в которой было изучено понятие обратной связи («обратная афферентация»). Исследования продолжались, в особенности в области математического моделирования регулирующих процессов, и две ключевые статьи были опубликованы в 1943 году. Этими работами были «Поведение, цель и телеология» А.Розенблюта, Норберта Винера и Дж.Бигелоу и работа «Логическое исчисление идей, относящихся к нервной активности» У. Мак-Каллока и У. Питтса.

Кибернетика как научная дисциплина была основана на работах Винера, Мак-Каллока и других, таких как У. Р. Эшби и У. Г. Уолтер.

Уолтер был одним из первых, кто построил автономные роботы в помощь исследованию поведения животных. Наряду с Великобританией и США, важным географическим местоположением ранней кибернетики была Франция. кибернетический информация управление инфодинамика

Цель работы - изучить понятие кибернетики.

Для достижения поставленной цели в работе необходимо решить следующие задачи:

1. Изучить историю кибернетики и управления.

2. Исследовать предмет науки кибернетики, ее цели и задачи.

3. Рассмотреть значение и результаты развития кибернетики.

Объектом исследования в работе выступает наука кибернетика.

Предметом развитие науки кибернетики.

В работе были использованы научные труды следующих авторов: П.А. Голикова, В.В. Зайцева, Е.И. Майоровой, Е.Р. Россинской, В.Н. Лавриненко, В.П Ратникова, Тулинова В.Ф., . В.Н. Лавриненко, Р.В. Крюкова, В.М. Найдыша и др.

1. Развитие кибернетики

1.1 История кибернетики и управления

В древности термин «кибернетика» использовался Платоном в контексте «исследования самоуправления» в «Законах», для обозначения управления людьми. Слово «cybernйtique» использовалось практически в современном значении в 1830 году французским физиком и систематизатором наук Андре Ампером (1775--1836), для обозначения науки управления в его системе классификации человеческого знания [7, c.39].

Первая искусственная автоматическая регулирующая система, водяные часы, была изобретена древнегреческим механиком Ктезибием. В его водяных часах вода вытекала из источника, такого как стабилизирующий бак, в бассейн, затем из бассейна -- на механизмы часов. Устройство Ктезибия использовало конусовидный поток для контроля уровня воды в своём резервуаре и регулировки скорости потока воды соответственно, чтобы поддержать постоянный уровень воды в резервуаре, так, чтобы он не был ни переполнен, ни осушен. Это было первым искусственным действительно автоматическим саморегулирующимся устройством, которое не требовало никакого внешнего вмешательства между обратной связью и управляющими механизмами. Хотя они, естественно, не ссылались на это понятие как на науку кибернетику, и считали это областью инженерного дела. Ктезибий и другие мастера древности, такие как Герон Александрийский или китайский учёный Су Сун, считаются одними из первых, изучавших кибернетические принципы. Исследование механизмов в машинах с корректирующей обратной связью датируется ещё концом XVIII века, когда паровой двигатель Джеймса Уатта был оборудован управляющим устройством, центробежным регулятором обратной связи для того, чтобы управлять скоростью двигателя. А.Уоллес описал обратную связь как «необходимую для принципа эволюции» в его известной работе 1858 года. В 1868 году великий физик Дж. Максвелл опубликовал теоретическую статью по управляющим устройствам, одним из первых рассмотрел и усовершенствовал принципы саморегулирующихся устройств. Я.Икскюль применил механизм обратной связи в своей модели функционального цикла (Funktionskreis) для объяснения поведения животных [6, c.71].

На протяжении всей второй половины ХХ века кибернетику представляют обществу в качестве науки об управлении вообще, хотя она -- в том виде, в котором её представил публике Н.Винер, -- в действительности не является достаточной общей теорией управления: в книге Н.Винера «Кибернетика» много интересных частностей, но нет главного:

философии, которой управление как осуществимая практика более или менее ярко выраженно соответствует,

и описания процессов управления как таковых на основе определённого понятийного аппарата, достаточно полного и адекватного для того, чтобы на его основе можно было реальные разнородные по своей природе процессы интерпретировать (представлять, рассматривать) в качестве процессов управления.

Вследствие этих особенностей «кибернетика» в её чистом виде (в традиции, восходящей к Н.Винеру, -- автору книги с этим названием, вышедшей в США в 1948 г.) стала глобальной имитацией достаточно общей теории управления, причём имитацией культовой. Потом на протяжении десятилетий кибернетика становилась прикладной наукой по мере того, как под её «крышу» (владельцы «лэйбла» «Кибернетика» крышевали все дисциплины, где речь заходила о процессах управления) входили большей частью прикладники-техники, которые и вносили в неё каждый своё содержание, наполняя изначально почти что пустой лэйбл. Поэтому сетования многих интеллигентов на то, что в СССР при И.В.Сталине «зажимали» развитие кибернетики, -- вздорны, как и последующие выводы из этого утверждения. Но для того, чтобы это понять существо этой вздорности, надо знать, что именно написал Н.Винер, знать содержательную сторону теории и практики управления и его организации в технических, социальных и природных системах. Порицающие же «зажим» «кибернетиков» при И.В.Сталине в своём большинстве не знают или не понимают ничего из названного.

«Кибернетика» Винера не «положила начало новой отрасли в науке», как это рекламируется, а только придала легитимность интерпретациям в качестве процессов управления процессов общеприродных и социальных -- сначала в библейской культуре, а потом и в мировой [6, c.75].

Но начало такому подходу в научной традиции библейской культуры положил всё же не Н.Винер в 1948 г., а А.А.Богданов [7, c.83], автор книги «Тектология -- всеобщая организационная наука» (1913 -- 1922 гг.)[8, c.92]. Однако в силу своего происхождения для возведения в ранг основоположника «тектологии -- всеобщей организационной науки -- кибернетики» в библейской культуре Н.Винер (1894 -- 1964) подходил лучше, нежели А.А.Богданов: «Н.Винер родился в США в семье еврейского иммигранта. По семейному преданию, Винеры происходят от известного еврейского учёного и богослова Моисея Маймонида из Кордовы (1135 -- 1204), лейб-медика при дворе султана Саладина Египетского. Норберт Винер с гордостью отзывался об этой легенде, не ручаясь, однако, вполне за её достоверность».

Еще одна причина неугодности А.А.Богданова для «мировой закулисы» в качестве основоположника новой отрасли Науки состоит в том, что он подал свою «тектологию» как более или менее ярко выраженную альтернативу марксизму -- глобальному проекту «мировой закулисы», создавая тем самым предпосылки к его обрушению и ликвидации власти «мировой закулисы» в случае введения «всеобщей организационной науки» (тем более в развитии) в свод общедоступных знаний человечества.

5. Вследствие совокупности этих и некоторых других обстоятельств слово «кибернетика» ныне более известно, нежели слова «тектология» или «всеобщая организационная наука». А вывеска «кибернетики» стала «крышевать», придавая им легитимность, исследования в области всех проблем управления. И хотя в СССР был Институт проблем управления наряду с несколькими институтами «кибернетики», но все же и это заведение работало под «крышей кибернетик» и философии марксизма-ленинизма, выродившейся в цитатничество и догматизм, вследствие чего Институт проблем управления не смог создать своевременно достаточно общую теорию управления, что могло бы позволить СССР избежать и перестройки, и краха государственности.

Если же смотреть на содержание, а не поддаваться мнениям рекламных кампаний, то в России теория управления (автоматического управления, в частности) восходит к работам именно Ивана Алексеевича Вышнеградского, которого упомянул В.О. Ключевский в своих заметках: т.е. она старше, чем «лэйбл» «Кибернетика» и «лэйбл» «Всеобщая организационная наука» более чем на полвека [9, c.41].

Иван Алексеевич Вышнеградский (1832[9] -- 1895) -- профессор С-Петербургского Технологического института, министр финансов при Александре III в 1888 -- 1892 гг., почётный член Петербургской Академии наук. В наши дни его имя известно большей частью специалистам в области конструирования машин, теории управления и её приложений.

Что касается Достаточно общей теории управления (ДОТУ) в материалах Концепции общественной безопасности, то она тоже восходит к И.А.Вышнеградскому и техническим версиям теории автоматического управления конца 1970-х гг. просто в силу того, что у Винера много слов о разном (хотя есть и интересные по своему содержанию фрагменты), но нет объединяющей частности общей философии, из которой проистекает практика управления, и нет полноты представления о процессах управления и стройности в подаче читателю материала.

«Тектология» же А.А.Богданова, в отличие от рекламируемой «Кибернетики» Н.Винера, была практически недоступна простому советскому человеку, даже если он что-то и слышал об этой книге. В научных библиотеках «Тектология», возможно и не лежала исключительно в спецхранах, но термин «кибернетика» со второй половины 1950-х гг. был уже в обороте, а тектология была предана практически полному забвению, хотя о ней и её немарксистской сути (как об ошибках А.А.Богданова) что-то невнятное говорилось в курсе философии (и скорее не в общевузовском, а в аспирантском).

Таким образом, кибернетика - это наука об общих принципах управления в различных системах: технических, биологических, социальных и др. Управление является центральным понятием кибернетики, и оно пронизывает все сферы деятельности человека и общества. Основная концепция, заложенная Н. Винером в кибернетику, связана с разработкой теории управления сложными динамическими системами в разных областях человеческой деятельности. Кибернетика существует независимо от наличия или отсутствия компьютеров.

1.2 Кибернетика: концептуально-понятийная характеристика

Разработка базовых понятий кибернетики осуществлялась в середине ХХ века трудами многих ученых. Основателем кибернетики принято считать американского математика Норберта Винера (1894-1964). Существенный вклад в кибернетику внесли: американский биолог А. Розенблют, американский математик К. Шеннон, английский математик А. Тьюринг, английский биолог и кибернетик У. Эшби, российские ученые: А.Н. Колмогоров, А.А. Ляпунов, В.М. Глушков и другие.

Понятие кибернетики происходит от древнегреческого слова «кибернес» - «искусство управления» или «рулевой».

По определению Н. Винера, кибернетика - наука об управлении и связи в животном и машине. Понятие управления здесь употреблено в широком смысле, поскольку оно относится в равной мере к техническим, биологическим и социальным системам [8, c.60].

В.М. Глушков полагал, что кибернетика выступает как наука об общих законах преобразования информации и управляющих системах.

Кибернетика является интегральной наукой, возникшей на стыке ряда специальных дисциплин - теории автоматов, техники связи, математической логики, теории информации и других.

Основной корпус кибернетического знания неоднороден и включает в себя:

- теоретическую кибернетику;

- техническую кибернетику;

- прикладную кибернетику.

Многогранен и объект кибернетического исследования, поскольку эта наука изучает процессы управления в живых, неживых (технических) и социальных системах. Для учебного курса концепций современного естествознания более важна теоретическая составляющая кибернетики, ее исходные принципы и понятия, посредством которых кибернетика оказала существенное влияние на естественные, технические и гуманитарные науки. Кибернетические понятия управления, обратной связи и другие приобрели общенаучный статус и сегодня выступают неотъемлемым компонентом методологического инструментария современного естествознания.

Исходными понятиями кибернетики являются: управление и информация. Управление есть процесс информационного воздействия управляющего устройства на исполнительное. Конкретная природа управляющих и исполнительных систем может быть различной, но принципиальная схема процессов управления оказывается одинаковой.

Примеры управления в системах различной природы:

термостат (техническая система) - прибор для поддержания постоянной температуры. В простейшем случае его можно представить в виде духовки с электрическим терморегулятором, в которой терморегулятор генерирует сигнал об изменениях температуры внутри системы. Этот сигнал по цепи обратной связи поступает на реостат и координирует силу тока в цепи нагревателя в зависимости от потребностей в увеличении, либо уменьшении тепла, таким образом температура в духовке всегда поддерживается на заданном уровне.

поддержание достаточного уровня концентрации глюкозы в крови (живая система) - цепочка биохимических превращений гликогена («животный крахмал», основной запасной углевод животных и человека, содержащийся в печени) в глюкозу, находящаяся под контролем адреналина (гормон надпочечников) и инсулина (гормон поджелудочной железы).

движение финансовых средств в государстве (социальная система) - механизм данного контроля сложен и осуществляется системой различных организаций (банковские структуры, налоговая инспекция, судебная система и т.д. на основании действующего финансового законодательства) [5, c.63].

В процессах управления управляющее устройство играет ключевую роль. Поэтому понятие управляющей системы имеет значение не только в кибернетике, но и в других науках. К примеру, в ЭВМ оно определяет порядок выполнения операций (команд) и координирует работу всех узлов ЭВМ.

Конкретная природа управляющего устройства может быть разной, но для всех случаев кибернетика устанавливает общую функциональную структуру. Любое управляющее устройство должно иметь:

Чувствительный элемент (входное устройство), с его помощью воспринимаются сведения (информация);

Механизм преобразования информации, полученной от чувствительного элемента;

Механизм передачи преобразованной информации от управляющего устройства к исполнительному устройству;

Выходное устройство, для осуществления механизма передачи преобразованной информации;

Запоминающее устройство (имеется в кибернетических системах), предназначенное для хранения программы и исходных данных [4, c.86].

Понятие «управление» в кибернетике в его первоначальном смысле характеризовалось следующими тремя основными признаками: 1. Автоматические действия системы; 2. Действия системы в соответствии с определенной целью; 3. Наличие обратной связи. В последние годы кибернетические представления управления подверглись усложнению и обобщению.

Во-первых, само управление рассматривается уже не просто как автоматическое действие, а как управленческая деятельность, которая лишь частично может быть автоматизирована. Управление нельзя сводить только к информационным процессам, в конечном счете, предполагающим его автоматизацию.

Во-вторых, управленческая деятельность понимается как осознанная, а ее цель - не конечное состояние данного преобразования, а его представление, образ, который формируется до реализации цели. Управление представляет собой целенаправленный процесс, результатом которого является переход объекта из одного состояния в другое.

В-третьих, ситуация управления имеет одну важную особенность: управление - это воздействие одной деятельности на другую, т.е. объектом управленческой деятельности является другая деятельность, подлежащая управлению (к примеру, производственная, хозяйственная, научная и др.) Управление - это корректировка деятельности, подлежащей управлению, в соответствии с целью и осознанием (руководителем) всей деятельности и образа действия управляемого индивида. Большое значение приобретает не только осознание, но и корректировка собственных действий управляющим индивидом (или соответствующим социальным институтом).

В-четвертых, усложнено понятие обратной связи. Это не просто обратное физическое воздействие, сущность ее заключается в том, что от объекта управления к управляющим органам по особым каналам связи передается информация о фактическом положении дел, прежде всего об отклонениях от намеченных планов, которая используется управляющими органами для выработки управляющих воздействий. Иначе говоря, деятельность такой системы регулируется результатами деятельности этой же системы. Результат деятельности не может полностью совпадать с поставленной заранее идеальной целью. Несовпадение цели и результата деятельности и является основой регуляционного механизма обратной связи.

Метод кибернетического исследования является поведенческим, по схеме «стимул - реакция», которую кибернетика заимствует из психологии бихевиоризма и обобщает через понятия «вход - выход». Это означает, что в кибернетике используется поведенческое рассмотрение объекта, а не структурно-функциональное. Здесь объект управления уподобляется некоему «черному ящику» в том смысле, что мы ничего не знаем о его содержимом. Известно лишь, какая серия сигналов подается на вход исполнительного устройства, а также его реакция, или поведение на выходе. Тогда как при структурно-функциональном подходе главное внимание уделяется изучению внутренней организации объекта, а не его поведению.

Под поведением в кибернетике понимается любое изменение отношения объекта управления к окружающей среде. Поведение может быть:

Активным, в том случае, когда объект управления является источником энергии своих действий. Активное поведение подразделяют на:

нецеленаправленное (случайное);

целенаправленное.

Пассивным, если же реакция объекта управления совершается за счет энергии, поступившей на входе извне.

Целенаправленность означает, что поведение определяется заранее заданным (или известным) результатом, то есть конечным состоянием. Совершая произвольное действие, человек произвольно выбирает специфическую цель, но не специфическое движение. Н. Винер отмечал, что, решив взять стакан с водой и поднести его ко рту, мы не приказываем отдельным мышцам сократиться в определенной последовательности, мы просто задаемся целью и действие происходит автоматически. Хотя многие виды устройств функционируют нецеленаправленно, к примеру, часы, характеризующиеся регулярным, но нецелеустремленным поведением, так как в их механизм не заложена никакая цель [8, c.51].

Активное целесообразное поведение подразделяют на два вида - с обратной связью (ОС) и без неё. При наличии ОС сигнал с выхода исполнительного устройства, несущий информацию о поведении объекта управления, подается обратно на вход управляющего устройства, чтобы контролировать и регулировать поведение исполнительного устройства, корректируя его в соответствии с целью. Понятие обратной связи (положительной и отрицательной) также широко используется в разных видах науки и практики.

Важным для кибернетики является понятие гомеостаза. Гомеостаз - это процесс саморегуляции систем любой природы относительно заданного состояния на основе обратных связей, обеспечивающий динамическое равновесие системы, называемой гомеостатом. Это слово происходит от древнегреческого «гомеостазис», что означает «одинаковое состояние». Термин был предложен американским биологом У. Кенноном в 1929 г. Позднее в 1948 г. английский биолог У. Эшби провел детальное исследование и разработал концепцию устойчивости динамических равновесных систем, которая применима к системам любой природы. Так возникла кибернетическая концепция гомеостаза [7, c.131].

В статистической (математической) теории информации К. Шеннона сообщение рассматривается не как осмысленное знание о фактах действительности, а лишь как некоторая последовательность знаков, например, букв алфавита. Для исчисления количества информации важно лишь одно - знаем мы или не знаем, из какого числа и сочетания знаков образовано ожидаемое сообщение. В качестве основного условия выдвигается разделение знаковой (синтаксической) и смысловой (семантической) сторон сообщения при полном абстрагировании от семантики (смысла слова). Для случая с телеграфным аппаратом, не воспринимающим смысла слов, достаточна лишь последовательность цифровых кодов букв, посылаемых по линии связи. А поскольку общая теория информации включает в себя и телеграфную связь, то для такой теории представление сообщений только в синтаксической форме вполне оправдано. Однако это противоречит представлениям о человеческой коммуникации посредством естественного языка. Здесь логический смысл играет ведущую роль, и вообще семантическая организация существенно определяет синтаксический строй высказывания. Даже логический строй не исчерпывает всего качества мышления, поскольку он зависит и от эмоциональных оценок, и от образных составляющих, и от воли говорящего. Таким образом, полное отвлечение от качественной стороны информации - существенный пробел математической теории исчисления количества информации, так как качество вообще не сводимо к количеству, и одним количеством «бит» не выразить качественной стороны (природы) информации [9, c.72].

Вопрос о том, как можно получить качественную характеристику информации широко обсуждался в кибернетике в 60-70-х годах ХХ столетия. Одним из традиционных подходов является термодинамический. В термодинамическом подходе информация противопоставляется энтропии (мере хаоса в системе) и выступает как мера упорядоченности системы. Из этого утверждения можно сделать вывод о том, что чем выше степень организованности системы, тем выше ее информационная насыщенность. Н. Винер определил информацию как меру организации состояния и групп состояний. Поскольку энтропия как мера дезорганизации материальных систем - это отрицательная характеристика, то ею неудобно пользоваться для описания эволюции в природе. Поэтому в 50-х годах ХХ столетия французский физик-теоретик Л. Бриллюэн ввел противоположное понятие - негэнтропии как меры организованности или упорядоченности и дал обоснование негэнтропийного принципа в определении информации. В сущности он отождествил информацию с негэнтропией. Следовательно природу информации и энтропии выражает их противоположная связь с организацией материальных систем.

В настоящий момент неясен процесс перехода информации в свою связанную форму - негэнтропию. Наиболее общими закономерностями в процессах передачи, превращения, обработки и хранения информации (или ее связанного вида: негэнтропии (ОНГ)) занимается новая наука - инфодинамика. Исходные положения инфодинамики следующие:

Универсум состоит из иерархически и интерактивно взаимосвязанных систем. Их пределы, структура и функции разнообразны, но все они существуют объективно.

Каждая система обязательно содержит вещество (массу), энергию и негэнтропию. Можно рассчитать их эквивалентное суммарное количество и соотношение преобладающих форм.

Информацией является любая связь между системами, в результате которой увеличивается негэнтропия хотя бы одной из этих систем.

Сознание, мысли, наука и другие результаты умственной деятельности человека и общества являются вторичной реальностью т.е. приближенными моделями реального мира. Однако и они являются объективно существующими информационными системами.

Не существует абсолютной информации. Есть многомерная информация относительно цели и события в системе, содержащаяся в другом событии или объекте. Системы взаимодействуют между собой путем передачи массы, энергии, ОЭ и ОНГ [5, c.39].

Таким образом, наиболее содержательная качественная характеристика информации выработана с общенаучных позиций на основе категорий разнообразия, отражения и взаимодействия. Информация в самом общем ее понимании представляет собой меру неоднородности распределения материи и энергии в пространстве и времени, меру изменений, которыми сопровождаются все протекающие в мире процессы.

2. Предмет науки кибернетики, ее цели и задачи

2.1 Методы кибернетики

Специфика этой науки заключается в том, что она изучает не вещественный состав систем и не их структуру, а результат работы данного класса систем. В кибернетике впервые было сформулировано понятие «черного ящика» как устройства, которое выполняет определенную операцию над настоящим и прошлым входного потенциала, но для которого мы необязательно располагаем информацией о структуре, обеспечивающей выполнение этой операции.

Кибернетика как наука об управлении объектом своего изучения имеет управляющие системы. Для того чтобы в системе могли протекать процессы управления, она должна обладать определенной степенью сложности. С другой стороны, осуществление процессов управления в системе имеет смысл только в том случае, если эта система изменяется, движется, т. е. если речь идет о динамической системе. Поэтому можно уточнить, что объектом изучения кибернетики являются сложные динамические системы. К сложным динамическим системам относятся: живые организмы (животные и растения), социально-экономические комплексы (организованные группы людей, бригады, подразделения, предприятия, отрасли промышленности, государства) и технические агрегаты (поточные линии, транспортные средства, системы агрегатов). Однако, рассматривая сложные динамические системы, кибернетика не ставит перед собой задач всестороннего изучения их функционирования. Хотя кибернетика и изучает общие закономерности управляющих систем, их конкретные физические особенности находятся вне поля ее зрения. Так, при исследовании с позиций кибернетической науки такой сложной динамической системы, как мощная электростанция, мы не сосредоточиваем внимание непосредственно на вопросе о коэффициенте ее полезного действия, габаритах генераторов, физических процессах генерирования энергии и т. д. [6, c.94].

Рассматривая работу сложного электронного автомата, мы не интересуемся, на основе каких элементов (электромеханические реле, ламповые или транзисторные триггеры, ферритовые сердечники, полупроводниковые интегральные схемы) функционируют его арифметические и логические устройства, память и др. Нас интересует, какие логические функции выполняют эти устройства, как они участвуют в процессах управления.

Изучая, наконец, с кибернетической точки зрения работу некоторого социального коллектива, мы не вникаем в биофизические и биохимические процессы, происходящие внутри организма индивидуумов, образующих этот коллектив.

Изучением всех перечисленных вопросов занимаются механика, электротехника, физика, химия, биология. Предмет кибернетики составляют только те стороны функционирования систем, которыми определяется протекание в них процессов управления, т. е. процессов сбора, обработки, хранения информации и ее использования для целей управления. Однако когда те или иные частные физико-химические процессы начинают существенно влиять на процессы управления системой, кибернетика должна включать их в сферу своего исследования, но не всестороннего, а именно с позиций их воздействия на процессы управления [4, c.76].

Основная цель кибернетики как науки об управлении -- добиваться построения на основе изучения структур и механизмов управления таких систем, такой организации их работы, такого взаимодействия элементов внутри этих систем и такого взаимодействия с внешней средой, чтобы результаты функционирования этих систем были наилучшими, т. е. приводили бы наиболее быстро к заданной цели функционирования при минимальных затратах тех или иных ресурсов (сырья, человеческого труда, машинного времени, горючего и т. д.).

Все это можно определить кратко термином «оптимизация». К главным задачам кибернетики относятся:

а) установление фактов, общих для всех управляемых систем или, по крайней мере, для некоторых их совокупностей;

б) выявление ограничений, свойственных управляемым системам, и установление их происхождения;

в) нахождение общих законов, которым подчиняются управляемые системы;

г) определение путей практического использования установленных фактов и найденных закономерностей [6, c.68].

Таким образом, основной целью кибернетики является оптимизация систем управления. Предметом изучения кибернетики являются процессы управления в сложных динамических системах.

Всеобщим методом познания, в равной степени применимым к исследованию всех явлений природы и общественной жизни, служит материалистическая диалектика. Однако, кроме общефилософского метода, в различных областях науки применяется большое количество специальных методов. До недавнего времени в биологических и социально-экономических науках современные математические методы применялись в весьма ограниченных масштабах.

Только последние десятилетия характеризуются значительным расширением использования в этих областях теории вероятностей и математической статистики, математической логики и теории алгоритмов, теории множеств и теории графов, теории игр и исследования операций, корреляционного анализа, математического программирования и других математических методов.

Теория и практика кибернетики непосредственно базируются на применении математических методов при описании и исследовании систем и процессов управления, на построении адекватных им математических моделей и решении этих моделей на быстродействующих ЭВМ.

Системы изучаются в кибернетике по их реакциям на внешние воздействия, другими словами, по тем функциям, которые они выполняют. Наряду с вещественным и структурным подходами, кибернетика ввела в научный обиход функциональный подход как вариант системного подхода в широком смысле слова. Применение системного и функционального подходов при описании и исследовании сложных систем относится к основным методологическим принципам кибернетики.

Системный подход выражается в комплексном изучении системы с позиций системного анализа, т. е. анализа проблем и объектов как совокупности взаимосвязанных элементов, исходя из представлений об определенной целостности системы [5, c.87].

Функциональный анализ имеет своей целью выявление и изучение функциональных последствий тех или иных явлений или событий для исследуемого объекта.

Соответственно, функциональный подход предполагает учет результатов функционального анализа при исследовании и синтезе систем управления. Для исследования систем кибернетика использует три принципиально различных метода: математический анализ, физический эксперимент и вычислительный эксперимент.

Первые два из них широко применяются и в других науках. Сущность первого метода состоит в описании изучаемого объекта в рамках того или иного математического аппарата (например, в виде системы уравнений) и последующего извлечения различных следствий из этого описания путем математической дедукции (например, путем решения соответствующей системы уравнений). Сущность второго метода состоит в проведении различных экспериментов либо с самим объектом, либо с его реальной физической моделью. В случае уникальности исследуемого объекта и невозможности существенного влияния на него (как, например, в случае Солнечной системы или процесса биологической эволюции) активный эксперимент переходит в пассивное наблюдение.

Таким образом, одним из основных методов кибернетики является метод математического моделирования систем и процессов управления.

2.2 Кибернетика и компьютеры

Из числа сложных технических преобразователей информации наибольшее значение имеют компьютеры. Компьютеры обладают свойством универсальности. Это означает, что любые преобразования буквенно-цифровой информации, которые могут быть определены произвольной конечной системой правил любой природы (арифметических, грамматических и др.), могут быть выполнены компьютером после введения в него составленной должным образом программы.

Другим известным примером универсального преобразователя информации (хотя и основанного на совершенно иных принципах) является человеческий мозг. Свойство универсальности современных компьютеров открывает возможность моделирования г. их помощью любых других преобразователей информации, в том числе мыслительных процессов.

Таким образом, с момента своего возникновения компьютеры представляют собой основное техническое средство, основной аппарат исследования, которым располагает кибернетика [2, c.57].

Точно так же, как разнообразные машины и механизмы облегчают физический труд людей, компьютеры облегчают его умственный труд, заменяя человеческий мозг в его наиболее простых и рутинных функциях. Компьютеры действуют по принципу «да-нет», и этого достаточно для того, чтобы создать вычислительные машины, хотя и уступающие человеческому мозгу в гибкости, но превосходящие его по быстроте выполнения вычислительных операций. Аналогия между компьютерами и мозгом человека дополняется тем, что компьютеры как бы играют роль центральной нервной системы для устройств автоматического управления.

Введенное в кибернетике понятие самообучающихся машин аналогично воспроизводству живых систем. И то, и другое подразумевает создание систем, подобных или идентичных родителю. Это относится как к машинам, так и к живым системам.

Процесс воспроизводства -- это всегда динамический процесс, включающий какие-то силы или их эквиваленты. Винер так сформулировал гипотезу воспроизводства, которая позволяет предложить единый механизм самовоспроизводства для живых и неживых систем: «Один из возможных способов представления этих сил состоит в том, чтобы поместить активный носитель специфики молекулы в частотном строении ее молекулярного излучения, значительная часть которого лежит, по-видимому, в области инфракрасных электромагнитных частот или даже ниже. Может оказаться, что специфические вещества (вирусы) при некоторых обстоятельствах излучают инфракрасные колебания, обладающие способностью содействовать формированию других молекул вируса из неопределенной магмы аминокислот и нуклеиновых кислот. Вполне возможно, что такое явление позволительно рассматривать как некоторое притягательное взаимодействие частот» [2, c.48].

Современные ЭВМ значительно превосходят те, которые появились на заре кибернетики. Еще 10 лет назад специалисты сомневались, что шахматный компьютер когда-нибудь сможет обыграть приличного шахматиста, однако теперь он почти на равных сражается с чемпионом мира. То, что машина чуть было, не выиграла у Каспарова за счет громадной скорости перебора вариантов (100 миллионов в секунду против двух у человека), остро ставит вопрос не только о возможностях компьютеров, но и о том, что такое человеческий разум.

Таким образом, из числа сложных технических преобразователей информации наибольшее значение имеют компьютеры. Компьютеры обладают свойством универсальности. Это означает, что любые преобразования буквенно-цифровой информации, которые могут быть определены произвольной конечной системой правил любой природы (арифметических, грамматических и др.), могут быть выполнены компьютером после введения в него составленной должным образом программы.

3. Значение и результаты развития кибернетики

Значение кибернетики признано в разных сферах.

Философское значение, поскольку кибернетика дает новое представление о мире, основанное на роли связи, управления, информации, организованности, обратной связи, целесообразности, вероятности.

Социальное значение, поскольку кибернетика дает новое представление об обществе как организованном целом.

Общенаучное значение в трех смыслах: во-первых, потому что кибернетика дает общенаучные понятия, которые оказываются важными в других областях науки - понятия управления, сложнодинамической системы и т.п.; во-вторых, потому что дает науке новые методы исследования: вероятностные, стохастические, моделирования на ЭВМ и т.д.; в-третьих, потому что на основе функционального подхода «сигнал-отклик» кибернетика формирует гипотезы о внутреннем составе и строении систем, которые затем могут быть проверены в процессе содержательного исследования. Например, в кибернетике выработано правило (впервые для технических систем), в соответствии, с которым для того, чтобы найти ошибку в работе системы, необходима проверка работы трех одинаковых систем. По работе двух находят ошибку третьей. Возможно, так действует и мозг [1, c.63].

Методологическое значение кибернетики определяется тем обстоятельством, что изучение функционирования более простых технических систем используется для выдвижения гипотез о механизме работы качественно более сложных систем (живых организмов, мышления человека) с целью познания происходящих в них процессов: воспроизводства жизни, обучения и т.п. Подобное кибернетическое моделирование особенно важно в настоящее время во многих областях науки, поскольку отсутствуют математические теории процессов, протекающих в сложных системах, и приходится ограничиваться их простыми моделями.

Наиболее известно техническое значение кибернетики: создание на основе кибернетических принципов электронно-вычислительных машин, роботов, искусственного интеллекта, персональных компьютеров, породившее тенденцию кибернетизации и информатизации не только научного познания. Но и всех сфер жизни.

Достижением кибернетики является разработка и широкое использование нового метода исследования, получившего название вычислительного или машинного эксперимента, иначе называемого математическим моделированием. Смысл его в том, что эксперименты производятся не с реальной физической моделью изучаемого объекта, а с его математическим описанием, реализованным в компьютере. Огромное быстродействие современных компьютеров зачастую позволяет моделировать процессы в более быстром темпе, чем они происходят в действительности. В исследовании кибернетикой способов связи и моделей управления ей понадобилось еще одно понятие, которое было давно известно, но впервые получило фундаментальный статус в естествознании -- понятие информации (с латинского -- ознакомление) как меры организованности системы в противоположность понятию энтропии как меры неорганизованности [1, c.26].

Простираясь на изучение все более сложных систем, метод моделирования становится необходимым средством, как познания, так и преобразования действительности.

Таким образом, искусственный интеллект и его совершенствование превращают границы сложности, доступные человеку, в систематически раздвигаемые. Это особенно важно в современную эпоху, когда общество не может успешно развиваться без рационального управления сложными и сверхсложными системами. Разработка проблем искусственного интеллекта является существенным вкладом в осознание человеком закономерностей внешнего и внутреннего мира, в их использование в интересах общества и тем самым в развитие свободы человека.

ЗАКЛЮЧЕНИЕ

Понятие кибернетики происходит от древнегреческого слова «кибернес» - «искусство управления» или «рулевой». По определению Н. Винера, кибернетика - наука об управлении и связи в животном и машине. Понятие управления здесь употреблено в широком смысле, поскольку оно относится в равной мере к техническим, биологическим и социальным системам. Кибернетика как наука об управлении объектом своего изучения имеет управляющие системы. Для того чтобы в системе могли протекать процессы управления, она должна обладать определенной степенью сложности. Специфика этой науки заключается в том, что она изучает не вещественный состав систем и не их структуру, а результат работы данного класса систем. В кибернетике впервые было сформулировано понятие «черного ящика» как устройства, которое выполняет определенную операцию над настоящим и прошлым входного потенциала, но для которого мы необязательно располагаем информацией о структуре, обеспечивающей выполнение этой операции.

Информатика занимается изучением процессов преобразования и создания новой информации более широко. Поэтому может сложиться впечатление об информатике как о более емкой дисциплине, чем кибернетика. Однако, с другой стороны, информатика не занимается решением проблем, не связанных с использованием компьютерной техники.

Кибернетика и информатика различаются в расстановке акцентов. Если в информатике важны свойства информации и аппаратно-программные средствах ее обработки, то в кибернетике - это разработка концепций и построение моделей управления. Информатика и кибернетика - разные науки, сферы деятельности которых, однако, сильно пересекаются. Через объект управления проходят в основном материальные потоки и в значительно меньшей степени - информационные; в то же самое время через управляющий орган проходят только информационные потоки.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Крюков Р.В. Концепции современного естествознания. Конспект лекций. - М.: А-Приор, 2009. - 84 c.

2. Концепции современного естествознания: Учебник для вузов /Под ред В.Н. Лавриненко, В.П Ратникова. - 3-е изд., перераб. и доп.- М.: ЮНИТИ-ДАНА, 2009. - 317с.

3. Концепции современного естествознания: Учебник / В.М. Найдыш. - 3-e изд., перераб. и доп. - М.: Альфа-М, 2013. - 704 с.

4. Новая философская энциклопедия. -- 2-е изд., испр. и допол. - М.: Мысль, 2010. -- Т. 1--4. -- 2816 с.

5. Концепции современного естествознания: Учебник для бакалавров / Под ред. В.Н. Лавриненко. - 5-e изд., перераб. и доп. - М.: Юрайт, 2013. - 462 с.

6. Концепции современного естествознания: Учебник / Г.И. Рузавин. - 3-e изд., стер. - М.: Инфра-М, 2013. - 2013. - 271 с.

7. Концепции современного естествознания: Учебник / В.П. Бондарев. - 2-e изд., перераб. и доп. - М.: Инфра-М, 2013. - 512 с.

8. Концепции современного естествознания. Учебник. 3-е изд., перераб. и доп. Тулинов В.Ф. - М.: Издательский Дом «Дашков и К», 2013 . - 484 с.

9. Концепции современного естествознания.: Учебное пособие для студентов вузов / В.П. Романов. - 4-e изд., испр. и доп. - М.: Инфра-М, 2013. - 286 с.

10. Концепции современного естествознания: Учебник / П.А. Голиков, В.В. Зайцев, Е.И. Майорова; Под ред. Е.Р. Россинская. - М.: Норма, 2012. - 448 с.

Размещено на Allbest.ru


Подобные документы

  • Кибернетика как научное направление, предмет методы ее исследования, история и основные этапы развития. Главные методы кибернетики и практическое значение, особенности применения методов к другим системам. Анализ достижений современной кибернетики.

    презентация [1,2 M], добавлен 02.12.2010

  • Сфера исследований эволюционной кибернетики. Математическое моделирование и методы кибернетики в применении к другим системам. Основная задача кибернетики. Отличительная черта кибернетического подхода к познанию и совершенствованию процессов управления.

    презентация [1,3 M], добавлен 08.12.2010

  • Появление, становление и структура информатики. Сущность теоретической информатики, математической логики, теории информации, системного анализа, кибернетики, биоинформатики, программирования. Особенности перехода от классической кибернетики к новой.

    реферат [40,9 K], добавлен 16.11.2009

  • Кибернетика - научная дисциплина, которая основана на работах Винера, Мак-Каллока, У. Эшби, У. Уолтера. Кибернетика - наука об управлении объектом своего изучения. Роль компьютеров как сложных технических преобразователей информации. Значение кибернетики.

    контрольная работа [42,1 K], добавлен 29.11.2010

  • История зарождения кибернетики как науки, ее значение и основные причины развития. Кибернетический подход к изучению объектов различной природы. Познание и самообучение как важный признак кибернетики, ее направления развития и предметная область.

    курсовая работа [77,3 K], добавлен 27.05.2013

  • Кибернетика как наука. Значение кибернетики. Электронно-вычислительные машины и персональные компьютеры. Моделирование систем. Сферы использования кибернетики. Системный анализ и теория систем. Теория автоматического управления.

    реферат [21,7 K], добавлен 23.03.2004

  • Основы информатики и кибернетики. Информационные процессы, системы и технологии. Структура и элементы информационных систем. Системы счисления. Функциональная организация компьютера. Алгоритмы и алгоритмизация. Архивация файлов. Типовые методы доступа.

    курс лекций [73,0 K], добавлен 05.06.2011

  • Исторические этапы возникновения кибернетики. Формирование информатики как науки и как технологии. История развития информатики в СССР и современной России. Характеристика автоматизированных систем управления. Роль информатики в деятельности человека.

    реферат [37,0 K], добавлен 01.05.2009

  • Кибернетика как наука о системах, открытых для энергии, но замкнутых для информации и управления. Концепция "черного ящика" и способ его исследования. Математическая сторона кибернетики. Структура обобщенной системы связи. Понятие "системы управления".

    реферат [60,2 K], добавлен 20.08.2015

  • Сущность и основные задачи биомедицинской кибернетики. Особенности текущего момента развития ИТ в области наук о жизни. Применение кластерного анализа в процессе наблюдения за состоянием пациентов. Изучение требований к подготовке врачей-кибернетиков.

    презентация [5,1 M], добавлен 08.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.