Система автоматизированного проектирования

Программно-аппаратный комплекс для выполнения проектных работ с использованием компьютеров. Проектирование обработки изделий на станках с числовым программным управлением. Индустриальные технологии, направленные в наиболее важные области производства.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 31.05.2012
Размер файла 22,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Сегодня под словом "САПР" понимается гораздо большее, нежели просто программно-аппаратный комплекс для выполнения проектных работ с использованием компьютеров и зачастую этот термин используется, прежде всего, как удобная аббревиатура для обозначения большого класса систем автоматизация. Это связано с тем, что за последние 10-15 лет такие системы прошли большой путь развития от "электронных кульманов" первого поколения, предназначенных в основном для машинной подготовки проектной документации, до современных систем, автоматизирующих практически все процессы, связанные с проектированием и изготовлением новых изделий, будь то деталь, узел машины или целый автомобиль, самолет или здание.

Разумеется, чем сложнее разрабатываемое изделие, тем более сложной и многофункциональной должна быть САПР. Системы проектирования в масштабах предприятия за рубежом принято определять как CAD/CAM/САЕ -системы, функции автоматизированного проектирования распределяются в них следующим образом модули CAD - для геометрического моделирования и машинной графики, модули подсистемы САМ - для технологической подготовки производства, а модули СAЕ - для инженерных расчетов и анализа с целью проверки проектных решений. Таким образом, современная система CAD/CAM/CAE способна обеспечить автоматизированную поддержку работ инженеров и специалистов на всех стадиях цикла проектирования и изготовления новой продукции.

В основу каждой САПР заложена определенная математическая модель, формализующая описание и функционирование проектируемых изделий, и процессы их изготовления. И природа изделий, производственные процессы накладывают свою специфику на методы - их математического моделирования. В конечном счете, эта специфика приводит к существенному различию, систем проектирования и условия их использований.

1. Назначение

В свою очередь, CAM-системы предназначены для проектирования обработки изделий на станках с числовым программным управлением (ЧПУ) и выдачи программ для этих станков (фрезерных, сверлильных, эрозионных, пробивных, токарных, шлифовальных и др.). CAM-системы еще называют системами технологической подготовки производства. В настоящее время они являются практически единственным способом для изготовления сложнопрофильных деталей и сокращения цикла их производства. В CAM - системах используется трехмерная модель детали, созданная в CAD-системе.

САЕ-системы представляют собой обширный класс систем, каждая из которых позволяет решать определенную расчетную задачу (группу задач), начиная от расчетов на прочность, анализа и моделирования тепловых процессов до расчетов гидравлических систем и машин, расчетов процессов литья. В CAЕ-системах также используется трехмерная модель изделия, созданная в CAD-системе. CAE-системы еще называют системами инженерного анализа.

Существует некоммерческая отраслевая организация CAD Society занимающаяся вопросами популяризации CAD/CAM/CAE-систем в мире.

2. История развития

Историю развития рынка CAD/CAM/CAE-систем можно достаточно условно разбить на три основных этапа, каждый из которых длился, примерно, по 10 лет.

Первый этап начался в 70-е гг. В ходе его был получен ряд научно-практических результатов, доказавших принципиальную возможность проектирования сложных промышленных изделий. Во время второго этапа (80-е гг.) появились и начали быстро распространяться CAD/CAM/CAE-системы массового применения. Третий этап развития рынка (с 90-х гг. до настоящего времени) характеризуется совершенствованием функциональности CAD/CAM/CAE-систем и их дальнейшим распространением в высокотехнологичных производствах (где они лучше всего продемонстрировали свою эффективность).

На начальном этапе пользователи CAD/CAM/CAE - систем работали на графических терминалах, присоединенных к мэйнфреймам производства компаний IBM и Control Data, или же мини-ЭВМ PDP/11 (от Digital Equipment Corporation) и Nova (производства Data General). Большинство таких систем предлагали фирмы, продававшие одновременно аппаратные и программные средства (в те годы лидерами рассматриваемого рынка были компании Applicon, Auto-Trol Technology, Calma, Computervision и Intergraph). У мэйнфреймов того времени был ряд существенных недостатков. Например, при разделении системных ресурсов слишком большим числом пользователей нагрузка на центральный процессор увеличивалась до такой степени, что работать в интерактивном режиме становилось трудно. Но в то время пользователям CAD/CAM/CAE-систем ничего, кроме громоздких компьютерных систем с разделением ресурсов (по устанавливаемым приоритетам), предложить было нечего, т.к. микропроцессоры были еще весьма несовершенными. По данным Dataquest, в начале 80-х гг. стоимость одной лицензии CAD-системы доходила до $90000.

Развитие приложений для проектирования шаблонов печатных плат и слоев микросхем сделало возможным появление схем высокой степени интеграции (на базе которых и были созданы современные высокопроизводительные компьютерные системы). В течение 80-х гг. был осуществлен постепенный перевод CAD-систем с мэйнфреймов на персональные компьютеры (ПК). В то время ПК работали быстрее, чем многозадачные системы, и были дешевле. По данным Dataquest, к концу 80-х гг. стоимость CAD-лицензии снизилась, примерно, до $20000.

Cледует сказать, что в начале 80-х гг. произошло расслоение рынка CAD-систем на специализированные секторы. Электрический и механический сегменты CAD-систем разделились на отрасли ECAD и MCAD. Разошлись по двум различным направлениям и производители рабочих станций для CAD-систем, созданных на базе ПК:

часть производителей сориентировалась на архитектуру IBM PC на базе микропроцессоров Intel х86;

другие производители предпочли ориентацию на архитектуру Motorola (ПК ее производства работали под управлением ОС Unix от AT&T, ОС Macintosh от Apple и Domain OS от Apollo).

Производительность CAD-систем на ПК в то время была ограничена 16-разрядной адресацией микропроцессоров Intel и MS DOS. Вследствие этого, пользователи, создающие сложные твердотельные модели и конструкции, предпочитали использовать графические рабочие станции под ОС Unix с 32-разрядной адресацией и виртуальной памятью, позволяющей запускать ресурсоемкие приложения.

К середине 80-х гг. возможности архитектуры Motorola были полностью исчерпаны. На основе передовой концепции архитектуры микропроцессоров с усеченным набором команд (Reduced Instruction Set Computing - RISC) были разработаны новые чипы для рабочих станций под ОС Unix (например, Sun SPARC). Архитектура RISC позволила существенно повысить производительность CAD-систем.

С середины 90-х гг. развитие микротехнологий позволило компании Intel удешевить производство своих транзисторов, повысив их производительность. Вследствие этого появилась возможность для успешного соревнования рабочих станций на базе ПК с RISC/Unix-станциями. Системы RISC/Unix были широко распространены во 2-й половине 90-х гг., и их позиции все еще сильны в сегменте проектирования интегральных схем. Зато сейчас ОС MS Windows практически полностью доминирует в областях проектирования конструкций и механического инжиниринга, проектирования печатных плат и др. По данным Dataquest и IDC, начиная с 1997 г. рабочие станции на платформе Windows NT/Intel (Wintel) начали обгонять Unix-станции по объемам продаж. За прошедшие с начала появления CAD/CAM/CAE-систем годы стоимость лицензии на них снизилась до нескольких тысяч долларов (например, $6000 у Pro/Engineer).

3. Общая классификация CAD/CAM/CAE-систем

За почти 30-летний период существования CAD/CAM/CAE-систем сложилась их общепринятая международная классификация:

Чертежно-ориентированные системы, которые появились первыми в 70-е гг. (и успешно применяются в некоторых случаях до сих пор).

Системы, позволяющие создавать трехмерную электронную модель объекта, которая дает возможность решения задач его моделирования вплоть до момента изготовления.

Системы, поддерживающие концепцию полного электронного описания объекта (EPD). EPD это технология, которая обеспечивает разработку и поддержку электронной информационной модели на протяжении всего жизненного цикла изделия, включая маркетинг, концептуальное и рабочее проектирование, технологическую подготовку, производство, эксплуатацию, ремонт и утилизацию. При применении EPD-концепции предполагается замещение компонентно-центрического последовательного проектирования сложного изделия на изделие-центрический процесс, выполняемый проектно-производственными командами, работающими коллективно. Вследствие разработки EPD-концепции и появились основания для превращения автономных CAD-, CAM- и CAE-систем в интегрированные CAD/CAM/CAE-системы.

Традиционно существует также деление CAD/CAM/CAE-систем на системы верхнего, среднего и нижнего уровней. Cледует отметить, что это деление является достаточно условным, т.к. сейчас наблюдается тенденция приближения систем среднего уровня (по различным параметрам) к системам верхнего уровня, а системы нижнего уровня все чаще перестают быть просто двумерными чертежно-ориентированными и становятся трехмерными.

Примерами CAD/CAM-систем верхнего уровня являются Pro/Engineer, Unigraphics, CATIA, EUCLID, I-DEAS (все они имеют расчетную часть CAE).

В настоящее время на рынке широко используются два типа твердотельного геометрических ядра (Parasolid от фирмы Unigraphics Solutions и ACIS от Spatial Technology). Наиболее известными CAD/CAM-системами среднего уровня на основе ядра ACIS являются: ADEM (Omega Technology); Cimatron (Cimatron Ltd.); Mastercam (CNC Software, Inc.); AutoCAD 2000, Mechanical Desktop и Autodesk Inventor (Autodesk Inc.); Powermill (DELCAM); CADdy++ Mechanical Design (Ziegler Informatics GmbH); семейство продуктов Bravo (Unigraphics Solutions), IronCad (VDS) и др. К числу CAD/CAM-систем среднего уровня на основе ядра Parasolid принадлежат, в частности, MicroStation Modeler (Bentley Systems Inc.); CADKEY 99 (CADKEY Corp.); Pro/Desktop (Parametric Technology Corp.); SolidWorks (SolidWorks Corp.); Anvil Express (MCS Inc.), Solid Edge и Unigraphics Modeling (Unigraphics Solutions); IronCAD (VDS) и др.

CAD-системы нижнего уровня (например, AutCAD LT, Medusa, TrueCAD, КОМПАС, БАЗИС и др.) применяются только при автоматизации чертежных работ.

4. Выгоды от применения

компьютер проектирование индустриальная технология

CAD/CAM/CAE-системы занимают особое положение среди других приложений, поскольку представляют индустриальные технологии, непосредственно направленные в наиболее важные области материального производства. В настоящее время общепризнанным фактом является невозможность изготовления сложной наукоемкой продукции (кораблей, самолетов, танков, различных видов промышленного оборудования и др.) без применения CAD/CAM/CAE-систем. За последние годы CAD/CAM/CAE-системы прошли путь от сравнительно простых чертежных приложений до интегрированных программных комплексов, обеспечивающих единую поддержку всего цикла разработки, начиная от эскизного проектирования и заканчивая технологической подготовкой производства, испытаниями и сопровождением. Современные CAD/CAM/CAE-системы не только дают возможность сократить срок внедрения новых изделий, но и оказывают существенное влияние на технологию производства, позволяя повысить качество и надежность выпускаемой продукции (повышая, тем самым, ее конкурентоспособность). В частности, путем компьютерного моделирования сложных изделий проектировщик может зафиксировать нестыковку и экономит на стоимости изготовления физического прототипа. Даже для такого относительно несложного изделия, как телефон, стоимость прототипа может составлять несколько тысяч долларов, создание модели двигателя обойдется в полмиллиона долларов, а полномасштабный прототип самолета будет стоить уже десятки миллионов долларов.

Например, широко известен проект разработки компанией Shorts Brothers фюзеляжа для самолета бизнес-класса Learjet 45 при помощи современных CAD/CAM/CAE-систем. Результаты выполнения проекта просто впечатляют. Ранее компания Shorts использовала в проектно-конструкторских работах проволочное моделирование деталей. В создаваемых Shorts Brothers фюзеляжах самолетов обычно насчитывалось до 9500 структурных деталей. Подобные проекты могли потребовать более 440000 человеко-дней (до 4-х лет для завершения проекта).

Фюзеляж Learjet 45 оказался не только наиболее сложным среди существующих, но и был разработан в значительно меньшие сроки (на 40%), чем его предшественники. Кроме того, примерно в 10 раз было улучшено качество деталей и самой сборки фюзеляжа, а общее число деталей сокращено на 60% (при снижении объема основных переделок на 90% по сравнению с предыдущими проектами). В целом, компания Shorts смогла уменьшить число компонентов с 9500 до 3700 (на 60%). Полное время на проектирование и технологическую подготовку производства было сокращено до 125000 человеко-дней. Общее время разработки и технологической подготовки производства до 60000 человеко-дней, а весь цикл разработки типового фюзеляжа сократился с 4-х лет до 1,5-2 лет.

Отсюда следуют преимущества от применения CAD/CAM/CAE-систем:

Совершенствование методов проектирования, в частности, использование методов многовариантного проектирования и оптимизации для поиска эффективных вариантов и принятия решений.

Повышение доли творческого труда инженера-проектировщика.

Повышение качества проектной документации.

Совершенствование управления процессом разработки проектов.

Частичная замена натурных экспериментов и макетирования моделированием на ЭВМ.

Уменьшение объёма испытаний и доводки опытных образцов в результате повышения уровня достоверности проектных решений и, следовательно, снижение временных затрат.

Заключение

Потребности современного производства диктуют необходимость глобального использования информационных компьютерных технологий на всех этапах жизненного цикла изделия: от предпроектных исследований до утилизации изделия. Основу информационных технологий в проектировании и производстве сложных объектов и изделий составляют сегодня полномасштабные полнофункциональные промышленные САПР (CAD/CAM/CAE - системы). Активное использование во всем мире “легких” и “средних“ САПР на персональных компьютерах для подготовки чертежной документации и управляющих программ для станков с ЧПУ и сближение возможностей персональных компьютеров и “рабочих станций” в автоматизации проектирования подготовило две тенденции в разработке и использовании САПР, которые наблюдаются в последнее время:

применение полномасштабных САПР в различных отраслях промышленности для проектирования и производства изделий различной сложности;

интеграция САПР с другими информационными технологиями.

Эти тенденции позволяют говорить, что уже в самом ближайшем будущем эффективность производства будет во многом определяться эффективностью использования на предприятиях промышленных САПР.

Словарь терминов

САПР (система автоматизированного проектирования) -- автоматизированная система, реализующая информационную технологию выполнения функций проектирования, представляет собой организационно-техническую систему, предназначенную для автоматизации процесса проектирования, состоящую из персонала и комплекса технических, программных и других средств автоматизации его деятельности.

CAD (сomputer-aided design) - компьютерная поддержка проектирования.

CAM (computer-aided manufacturing) - компьютерная поддержка изготовления.

CAE (computer-aided engineering) - поддержка инженерных расчетов.

Мэйнфрейм (от англ. Mainframe) - высокопроизводительный компьютер со значительным объёмом оперативной и внешней памяти, предназначенный для организации централизованных хранилищ данных большой ёмкости и выполнения интенсивных вычислительных работ.

RISC - архитектура процессора, в которой быстродействие увеличивается за счёт упрощения инструкций, чтобы их декодирование было более простым, а время выполнения -- короче.

Dataquest - исследователь рынков ИТ, ориентированный на глобальные данные, статистику и прогнозирование.

IDC (International Data Corporation) - аналитическая фирма, специализирующаяся на исследованиях рынка информационных технологий.

EPD - полное электронное определение изделия.

Библиографический список:

1. Кунву Ли. Основы САПР. -СПб.: Питер, 2004.

2. Б. Хокс. Автоматизированное проектирование и производство.-М.: Мир, 1991.

3. «Компьютер Пресс», NN“1-12,1997 - ISSN 0868-6157.

4. В. Клишин, В. Климов, М. Пирогова. Интегрированные технологии Computervision. Открытые системы, # 2, 1997. с.37-42.

Размещено на Allbest.ru


Подобные документы

  • Станок с числовым программным управлением - основной производственный модуль современного производства. Совершенствование возможностей систем ЧПУ, организация интерполяции; разработка программного обеспечения для устройств четвертого и пятого поколения.

    курсовая работа [679,7 K], добавлен 07.06.2011

  • Выбор и обоснование выбора среды разработки. Разработка алгоритма работы программы, проектирование системы меню. Общее описание программы: назначение и область применения, интерфейс, требования к аппаратным и программным ресурсам, тестирование и листинг.

    курсовая работа [543,2 K], добавлен 20.05.2013

  • Анализ тенденций развития информационных технологий. Назначение и цели применения систем автоматизированного проектирования на основе системного подхода. Методы обеспечения автоматизации выполнения проектных работ на примере ЗАО "ПКП "Теплый дом".

    курсовая работа [210,0 K], добавлен 11.09.2010

  • Технологии автоматизированного проектирования, автоматизированного производства, автоматизированной разработки и конструирования. Концептуальный проект предполагаемого продукта в форме эскиза или топологического чертежа как результат подпроцесса синтеза.

    реферат [387,2 K], добавлен 01.08.2009

  • Проектирование автоматизированного рабочего места секретаря кафедры с использованием технологии прототипного проектирования. Формализация процесса проектирования. Методика оценки технико-экономической эффективности применения выбранной технологии.

    курсовая работа [940,8 K], добавлен 06.05.2014

  • Разработка управляющей программы для обработки детали на станке с числовым программным управлением 16К20ФЗТ02, оснащенном устройством "Электроника НЦ-31". Эскиз заготовки, обоснование метода ее получения. Технологический маршрут обработки детали.

    курсовая работа [723,0 K], добавлен 19.10.2014

  • Принцип подачи управляющих сигналов на электродвигатель станка с числовым программным управлением. Создание простого контроллера, характеристика шагового двигателя на кольцевом постоянном магните. Настройка программы "Schritt" для обработки детали.

    курсовая работа [3,9 M], добавлен 15.04.2012

  • Основные составляющие информационной технологии. Классические принципы построения архитектуры ЭВМ. Принцип последовательного выполнения операций. Перспективы применения экспертных систем в землеустроительных системах автоматизированного проектирования.

    контрольная работа [13,8 K], добавлен 13.11.2012

  • Компьютерные технологии, применяемые в машиностроении на этапах разработки нового изделия. Современные компьютерные технологии при проектировании высокомоментного линейного привода с цифровым программным управлением. Разработка управляющей программы.

    дипломная работа [2,8 M], добавлен 28.10.2010

  • Программно-аппаратный комплекс производства компании Nvidia. Код для сложения векторов, представленный в CUDA. Вычислительная схема СPU с несколькими ядрами SMP. Выделение памяти на видеокарте. Проведение синхронизации работы основной и GPU программ.

    презентация [392,5 K], добавлен 14.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.