Операционные системы

Обработчик прерываний в ОС с разделением времени. Распределение оперативной памяти в MS DOS. Разработка и моделирование способов репликации (тиражирования) файлов. Основные правила работы почтового ящика. Директива обращения к операционной системе.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 11.05.2012
Размер файла 25,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Обработчик прерываний в ОС с разделением времени. Промоделировать предлагаемое решение

При разработке первых систем ресурсами считались процессорное время, память, каналы ввода / вывода и периферийные устройства. Однако очень скоро понятие ресурса стало гораздо более универсальным и общим. Различного рода программные и информационные ресурсы также могут быть определены для системы как объекты, которые могут разделяться и распределяться и доступ к которым необходимо соответствующим образом контролировать. В настоящее время понятие ресурса превратилось в абстрактную структуру с целым рядом атрибутов, характеризующих способы доступа к этой структуре и её физическое представление в системе. Более того, помимо системных ресурсов, о которых мы сейчас говорили, как ресурс стали толковать и такие объекты, как сообщения и синхросигналы, которыми обмениваются задачи.

В первых вычислительных системах любая программа могла выполняться только после полного завершения предыдущей. Поскольку эти первые вычислительные системы были построены в соответствии с принципами, изложенными в известной работе Яноша Джон фон Неймана, все подсистемы и устройства компьютера управлялись исключительно центральным процессором. Центральный процессор осуществлял и выполнение вычислений, и управление операциями ввода / вывода данных. Соответственно, пока осуществлялся обмен данными между оперативной памятью и внешними устройствами, процессор не мог выполнять вычисления. Введение в состав вычислительной машины специальных контроллеров позволило совместить во времени (распараллелить) операции вывода полученных данных и последующие вычисления на центральном процессоре. Однако все равно процессор продолжал часто и долго простаивать, дожидаясь завершения очередной операции ввода / вывода. Поэтому было предложено организовать так называемый мультипрограммный (мультизадачный) режим работы вычислительной системы. Суть его заключается в том, что пока одна программа (один вычислительный процесс или задача, как мы теперь говорим) ожидает завершения очередной операции ввода / вывода, другая программа (а точнее, другая задача) может быть поставлена на решение.

При мультипрограммировании повышается пропускная способность системы, но отдельный процесс никогда не может быть выполнен быстрее, чем если бы он выполнялся в однопрограммном режиме (всякое разделение ресурсов замедляет работу одного из участников за счёт дополнительных затрат времени на ожидание освобождения ресурса).

Как мы уже отмечали, операционная система поддерживает мультипрограммирование (многопроцессность) и старается эффективно использовать ресурсы путём организации к ним очередей запросов, составляемых тем или иным способом. Это требование достигается поддерживанием в памяти более одного процесса, ожидающего процессор, и более одного процесса, готового использовать другие ресурсы, как только последние станут доступными. Общая схема выделения ресурсов такова. При необходимости использовать какой-либо ресурс (оперативную память, устройство ввода / вывода, массив данных и т.п.) задача обращается к супервизору операционной системы - её центральному управляющему модулю, который может состоять из нескольких модулей, например: супервизор ввода / вывода, супервизор прерываний, супервизор программ, диспетчер задач и т.д. - посредством специальных вызовов (команд, директив) и сообщает о своём требовании. При этом указывается вид ресурса и, если надо, его объём (например, количество адресуемых ячеек оперативной памяти, количество дорожек или секторов на системном диске, устройство печати и объём выводимых данных и т.п.).

Директива обращения к операционной системе передаёт ей управление, переводя процессор в привилегированный режим работы, если такой существует. Не все вычислительные комплексы имеют два (и более) режима работы: привилегированный (режим супервизора), пользовательский, режим эмуляции какого-нибудь другого компьютера и т.д.

Ресурс может быть выделен задаче, обратившейся к супервизору с соответствующим запросом, если:

1) он свободен и в системе нет запросов от задач более высокого приоритета к этому же ресурсу;

2) текущий запрос и ранее выданные запросы допускают совместное использование ресурсов;

3) ресурс используется задачей низшего приоритета и может быть временно отобран (разделяемый ресурс).

Получив запрос, операционная система либо удовлетворяет его и возвращает управление задаче, выдавшей данный запрос, либо, если ресурс занят, ставит задачу в очередь к ресурсу, переводя её в состояние ожидания (блокируя). Очередь к ресурсу может быть организована несколькими способами, но чаще всего это осуществляется с помощью списковой структуры.

После окончания работы с ресурсом задача опять с помощью специального вызова супервизора (посредством соответствующей директивы) сообщает операционной системе об отказе от ресурса, или операционная система забирает ресурс сама, если управление возвращается супервизору после выполнения какой-либо системной функции. Супервизор операционной системы, получив управление по этому обращению, освобождает ресурс и проверяет, имеется ли очередь к освободившемуся ресурсу. Если очередь есть - в зависимости от принятой дисциплины обслуживания (правила обслуживания) и приоритетов заявок он выводит из состояния ожидания задачу, ждущую ресурс, и переводит её в состояние готовности к выполнению. После этого управление либо передаётся данной задаче, либо возвращается той, которая только что освободила ресурс.

При выдаче запроса на ресурс задача может указать, хочет ли она владеть ресурсом монопольно или допускает совместное использование с другими задачами. Например, с файлом можно работать монопольно, а можно и совместно с другими задачами.

Если в системе имеется некоторая совокупность ресурсов, то управлять их использованием можно на основе определенной стратегии. Стратегия подразумевает четкую формулировку целей, следуя которым можно добиться эффективного распределения ресурсов.

При организации управления ресурсами всегда требуется принять решение о том, что в данной ситуации выгоднее: быстро обслуживать отдельные наиболее важные запросы, предоставлять всем процессам равные возможности либо обслуживать максимально возможное количество процессов и наиболее полно использовать ресурсы.

2. Распределение оперативной памяти в MS DOS

Как известно, MS-DOS - это однопрограммная ОС. В ней, конечно, можно организовать запуск резидентных или TSR-задач, но в целом она предназначена для выполнения только одного вычислительного процесса. Поэтому распределение памяти в ней построено по самой простой схеме. Уточним некоторые характерные детали.

В IBM PC использовался 16-разрядный микропроцессор i8088, который за счёт введения сегментного способа адресации позволял адресоваться к памяти объёмом до 1 Мбайт. В последующих ПК (IBM PC AT, AT386 и др.) было принято решение поддерживать совместимость с первыми, поэтому при работе с DOS прежде всего рассматривают первый мегабайт. Вся эта память разделялась на несколько областей. На этом рисунке изображено, что памяти может быть и больше, чем 1 Мбайт.

Если не вдаваться в детали, можно сказать, что в состав MS-DOS входят следующие основные компоненты:

1) Базовая подсистема ввода / вывода - BIOS (base input-output system), включающая в себя помимо программы тестирования ПК (POST) обработчики прерываний (драйверы), расположенные в постоянном запоминающем устройстве. В конечном итоге, почти все остальные модули MS-DOS обращаются к BIOS. Если и не напрямую, то через модули более высокого уровня иерархии.

2) Модуль расширения BIOS - файл IO.SYS (в других DOS-системах он может называться иначе, например, IBMBIO.COM).

3) Основной, базовый модуль обработки прерываний DOS - файл MSDOS.SYS. Именно этот модуль в основном реализует работу с файловой системой. (В PC-DOS аналогичный по значению файл называется IBMDOS.COM).

4) Командный процессор (интерпретатор команд) - файл COMMAND.COM.

5) Утилиты и драйверы, расширяющие возможности системы.

6) Программа загрузки MS-DOS - загрузочная запись (boot record), расположенная на дискете.

Вся память в соответствии с архитектурой IBM PC условно может быть разбита на три части.

В самых младших адресах памяти (первые 1024 ячейки) размещается таблица векторов прерываний. Это связано с аппаратной реализацией процессора i8088, на котором была реализована ПК. В последующих процессорах (начиная с i80286) адрес таблицы прерываний определяется через содержимое соответствующего регистра, но для обеспечения полной совместимости с первым процессором при включении или аппаратном сбросе в этот регистр заносятся нули. При желании, однако, в случае использования современных микропроцессоров i80x86 можно разместить векторы прерываний и в другой области.

Вторая часть памяти отводится для размещения программных модулей самой MS-DOS и для программ пользователя. Рассмотрим их размещение чуть ниже. Здесь, однако, заметим, что эта область памяти называется Conventional Memory (основная, стандартная память).

Наконец, третья часть адресного пространства отведена для постоянных запоминающих устройств и функционирования некоторых устройств ввода / вывода. Эта область памяти получила название UMA (upper memory areas - область верхней памяти).

В младших адресах основной памяти размещается то, что можно назвать ядром этой ОС - системные переменные, основные программные модули, блоки данных для буферирования операций ввода / вывода. Для управления устройствами, драйверы которых не входят в базовую подсистему ввода / вывода, загружаются так называемые загружаемые (или инсталлируемые) драйверы. Перечень инсталлируемых драйверов определяется специальным конфигурационным файлом CONFIG.SYS. После загрузки расширения BIOS - файла IO.SYS - последний (загрузив модуль MSDOS.SYS) считывает файл CONFIG.SYS и уже в соответствии с ним подгружает в память необходимые драйверы. Кстати, в конфигурационном файле CONFIG.SYS могут иметься и операторы, указывающие на количество буферов, отводимых для ускорения операций ввода / вывода, и на количество файлов, которые могут обрабатываться (для работы с файлами необходимо зарезервировать место в памяти для хранения управляющих структур, с помощью которых выполняются операции с записями файла). В случае использования микропроцессоров i80x86 и наличия в памяти драйвера HIMEM.SYS модули IO.SYS и MSDOS.SYS могут быть размещены за пределами первого мегабайта в области, которая получила название HMA (high memory area).

Память с адресами, большими, чем 10FFFFh, может быть использована в DOS-программах при выполнении их на микропроцессорах, имеющих такую возможность. Так, например, микропроцессор i80286 имел 24-разрядную шину адреса, а i80386 - уже 32-разрядную шину адреса. Но для этого с помощью специальных драйверов необходимо переключать процессор в другой режим работы, при котором он сможет использовать адреса выше 10FFFFh. Широкое распространение получили две основные спецификации: XMS (eXtended Memory Specification) и EMS (Expanded Memory Specification). Поскольку основные утилиты, необходимые для обслуживания ПК, как правило, не используют эти спецификации, мы не будем здесь их рассматривать. Остальные программные модули MS-DOS (в принципе, большинство из них является утилитами) оформлены как обычные исполняемые файлы. В основном они являются транзитными модулями, то есть загружаются в память только на время своей работы, хотя среди них имеются и TSR-программы.

Для того чтобы предоставить больше памяти программам пользователя, в MSDOS применено то же решение, что и во многих других простейших ОС - командный процессор COMMAND.COM сделан состоящим из двух частей. Первая часть является резидентной, она размещается в области ядра. Вторая часть - транзитная; она размещается в области старших адресов раздела памяти, выделяемой для программ пользователя. И если программа пользователя перекрывает собой область, в которой была расположена транзитная часть командного процессора, то последний при необходимости восстанавливает в памяти свою транзитную часть, поскольку после выполнения программы она возвращает управление резидентной части COMMAND.COM.

Поскольку размер основной памяти (conventional memory) относительно небольшой, то очень часто системы программирования реализуют оверлейные структуры. Для этого в MS-DOS есть специальные вызовы.

3. Разработка и моделирование способов репликации (тиражирования) файлов

Распределенные системы часто обеспечивают репликацию (тиражирование) файлов в качестве одной из услуг, предоставляемых клиентам. Репликация - это асинхронный перенос изменений данных исходной файловой системы в файловые системы, принадлежащие различным узлам распределенной файловой системы. Другими словами, система оперирует несколькими копиями файлов, причем каждая копия находится на отдельном файловом сервере. Имеется несколько причин для предоставления этого сервиса, главными из которых являются:

1) увеличение надежности за счет наличия независимых копий каждого файла на разных файл-серверах;

2) распределение нагрузки между несколькими серверами.

Как обычно, ключевым вопросом, связанным с репликацией является прозрачность. До какой степени пользователи должны быть в курсе того, что некоторые файлы реплицируются? Должны ли они играть какую-либо роль в процессе репликации или репликация должна выполняться полностью автоматически? В одних системах пользователи полностью вовлечены в этот процесс, в других система все делает без их ведома. В последнем случае говорят, что система репликационно прозрачна.

При использовании первого способа (а) программист сам управляет всем процессом репликации. Когда процесс создает файл, он делает это на одном определенном сервере. Затем, если пожелает, он может сделать дополнительные копии на других серверах. Если сервер каталогов разрешает сделать несколько копий файла, то сетевые адреса всех копий могут быть ассоциированы с именем файла, как показано на рисунке снизу, и когда имя найдено, это означает, что найдены все копии. Чтобы сделать концепцию репликации более понятной, рассмотрим, как может быть реализована репликация в системах, основанных на удаленном монтировании, типа UNIX. Предположим, что рабочий каталог программиста имеет имя /machine1/usr/ast. После создания файла, например, /machine1/usr/ast/xyz, программист, процесс или библиотека могут использовать команду копирования для того, чтобы сделать копии /machine2/usr/ast/xyz и machine3/usr/ast/xyz. Возможно программа использует в качестве аргумента строку /usr/ast/xyz и последовательно попытается открывать копии, пока не достигнет успеха. Эта схема хотя и работает, но имеет много недостатков, и по этим причинам ее не стоит использовать в распределенных системах.

4. Почтовые ящики

Тесное взаимодействие между процессами предполагает не только синхронизацию - обмен временными сигналами, но также передачу и получение произвольных данных, то есть обмен сообщениями. В системе с одним процессором посылающий и получающий процессы не могут работать одновременно. В мультипроцессорных системах также нет никакой гарантии их одновременного исполнения. Следовательно, для хранения посланного, но еще не полученного сообщения необходимо место. Оно называется буфером сообщений, или почтовым ящиком.

Если процесс Р1 хочет общаться с процессом Р2, то Р1 просит систему предоставить или образовать почтовый ящик, который свяжет эти два процесса так, чтобы они могли передавать друг другу сообщения. Для того чтобы послать процессу Р2 какое-то сообщение, процесс Р1 просто помещает это сообщение в почтовый ящик, откуда процесс Р2 может его в любое время получить. При применении почтового ящика процесс Р2 в конце концов обязательно получит сообщение, когда обратится за ним (если вообще обратится). Естественно, что процесс Р2 должен знать о существовании почтового ящика. Поскольку в системе может быть много почтовых ящиков, необходимо обеспечить доступ процессу к конкретному почтовому ящику. Почтовые ящики являются системными объектами, и для пользования таким объектом необходимо получить его у операционной системы, что осуществляется с помощью соответствующих запросов.

Если объем передаваемых данных велик, то эффективнее не передавать их непосредственно, а отправлять в почтовый ящик сообщение, информирующее процесс-получатель о том, где можно их найти.

Почтовый ящик может быть связан с парой процессов, только с отправителем, только с получателем, или его можно получить из множества почтовых ящиков, которые используют все или несколько процессов. Почтовый ящик, связанный с процессом-получателем, облегчает посылку сообщений от нескольких процессов в фиксированный пункт назначения. Если почтовый ящик не связан жестко с процессами, то сообщение должно содержать идентификаторы и процесса-отправителя, и процесса-получателя.

Итак, почтовый ящик - это информационная структура, поддерживаемая операционной системой. Она состоит из головного элемента, в котором находится информация о данном почтовом ящике, и нескольких буферов (гнезд), в которые помещают сообщения. Размер каждого буфера и их количество обычно задаются при образовании почтового ящика.

Правила работы почтового ящика могут быть различными в зависимости от его сложности. В простейшем случае сообщения передаются только в одном направлении. Процесс Р1 может посылать сообщения до тех пор, пока имеются свободные гнезда. Если все гнезда заполнены, то Р1 может либо ждать, либо заняться другими делами и попытаться послать сообщение позже. Аналогично процесс Р2 может получать сообщения до тех пор, пока имеются заполненные гнезда. Если сообщений нет, то он может либо ждать сообщений, либо продолжать свою работу. Эту простую схему работы почтового ящика можно усложнять в нескольких направлениях и получать более хитроумные системы общения - двунаправленные и миоговходовые почтовые ящики.

Двунаправленный почтовый ящик, связанный с парой процессов, позволяет подтверждать прием сообщений. При наличии множества гнезд каждое из них хранит либо сообщение, либо подтверждение. Чтобы гарантировать передачу подтверждений, когда все гнезда заняты, подтверждение на сообщение помещается в то же гнездо, в котором находится сообщение, и это гнездо уже не используется для другого сообщения до тех пор, пока подтверждение не будет получено. Из-за того, что некоторые процессы не забрали свои сообщения, связь может быть приостановлена. Если каждое сообщение снабдить пометкой времени, то управляющая программа может периодически удалять старые сообщения.

Процессы могут быть также остановлены в связи с тем, что другие процессы не смогли послать им сообщения. Если время поступления каждого остановленного процесса в очередь заблокированных процессов регистрируется, то управляющая программа может периодически посылать им пустые сообщения, чтобы они не ждали чересчур долго.

Реализация почтовых ящиков требует использования примитивных операторов низкого уровня, таких как операции Р и V или каких-либо других, но пользователям может дать средства более высокого уровня (наподобие мониторов Хоара), например, такие, как представлены ниже.

Эта операция переписывает сообщение в некоторый буфер, помещает его адрес в переменную Буфер и добавляет буфер к очереди Получатель. Процесс, выдавший операцию SEND_MESSAGE, продолжит свое исполнение.

WAITJCSSAGE (Отправитель. Сообщение. Буфер)

Эта операция блокирует процесс, выдавший операцию, до тех пор, пока в его очереди не появится какое-либо сообщение. Когда процесс передается на процессор, он получает имя отправителя с помощью переменной Отправитель, текст сообщения через переменную Сообщение и адрес буфера в переменной Буфер. Затем буфер удаляется из очереди, и процесс может записать в него ответ отправителю.

SEND_ANSWER (Результат, Ответ, Буфер)

Эта операция записывает информацию, определяемую через переменную Ответ в тот буфер, номер которого указывается переменной Буфер (из этого буфера было получено сообщение), и добавляет буфер к очереди отправителя. Если отправитель ждет ответ, он деблокируется.

WAIT_ANSWER (Результат, Ответ, Буфер)

Эта операция блокирует процесс, выдавший операцию, до тех пор, пока в буфер не поступит ответ; доступ к нему возможен через переменную Буфер. После того как ответ поступил и процесс передан на процессор, ответ, доступ к которому определяется через переменную Ответ, переписывается в память процессу, а буфер освобождается. Значение переменной Результат указывает, является ли ответ пустым, то есть выданным операционной системой, так как сообщение было адресовано несуществующему (или так и не ставшему активным) процессу.

Основные достоинства почтовых ящиков:

1) процессу не нужно знать о существовании других процессов до тех пор, пока он не получит сообщения от них;

2) два процесса могут обменяться более чем одним сообщением за один раз;

3) операционная система может гарантировать, что никакой иной процесс не вмешается во взаимодействие процессов, ведущих между собой «переписку»;

4) очереди буферов позволяют процессу-отправителю продолжать работу, не обращая внимания на получателя.

Основным недостатком буферизации сообщений является появление еще одного ресурса, которым нужно управлять. Этим ресурсом являются сами почтовые ящики.

К другому недостатку можно отнести статический характер этого ресурса: количество буферов для передачи сообщений через почтовый ящик фиксировано. Поэтому естественным стало появление механизмов, подобных почтовым ящикам, но реализованных на принципах динамического выделения памяти под передаваемые сообщения.

В операционных системах компании Microsoft тоже имеются почтовые ящики (mailslots). В частности, они достаточно часто используются при создании распределенных приложений для сети. При работе с ними в приложении, которое должно отправить сообщение другому приложению, необходимо указывать класс доставки сообщений. Различают два класса доставки. Первый класс (first-class delivery) гарантирует доставку сообщений; он ориентирован на сеансовое взаимодействие между процессами и позволяет организовать посылки типа «один к одному» и «один ко многим». Второй класс (second-class delivery) основан на механизме датаграмм, и он уже не гарантирует доставку сообщений получателю.

Список литературы

1. Бройдо В.Л. Вычислительные системы сети и телекоммуникации. - СПб.: Питер, 2003.

2. Гордеев А.В. Операционные системы: Учебник для вузов. - СПб.: Питер, 2003.

3. Гордеев А.В. Молчанов А.Ю. Системное программное обеспечение. - СПб.: Питер, 2002.

операционный репликация почтовый прерывание

Размещено на Allbest.ru


Подобные документы

  • Улучшение параметров модулей памяти. Функционирование и взаимодействие операционной системы с оперативной памятью. Анализ основных типов, параметров оперативной памяти. Программная часть с обработкой выполнения команд и размещением в оперативной памяти.

    курсовая работа [99,5 K], добавлен 02.12.2009

  • Принципы организации и особенности обработки прерываний на основе контроллера 8259A. Общая характеристика аппаратных средств системы прерываний PIC (Programmable Interrupt Controller). История разработки и порядок работы с технологией Plag and Play.

    курсовая работа [305,1 K], добавлен 29.07.2010

  • Разработка алгоритма работы и структуры контроллера кэш-памяти с полностью ассоциативным отображением основной памяти. Представление операционной и управляющей частей черного ящика устройства. Схема алгоритма контроллера кэш на уровне микроопераций.

    курсовая работа [1,0 M], добавлен 19.03.2012

  • Понятие операционной системы (ОС) как базового комплекса компьютерных программ для управления аппаратными средствами компьютера и работы с файлами. Файловые системы и их основные функции. Способы именования файлов при создании диска, совместимость с ОС.

    контрольная работа [36,8 K], добавлен 20.11.2009

  • Распределение оперативной памяти фиксированными, динамическими и перемещаемыми разделами. Распределение с использованием внешней памяти. Принципы рaботы матричного принтера. Проектирование символов и разработка программы, реализующей их вывод на печать.

    курсовая работа [241,3 K], добавлен 01.07.2011

  • Моделирование работы вычислительной системы из двух процессоров и общей оперативной памяти. Структурная схема модели системы. Укрупненная схема моделирующего алгоритма. Результаты моделирования и их анализ. Машинная программа объекта исследования.

    курсовая работа [1,0 M], добавлен 21.06.2011

  • Понятие операционной системы. История ее создания и развития. Разновидности современных операционных систем. Основные функции ОС общего и специального назначения. Вычислительные и операционные системы, их функции. Генерация операционной системы.

    курсовая работа [46,8 K], добавлен 18.06.2009

  • Изучение механизма работы программных инструментов как трудная часть отладочного процесса. Отладчики пользовательского режима, их основные типы. Автоматический запуск приложений в отладчике. Быстрые клавиши прерываний. Отладка ядра операционной системы.

    реферат [260,0 K], добавлен 25.11.2016

  • Классификация компьютерной памяти. Использование оперативной, статической и динамической оперативной памяти. Принцип работы DDR SDRAM. Форматирование магнитных дисков. Основная проблема синхронизации. Теория вычислительных процессов. Адресация памяти.

    курсовая работа [1,5 M], добавлен 28.05.2016

  • Изучение понятия, векторов и механизмов обработки прерываний; их классификация в зависимости от источника происхождения. Особенности реагирования аппаратной и программной частей операционной системы на сигналы о совершении некоторого события в компьютере.

    реферат [995,8 K], добавлен 22.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.