Применение компьютерных технологий при разработке чертежа и конструировании "вилки"

Построение 3D твердотельной модели "вилки" и ассоциативного вида чертежа детали 2D в среде "Компас". История развития информационных технологий в машиностроении. Основные этапы формирования теоретических основ систем автоматизированного проектирования.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 16.03.2012
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

Тема: Применение компьютерных технологий при разработке чертежа и конструировании "вилки"

Содержание

  • Введение
  • 1. Создание 3D модели детали
  • 2. Построение ассоциативного вида чертежа детали. (2D чертежа)
  • 3. История развития информационных технологий в машиностроении
  • Заключение
  • Литература
    • Введение
      • Цель данной работы заключается в том, чтобы ознакомиться с областью применения на практике с некоторыми видами программных средств автоматизации машиностроения, изучить методы построения 3D моделей и чертежей 2D в компас, используя программные средства, провести оптимизацию режимов резания по критерию погрешности силового отжима и по критерию погрешности износа инструмента. Оценить эффективность и удобство использования компьютерных технологий в машиностроении, чтобы в дальнейшем пользоваться ими и совершенствовать полученные навыки. Так как в наши дни наблюдается быстрое развитие и применение компьютерных технологий в таких отраслях, как авиастроение, автомобилестроение, тяжелое машиностроение, архитектура, строительство, нефтегазовая промышленность, картография, геоинформационные системы, а также в производстве товаров народного потребления, например бытовой электротехнике. В машиностроении компьютерные технологии используются для проведения конструкторских, технологических работ, в том числе работ по технологической подготовке производства. С помощью компьютерных технологий выполняется разработка чертежей, производится трехмерное моделирование изделия и процесса сборки, проектируется вспомогательная оснастка, например штампы и пресс-формы, составляется технологическая документация и управляющие программы (УП) для станков с числовым программным управлением (ЧПУ), ведется архив.
      • 1. Создание 3D модели детали
      • В среде КОМПАС 3D выполним твердотельную модель Вилки (ГОСТ 1270-67). Создаем новый документ. Выбираем «Деталь» (смотри рисунок 1).
      • Рисунок 1 - Выбор детали
      • Для выполнения 3D модели детали Вилка 7018-0371 ГОСТ 1270-67 необходимо в Дереве построения переименовать модель (Деталь на Вилка). (Смотри рисунок 2)
      • Рисунок 2 - Переименование детали и выбор плоскости
      • После выбора плоскости необходимо построить эскиз детали. Его можно построить сразу, нажав на кнопку Построение эскиза, или скопировать контур детали из чертежа детали, если он есть в наличии. После построения эскиза необходимо выйти из режима Построение эскиза. (смотри рисунок 3)
      • Рисунок 3 - Создание эскиза
      • Выйдя из режима Построения эскиза, на панели инструментов выбираем команду Выдавливание на расстояние 25 мм. (смотри рисунок 4)
      • Рисунок 4 - Выдавливание твердотельной модели
      • Для построения Фаска 1? 450 необходимо выделить грань и с помощью команды Фаска выполнить операцию (смотри рисунок 5)
      • Рисунок 5 - Выполнение фаски
      • Щелчком мыши выбираем плоскость на которой будет построен эскиз выреза (рисунок 6) и переходим в режим Построения эскиза.
      • Рисунок 6 - Выбор плоскости построения эскиза
      • При помощи вспомогательных параллельных линий находим центр отверстия, и строим эскиз этого отверстия (смотри рисунок 7).
      • чертеж компас информационный автоматизированный
      • Рисунок 7 - Построения эскиза выреза
      • Выйдя из режима Построения эскиза, командой Вырезать выдавливанием вырезаем паз «Через все». (смотри рисунок 8)
      • Рисунок 8 - Вырезание отверстия
      • Выделяем боковую плоскость детали и строим эскиз отверстия. Вырезаем отверстие на глубину 10 мм. (смотри рисунки 9, 10)
      • Рисунок 9 - Эскиз отверстия
      • Рисунок 10 - Вырезание отверстия
      • На рисунке 11 показано построение фаски на кромке отверстия.
      • Рисунок 11 - Полученная фаска
      • Готовая 3-D модель детали Вилка смотри рисунок 12
      • Рисунок 12 - 3-D модель детали Вилка

2. Построение ассоциативного вида чертежа детали. (2D чертежа)

Главная панель - Файл - создать - чертеж

Рисунок 13 - Выбор детали

Выбираем виды необходимые для нашего чертежа (смотри рисунок 14)

Главная панель - вставка - вид с модели - стандартный - разместить фантом видов на поле формата - щелкнуть.

Рисунок 14 - Выбор видов

По умолчанию в качестве исходного формата (шаблона) выбран формат А4

Первый лист в соответствии с ГОСТ- 2.104-68. (рисунок 15)

Рисунок 15 - Созданные виды

Построение разрезов представлено на рисунке 16. Используется панель Геометрия, команды Отрезок, Вспомогательная вертикальная прямая, штриховка, Привязка Середина, Прямоугольник.

Рисунок 15 - Построение разрезов

На рисунке 17 представлена готовая деталь после простановки размеров и обозначения шероховатости.

Рисунок 17 - Чертеж детали

3. История развития информационных технологий в машиностроении

Современный рынок машиностроения предъявляет все более жесткие требования к срокам и стоимости проектных работ. Проведение конструкторских работ, нацеленных на создание качественной, конкурентоспособной продукции, связано с подготовкой точных математических моделей узлов и агрегатов, а также с выполнением огромного объема математических расчетов, необходимых для инженерного анализа конструкций. Основной путь повышения конкурентоспособности предприятия связан с резким сокращением сроков создания моделей и ускорением расчетов математических параметров на всех этапах разработки продукции. Таким образом, применение высокопроизводительных систем автоматизированного проектирования, технологической подготовки производства и инженерного анализа (CAE/CAD/CAM-систем) стало ключевым элементом бизнеса предприятия, работающего на современном рынке машиностроения.

Применение линейки, циркуля и транспортира на чертежной доске привело к технической революции начала XIX века. Для повышения точности все построения выдерживали в максимально возможном масштабе, при этом погрешность построений составляла не менее 0,1 мм, а при задании угловых значений - не менее 1 мм на одном метре. Таковы пределы точности при геометрическом моделировании на кульмане. Появление ЭВМ стало благоприятной предпосылкой для развития машинной графики, которая включила в себя дисциплины геометрического моделирования и вычислительной геометрии. Основная их задача состоит в решении геометрических задач в аналитической и вычислительной (алгоритмической) форме.

Система автоматизированного проектирования (САПР, в англоязычном написании CAD System - Computer Aided Design System) - это система, реализующая проектирование, при котором все проектные решения или их часть получают путем взаимодействия человека и ЭВМ [22].

В настоящий момент существует несколько классификационных подгрупп, из них три основных: машиностроительные САПР (MCAD - Mechanical Computer Aided Design), архитектурно-строительные САПР(CAD/AEC - Architectural, Engineering, and Construction), САПР печатных плат (ECAD - Electronic CAD/EDA - Electronic Design Automation). Наиболее развитым среди них является рынок MCAD, по сравнению с которым секторы ECAD и CAD/AEC довольно статичны и развиваются слабо. Рассмотрим процесс развития автоматизированного проектирования в машиностроении.

История САПР в машиностроении разделяется на несколько этапов. Первый этап формирования теоретических основ САПР начался в 50-х годах прошедшего столетия.

В основу идеологии положены разнообразные математические модели, такие как теория B-сплайнов, разработанная И. Шоенбергом (I.J. Schoenberg) в 1946 г. Моделированию кривых и поверхностей любой формы были посвящены работы П. Безье (P.E. Bezier), выполненные в 60-х годах. В этот период сформировалась структура и классификация САПР. Объекты проектирования стали рассматриваться с точки зрения различных областей науки, базовые подсистемы САПР разделились на геометрические, прочностные, аэродинамические, тепловые, технологические, и т. п, впоследствии их стали классифицировать как CAD, CAE, CAM, PDM, PLM.

САПР на базе подсистемы машинной графики и геометрического моделирования (собственно CAD - Computer Aided Design) решают задачи, в которых основной процедурой проектирования является создание геометрической модели, поскольку любые предметы описываются в первую очередь геометрическими параметрами.

САПР системы технологической подготовки производства (CAM - Сomputer Aided Manufacturing) осуществляют проектирование технологических процессов, синтеза программ для оборудования с ЧПУ, моделирование механической обработки и т.п. в соответствии с созданной геометрической моделью. САПР системы инженерного анализа (CAE - Computer Aided Engineering) позволяют анализировать, моделировать или оптимизировать механические, температурные, магнитные и иные физические характеристики разрабатываемых моделей, проводить симуляцию различных условий и нагрузок на детали. Как правило, эти пакеты работают, используя метод конечных элементов, когда общая модель изделия делится на множество геометрических примитивов, например тетраэдров. Основными модулями программ анализа являются препроцессор, решатель и постпроцессор.

Исходные данные для препроцессора - геометрическая модель объекта - чаще всего получают из подсистемы конструирования (CAD). Основная функция препроцессора - представление исследуемой среды (детали) в сеточном виде, т.е. в виде множества конечных элементов. Решатель - программа, которая преобразует модели отдельных конечных элементов в общую систему алгебраических уравнений и рассчитывает эту систему одним из методов разреженных матриц. Постпроцессор служит для визуализации результатов решения в удобной для пользователя форме. В машиностроительных САПР это форма - графическая. Конструктор может анализировать поля напряжений, температур, потенциалов и т.п. в виде цветных изображений, где цвет отдельных участков характеризует значения анализируемых параметров. Наконец, системы управления инженерными данными (PDM - Product Data Management) обеспечивают хранение и управление проектно-конструкторской документацией разрабатываемых изделий, ведение изменений в документации, сохранение истории этих изменений и т. п. На первом этапе развития возможности систем в значительной мере определялись характеристиками имевшихся в то время недостаточно развитых аппаратных средств ЭВМ. Для работы с системами САПР использовались графические терминалы, подключаемые к мэйнфреймам. Процесс конструирования механических изделий заключается в определении геометрии будущего изделия, поэтому истории CAD-систем практически началась с создания первой графической станции. Такая станция Sketchpad, появившаяся в 1963 г, использовала дисплей и световое перо. Ее создатель И. Сазерленд в дальнейшем работал в агентстве ARPA и возглавлял департамент анализа и обработки информации, а позже стал профессором Гарвардского университета.

Развитие компьютерной графики сдерживалось не только аппаратными возможностями вычислительных машин, но и характеристиками программного обеспечения, которое должно было стать универсальным по отношению к использовавшимся аппаратным средствам представления графической информации. С 70-х годов прошлого века разрабатывался стандарт графических программ. Стандарт на базисную графическую систему включал в себя функциональное описание и спецификации графических функций для различных языков программирования.

В 1977 г. ACM представила документ Core, который описывал требования к аппаратно-независимым программным средствам. В 1982 г. появилась система Graphical Kernel System (GKS), принятая в качестве стандарта в 1985 г, а уже в 1987 г. был разработан вариант GKS-3D с ориентацией на 3D-графику.

Параллельно с развитием CAD-систем бурное развитие получили CAM-системы автоматизации технологической подготовки производства. В 1961 г. был создан язык программирования APT (Automatic Programming Tools), впоследствии этот язык стал основой многих других языков программирования применительно к оборудованию с числовым программным управлением. Параллельно с работами, проводившимися в США, в СССР Г.К. Горанский создал первые программы для расчетов режимов резания.

Разработанный к 1950 г. метод конечных элементов послужил толчком к развитию систем инженерного анализа CAE. В 1963 г. был предложен способ применения метода конечных элементов для анализа прочности конструкции путем минимизации потенциальной энергии.

В 1965 г. NASA для поддержки проектов, связанных с космическими исследованиями, поставила задачу разработки конечно-элементного программного пакета. К 1970 г. такой пакет под названием NASTRAN (NAsa STRuctural ANalysis) был создан и введен в эксплуатацию. Стоимость разработки, длившейся 5 лет, составила $4 млн. Среди компаний, участвовавших в разработке, была MSC (MacNeal-Schwendler Corporation), которая с 1973 г. начала самостоятельно развивать пакет MSC.NASTRAN, впоследствии ставший мировым лидером в своем классе продуктов. С 1999 г. компания MSC называется MSC.Software Corporation. В 1976 г. был разработан программный комплекс анализа ударно-контактных взаимодействий деформируемых структур DYNA-3D (позднее названный LS-DYNA).

Мировым лидером среди программ анализа на макроуровне считается комплекс Adams (Automatic Dynamic Analysis of Mechanical Systems), разработанный и совершенствуемый компанией Mechanical Dynamics Inc. (MDI). Компания создана в 1977 г. Основное назначение комплекса Adams - кинематический и динамический анализ механических систем с автоматическим формированием и решением уравнений движения.Широкое внедрение систем САПР в то время сдерживалось высокой стоимостью программных продуктов и "железа". Так, в начале 80-х годов прошлого века стоимость одной лицензии CAD-системы доходила до $100000 и требовала использования дорогостоящей аппаратной платформы.

Следующий этап развития ознаменовался началом использования графических рабочих станций под управлением ОС Unix. В середине 80-х годов компании Sun Microsystems и Intergraph предложили рабочие и графические станции с архитектурой SPARC. Фирма DEC разработала автоматизированные рабочие места на компьютерах VAX, появились персональные компьютеры на основе процессоров i8086 и i80286. Эти разработки позволили снизить стоимость CAD-лицензии до $20000 и создали условия более широкого применения для CAD/CAM/CAE-систем. В этот период математический аппарат плоского геометрического моделирования был хорошо "доведен", способствуя развитию плоских CAD-систем и обеспечивая точность геометрии до 0,001 мм в метровых диапазонах при использовании 16-битной математики. Появление 32-разрядных процессоров полностью обеспечило потребности плоских CAD-систем для решения задач любого масштаба. Развитие CAD-систем следовало двум подходам к плоскому моделированию, которые получили название твердотельный и чертежный. Чертежный подход оперирует такими основными инструментами как отрезки, дуги, полилинии и кривые. Операциями моделирования на их основе являются продление, обрезка и соединение. В твердотельном подходе основными инструментами являются замкнутые контуры, а остальные элементы играют вспомогательную роль.

Главными операциями моделирования являются булевы объединение, дополнение, пересечение. В 80-е годы прошлого века характеристики использовавшегося для САПР вычислительного оборудования значительно различались. Аппаратной платформой CAD/CAM-систем верхнего уровня были дорогие высокопроизводительные рабочие станции с ОС Unix. Такая техника позволяла выполнять сложные операции как твердотельного, так и поверхностного объемного моделирования применительно к деталям и сборочным узлам из многих деталей. Идеология систем объемного моделирования базируется на объемной мастер-модели; при этом определяется геометрия поверхности не по проекциям отдельных сечений, а интегрально - для всей спроектированной поверхности. Используя модель, можно получить информацию о координатах любой точки на поверхности, а также сформировать плоские изображения: виды, сечения и разрезы. Геометрическая модель позволяет легко получить такие локальные характеристики как нормали, кривизны и интегральные характеристики - массу, объем, площадь поверхности, момент инерции.

Системы объемного моделирования также базируются на двух подходах к построению поверхностей модели: поверхностном и твердотельном. При использовании поверхностного моделирования конструктор определяет изделие семейством поверхностей. При твердотельном способе конструктор представляет изделие семейством геометрических примитивов, таких как куб, шар, цилиндр, пирамида, тор. В отличие от чертежа модель является однозначным представлением геометрии и количественного состава объекта. Если в сборочном чертеже болт представляется несколькими видами, то в объемной сборке - одним объектом, моделью болта. Поверхностное моделирование получило большее распространение в инструментальном производстве, а твердотельное - в машиностроении. Современные системы, как правило, содержат и тот, и другой инструментарий и позволяют работать как с телами, так и с отдельными поверхностями, используя булевы и поверхностные процедуры. Принято делить CAD/CAM-системы по их функциональным характеристикам на три уровня (верхний, средний и нижний). В 80-е годы прошлого века такое деление основывалось на значительном различии характеристик использовавшегося для САПР вычислительного оборудования. CAD-системы нижнего уровня предназначались только для автоматизации чертежных работ, выполнявшихся на низкопроизводительных рабочих станциях и персональных компьютерах. К 1982 г. твердотельное моделирование начали применять в своих продуктах компании IBM, Computervision, Prime, но методы получения моделей тел сложной формы не были развиты, отсутствовал аппарат поверхностного моделирования. В 1983 г. была разработана техника создания 3D-моделей с показом или удалением скрытых линий.

В 1986 г. компания Autodesk выпустила свой первый CAD-продукт Autocad - однопользовательскую версию на языке "C" с поддержкой формата IGES. В области автоматизации проектирования унификация основных операций геометрического моделирования привела к созданию универсальных геометрических ядер, предназначенных для применения в разных САПР. Распространение получили два геометрических ядра: Parasolid (продукт фирмы Unigraphics Solutions) и ACIS (компания-разработчик Spatial Technology). Ядро Parasolid было разработано в 1988 г. и в следующем году стало ядром твердотельного моделирования для CAD/CAM Unigraphics, а с 1996 г. - промышленным стандартом. Необходимость обмена данными между различными системами на различных этапах разработки продукции способствовала стандартизации описаний геометрических моделей. Вначале появился стандарт IGES (Initial Graphics Exchange Specification).

Фирма Autodesk в своих продуктах стала использовать формат DXF (Autocad Data eXchange Format). Затем были разработаны язык Express и прикладные протоколы AP203 и AP214 в группе стандартов ISO 10303 STEP (Standard for Exchange Product Model Data). В 1986 г. появился ряд новых стандартов. Среди них CGI (Computer Graphics Interface) и PHIGS P (Programmer's Hierarchical Interactive Graphics System) - стандарт ANSI, принятый в качестве стандарта ISO в 1989 г. В 1993 г. компанией Silicon Graphics предложен стандарт OpenGL (SGI Graphical Language), широко используемый в настоящее время.

В упомянутых системах используются графические форматы для обмена данными, представляющие собой описание изображения в функциях виртуального графического устройства (в терминах примитивов и атрибутов). Графический формат (метафайл) обеспечивает возможность запоминания графической информации, передачи ее между различными системами и интерпретации для вывода на различные устройства. Такими форматами явились CGM - Computer Graphics Metafile, PostScript - Adobe Systems Language, GEM - GEM Draw File Format и др.

Работы по стандартизации были направлены на расширение функциональности графических языков и систем, включение в их состав средств описания не только данных чертежей и 3D-моделей, но и других свойств и характеристик изделий.

Четвертый этап (начиная с конца 90-х годов) характеризуется интеграцией CAD/CAM/CAE-систем с системами управления проектными данными PDM и с другими средствами информационной поддержки изделий.

На этом этапе многие предприятия уже прошли первый этап автоматизации. В основу процессов проектирования и производства была положена геометрическая модель изделия, которая применялась на всех этапах подготовки производства. При такой форме организации производства начинают эффективно функционировать сквозные процессы, опирающиеся на геометрию модели. В первую очередь это подготовка производства с помощью CAM-систем. Сложность геометрии современных изделий неуклонно возрастает, и изготовление их без геометрической модели практически невозможно. Максимальная эффективность от внедрения САПРА машиностроения достигается тогда, когда система включает в себя не только конструкторское, но и технологическое проектирование.

Сложность управления проектными данными, необходимость поддержания их полноты, достоверности и целостности, необходимость управления параллельной разработкой привели в 80-е годы к созданию системам управления проектными данными PDM (Product Data Management). В начале 80-х годов компания CDC разработала первую PDM-систему под названием EDL. В 90-х годах активно разрабатывались продукты PDM для САПР в машиностроении. Одной из первых развитых PDM-систем являлась система Optegra компании Computervision. В этот же период компания Unigraphics Solutions (UGS) совместно с Kodak разработала PDM-систему iMAN. В 1998 г. компания PTC вышла на рынок PDM-систем, купив компанию Computervision и ее Internet-ориентированную PDM-технологию Windchill. В последние годы происходило быстрое развитие PDM-систем: появились ENOVIA и Smarteam от Dassault Systemes, Teamcenter от UGS и другие. Среди российских систем PDM наиболее известными являются Лоцман: PLM компании Аскон, PDM STEP Suite, разработанная под НПО "Прикладная логистика", Party Plus компании Лоция-Софт и т.д. Итак, термин САПР (система автоматизации проектирования) подразумевает комплексный подход к разработке изделия и включает совокупность систем CAD/CAM/CAE. Развитие систем геометрического моделирования, анализа и расчета характеристик изделия сопровождается интеграцией в рамках предприятия. Мировой рынок обособленных CAD/CAM решений уже насыщен, системы близки по функциональности, и темпы роста этого сегмента рынка минимальны. По этой причине происходит усиление интеграции систем CAD/CAM/CAE с системами PDM, которые позволяют хранить и управлять проектно-конструкторской документацией на разрабатываемые изделия, вносить в документацию изменения, поддерживать хранение истории этих изменений. Распространение функций PDM-систем на все этапы жизненного цикла продукции превращает их в системы PLM (Product Lifecycle Management). Развитие систем PLM обеспечивает максимальную интеграцию процессов проектирования, производства, модернизации и сопровождения продукции предприятия и по сути имеет много общего с концепцией интегрированной поддержки жизненного цикла изделия.

Заключение

Компьютерное моделирование является необходимым инструментом создания современных технических объектов. Все более широкий круг предметов и явлений становятся объектами компьютерной симуляции. Она внедрилась практически во все сферы инженерной деятельности. Значительная доля предприятий использует технологию пространственного моделирования, для некоторых она является основным инструментом разработки конструкторской документации и - нередко - технологических процессов. Естественным является переход на следующий уровень - компьютерный анализ и проектирование.

В условиях динамично развивающегося рынка САПР знание основ трехмерного моделирования, параметризации, создания чертежей в САD-системе является необходимым для инженера-конструктора. В любой проектно-конструкторской организации, на любом предприятии и в высшем учебном заведении в последние несколько лет большое внимание уделяется подготовке расчетов, чертежей и документации именно с использованием персональных компьютеров. Технический специалист, кроме знаний в своей области, должен отменно владеть навыками автоматизированного проектирования, легко, точно, а главное, быстро решать поставленные задачи в графическом редакторе или в расчетной системе, без этого его предприятие (а значит, и он сам) обречено оказаться раздавленным жесткой рыночной конкуренцией.

Очень важным моментом, влияющим на качество работы инженера-проектировщика, является выбор среды моделирования. Среди множества инженерных систем для трехмерного моделирования, доступных сегодня, на самом деле не много таких, которые при удобстве интерфейса, легкости и простоте в освоении обладали бы широким функционалом и при этом имели доступную цену. Одной из таких систем является КОМПАС-3D.

В данной курсовой работе была изложена история САПР для машиностроения, и разработаны 2D чертеж и 3D модель детали «Прихват откидной» в системе КОМПАС-3D.

Литература

1. Курсовое проектирование. Организация, порядок проведения. Оформление расчетно-пояснительной записки и графической части. Стандарт предприятия. СТП ВГТУ 001 - 98. Воронеж: ВГТУ, 1998. - 49 с.(рег.ном.186-98).

2. Романов Ю.Р., Трифонов А.Г., Копылов Д.Ю. Проектирование технологии изготовления детали на персональном компьютере. Учебное пособие. ВГТУ.

3. http://www.ascon.ru

4. www.adem.ru

5. http://www.ascon.ru

6. http://www.tflex.com

7. http://www.propro.ru

8. http://www.intermech.host.ru

9. http://www.csoft.ru

11. http://www.sprut.ru

12. http://www.csoft.ru

13. http://www.gemma.ru

14. http://www.cadcat.ru

15. http://www.cad-soft.info

16. www.auto-desk.com

17. http://www.catia.ibm.com

Размещено на Allbest.ru


Подобные документы

  • Графическое окно программы, создание нового рисунка и выбор шаблона. Системы, способы ввода координат, слои. Основные типы графических объектов Компас. Нанесение штриховки, текста, размеров. Печать подготовленного чертежа. Построение чертежа детали.

    курсовая работа [2,0 M], добавлен 28.02.2011

  • Последовательность разработки чертежа и модели с типоразмерами из параметрического ряда. Построение таблицы переменных в соответствии с исходными данными. Проектирование параметрической модели в системе Компас-3D, внешние переменные для чертежа детали.

    практическая работа [5,9 M], добавлен 14.04.2016

  • Тенденции развития компьютерных информационных мультимедиа-технологий. Носители мультимедийных продуктов. Типы данных мультимедиа, средства их обработки и аппаратная поддержка. Разработка плакатов в программе CorelDRAW X3. Построение чертежа в SPLAN.

    курсовая работа [2,0 M], добавлен 18.01.2015

  • Этапы проектирования модели типового вала. Создание вырезов, отверстий, шпоночных пазов и контуров вала. Построение чертежа детали, правила оформления. Ассоциативная связь между чертежом и моделью. Замечания по созданию особых элементов деталей.

    лабораторная работа [4,9 M], добавлен 30.11.2011

  • Понятие информационных технологий, этапы их развития, составляющие и основные виды. Особенности информационных технологий обработки данных и экспертных систем. Методология использования информационной технологии. Преимущества компьютерных технологий.

    курсовая работа [46,4 K], добавлен 16.09.2011

  • Анализ тенденций развития информационных технологий. Назначение и цели применения систем автоматизированного проектирования на основе системного подхода. Методы обеспечения автоматизации выполнения проектных работ на примере ЗАО "ПКП "Теплый дом".

    курсовая работа [210,0 K], добавлен 11.09.2010

  • Описание сборочной единицы шарикоподшипника радиального однорядного. Расчет зубчатого колеса. Построение сборочного чертежа. Построение изображения деталей с помощью AutoLISP. Проектирование 3D-модели цилиндра с монтажными отверстиями в AutoCAD.

    курсовая работа [2,8 M], добавлен 27.03.2011

  • Описание общих принципов работы ППП Автокад, ее назначение. Способы создания чертежей в программе. Особенности применения и выполнения ряда операций, необходимых для создания чертежа. Редактирование многострочного текста, специфика построения сплайнов.

    курсовая работа [1,5 M], добавлен 12.01.2010

  • Разработка чертежа детали в 3D-формате в системе проектирования AutoCAD. Особенности процесса построения сложных пространственных моделей, использования функций и команд, связанных с 3D-графикой в среде AutoCAD. Результаты работы: пример чертежа детали.

    отчет по практике [1,9 M], добавлен 16.06.2015

  • Сущность и этапы развития информационных технологий, их функции и составляющие. Характеристика информационных технологий управления и экспертных систем. Использование компьютерных и мультимедийных технологий, телекоммуникаций в обучении специалистов.

    курсовая работа [48,6 K], добавлен 03.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.