Бинарное дерево поиска

Сущность и алгоритм бинарного поиска. Реализация множества с помощью бинарного поиска. Условия эффективной реализации множества на базе дерева. Добавление и удаление элементов, операции вращения и процедура восстановления балансировки AVL-дерева.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 28.02.2012
Размер файла 67,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Бинарный поиск

Пусть можно сравнивать элементы множества друг с другом, определяя, какой из них больше. (Например, для текстовых строк применяется лексикографическое сравнение: первые буквы сравниваются по алфавиту; если они равны, то сравниваются вторые буквы и т.д.) Тогда можно существенно убыстрить поиск, применяя алгоритм бинарного поиска. Для этого элементы множества хранятся в массиве в возрастающем порядке. Идея бинарного поиска иллюстрируется следующей шуточной задачей: : "Как поймать льва в пустыне? Надо разделить пустыню забором пополам, затем ту половину, в которой находится лев, снова разделить пополам и так далее, пока лев не окажется пойманным".

В алгоритме бинарного поиска мы на каждом шагу делим отрезок массива, в котором может находиться искомый элемент x, пополам. Рассматриваем элемент y в середине отрезка. Если x меньше y, то выбираем левую половину отрезка, если больше, то правую. Таким образом, на каждом шаге размер отрезка массива, в котором может находиться элемент x, уменьшается в два раза. Поиск заканчивается, когда размер отрезка массива (т.е. расстояние между его правым и левым концами) становится равным единице, т.е. через [log2n]+1 шагов, где n -- размер массива. В нашем примере это произойдет после 20 шагов (т.к. log21000000 < 20 ). Таким образом, вместо миллиона операций сравнения при последовательном поиска нужно выполнить всего лишь 20 операций при бинарном.

Запишем алгоритм бинарного поиска на псевдокоде. Дан упорядоченный массив a вещественных чисел (вещественные числа используются для определенности; бинарный поиск можно применять, если на элементах множества определен линейный порядок, т.е. для любых двух элементов можно проверить их равенство или определить, какой их них больше). Пусть текущее число элементов равно n. Элементы массива упорядочены по возрастанию:

a[0] < a[1] < x xx < a[n - 1]

бинарный поиск множество

Мы ищем элемент x. Требуется определить, содержится ли x в массиве. Если элемент x содержится в массиве, то надо определить индекс i ячейки массива, содержащей x:

найти i: a[i] = x

Если же x не содержится в массиве, то надо определить индекс x, такой, что при добавлении элемента x в i -ю ячейку массива элементы массива останутся упорядоченными, т.е.

найти i: a[i-1] < x =< a[i]

(считается, что ). Объединив оба случая, получим неравенство

a[i-1] < x =< a[i]

Используем схему построения цикла с помощью инварианта. В процессе выполнения хранятся два индекса b и e (от слов begin и end), такие, что

a[b] < x =< a[e]

Индексы b и e ограничивают текущий отрезок массива, в котором осуществляется поиск. Приведенное неравенство является инвариантом цикла. Перед началом выполнения цикла рассматриваются разные исключительные случаи -- когда массив пустой (n=0), когда x не превышает минимального элемента массива (x =< a[0]) и когда x больше максимального элемента (x > a[n-1]). В общем случае выполняется неравенство

a[0] < x =< a[n-1])

Полагая b = 0, e = n - 1, мы обеспечиваем выполнение инварианта цикла перед началом выполнения цикла. Условие завершения состоит в том, что длина участка массива, внутри которого может находится элемент x, равна единице:

b - e = 1

В этом случае

a[e-1] < x =< a[e]

т.е. искомый индекс i равен e, а элемент x содержится в массиве тогда и только тогда, когда x = a[e]. В цикле мы вычисляем середину c отрезка [b,e]

с = целая часть ((b+e)/2)

и выбираем ту из двух половин [b,c] или [c,e], которая содержит x. Для этого достаточно сравнить x со значением a[c] в середине отрезка. Завершение цикла обеспечивается тем, что величина e - b монотонно убывает после каждой итерации цикла.

Приведем текст алгоритма бинарного поиска:

лог алгоритм бинарный_поиск(

вход: цел n, вещ a[n], вещ x, выход: цел i)

| Дано: n -- число элементов в массиве a,

| a[0] < a[1] < ... < a[n-1]

| Надо: ответ := (x содержится в массиве),

| вычислить i, такое, что

| a[i-1] < x <= a[i]

| (считая a[-1] = -беск., a[n] = +беск.)

начало

| цел b, e, c;

|

| // Рассматриваем сначала исключительные случаи

| если (n == 0)

| | то i = 0;

| | ответ := ложь;

| иначе если (x <= a[0])

| | i := 0;

| | ответ := (x == a[0]);

| иначе если (x > a[n-1])

| | i := n

| | ответ := ложь;

| иначе

| | // Общий случай

| | утверждение: a[0] < x <= a[n-1];

| | b := 0; e := n-1;

| |

| | цикл пока e - b > 1

| | | инвариант: a[b] < x и x <= a[e];

| | | c := целая часть((b + e) / 2);

| | | если x <= a[c]

| | | | то e := c;

| | | иначе

| | | | b := c;

| | | конец если

| | конец цикла

| |

| | утверждение: e - b == 1 и

| | a[b] < x <= a[e];

| | i := e;

| | ответ := (x == a[i]);

| конец если

конец алгоритма

Реализации множества на базе деревьев

Реализация множества с помощью бинарного поиска во всех отношениях лучше наивной реализации. Вместе с тем, она все же имеет недостатки: 1) при добавлении и удалении элементов в середине массива приходится переписывать элементы в конце массива на новое место, чтобы освободить место для добавляемого элемента либо закрыть образовавшуюся лакуну при удалении элемента; 2) поиск выполняется гарантированно быстро, но все-таки не мгновенно. От первого из этих недостатков можно избавиться, применяя вместо непрерывной реализации на базе массива ссылочную реализацию, при которой элементы множества содержатся в вершинах бинарного дерева. Элементы в вершинах упорядочены таким образом, что, если зафиксировать некоторую вершину V и рассмотреть два поддерева, соответствующих левому и правому сыновьям вершины, то все элементы в вершинах левого поддерева должны быть меньше, чем элемент в вершине V, а все элементы в вершинах правого поддерева должны быть больше него.

Для такого дерева можно также применять алгоритм бинарного поиска. Максимальное число сравнений при поиске в таком дереве равняется его высоте ( т.е. максимальной длине пути от корня к терминальной вершине).

Чтобы поиск выполнялся быстро, дерево должно быть сбалансированным, т.е. все его ветви должны иметь почти одинаковую длину.

Точное определение сбалансированности следующее: будем считать, что у каждой вершины, включая терминальные, ровно два сына, при необходимости добавляя внешние, или нулевые, вершины. Например, у терминальной вершины оба сына нулевые. (Это в точности соответствует представлению дерева в языке Си, где каждая вершина хранит два указателя на сыновей; если сына нет, то соответствующий указатель нулевой.) Обычные вершины дерева будем называть собственными. Рассмотрим путь от корня дерева к внешней (нулевой) вершине. Длиной пути считается количество собственных вершин в нем. Дерево называется сбалансированным, если длины всех возможных путей от корня дерева к внешним вершинам различаются не более чем на единицу. Иногда в литературе такие деревья называют почти сбалансированными, понимая под сбалансированностью строгое равенство длин всех путей от корня к внешним узлам; мы, однако, будем придерживаться нестрогого определения. Пример сбалансированного дерева представлен на рисунке.

Высота сбалансированного дерева h оценивается логарифмически в зависимости от числа вершин n:

h <= log2n + 1

Поскольку максимальное число сравнений при поиске элемента в упорядоченном бинарном дереве равняется высоте дерева, поиск в сбалансированном дереве осуществляется исключительно быстро, за время, логарифмически зависящее от числа элементов множества. (Можно доказать, что это является теоретической оценкой снизу: никакой алгоритм не может в общем случае находить элемент быстрее, чем за log2n операций.)

Для эффективной реализации множества на базе дерева процедуры добавления и удаления элементов должны сохранять свойство сбалансированности (или почти сбалансированности). Рассмотрим коротко две наиболее популярные схемы реализации.

AVL-деревья

Так называемые AVL-деревья (названные в честь их двух изобретателей Г.М. Адельсона-Вельского и Е.М. Ландиса) хранят дополнительно в каждой вершине разность между высотами левого и правого поддеревьев, которая в сбалансированном дереве может принимать только три значения: -1, 0, 1. Строго говоря, AVL-деревья не являются сбалансированными в смысле приведенного выше определения. Требуется только, чтобы для любой вершины AVL-дерева разность высот ее левого и правого поддеревьев была по абсолютной величине не больше единицы. При этом длины путей от корня к внешним вершинам могут различаться больше, чем на единицу. Можно, тем не менее, доказать, что и в случае AVL-деревьев их высота оценивается сверху логарифмически в зависимости от числа вершин:

h <= C log2 n

где константа C = 1.5. Обычно константы не очень важны в практическом программировании -- принципиально лишь, по какому закону увеличивается время работы алгоритма при увеличении n. В данном случае зависимость логарифмическая, т.е. наилучшая из всех возможных (поскольку поиск невозможен быстрее чем за log2 n операций).

Новый элемент всегда добавляется в дерево в соответствии с упорядоченностью как левый или правый сын некоторой вершины, у которой данного сына до этого не было (или, как мы считаем, сын являлся внешним). Новая вершина добавляется как терминальная. После этого выполняется процедура восстановления балансировки. В ней используются следующие элементарные преобразования дерева, сохраняющие упорядоченность вершин:

1. вращение вершины x поддерева влево:

Здесь вершина x поддерева, которая является его корнем, опускается вниз и влево. Бывший правый сын d вершины x становится новым корнем поддерева, а x становится левым сыном d. (Вершины x и d, начальник и подчиненный, как бы меняются ролями: бывший начальник становится подчиненным.) Поддерево c, которое было левым сыном вершины d, переходит в подчинение от вершины d к вершине x и становится ее правым сыном. Отметим, что упорядоченность вершин сохраняется: a < b < c< d < e. Таким образом, для выполнения преобразования надо лишь заменить фиксированное количество указателей в вершинах x, d, c и, возможно, в родительской для x вершине;

2. вращение вершины x поддерева вправо:

Здесь вершина x опускается вниз и вправо, ее бывший левый сын b становится новым корнем поддерева, а x -- его правым сыном. Поддерево c переходит в подчинение от b к x.

Операции вращения носят локальный характер и позволяют при необходимости исправить баланс поддерева с корнем x. Например, для восстановления баланса дерева, показанного на следующем рисунке, достаточно выполнить одно вращение вершины b влево:

В случае AVL-деревьев операции вращения повторяются в цикле при восстановлении баланса после добавления или удаления элемента, число вращений не превышает С x h, где h -- высота дерева, C -- константа. Таким образом, как поиск элемента, так и его добавление или удаление выполняется за логарифмическое время: t <= C x log2n.

Размещено на Allbest.ru


Подобные документы

  • Разработка программы на языке С#, которая будет заниматься построением бинарного дерева для исходных данных и их редактированием, поиском информации о товарах по заданному ключу. Графические схемы алгоритмов поиска и удаления элемента бинарного дерева.

    курсовая работа [796,9 K], добавлен 22.02.2016

  • Рассмотрение нелинейных динамических структур данных в виде бинарного дерева. Построение дерева двоичного поиска. Реализация трех обходов дерева, выведение обходов на экран компьютера. Разработка текста программы. Симметричноправая прошивка дерева.

    контрольная работа [81,6 K], добавлен 14.12.2011

  • Описание структуры бинарного дерева поиска на языке C# среды Visual Studio. Требования к интерфейсу пользователя, структуре данных и программным средствам. Компоненты программных средств, результаты тестирования, диаграммы вариантов использования классов.

    курсовая работа [968,2 K], добавлен 26.01.2013

  • Описание процедуры выбора структуры хранения данных. Программная реализация одномерного неоднородного массива. Представление бинарного дерева в виде динамической структуры данных. Изучение способов поиска в упорядоченном дереве. Содержание базы данных.

    практическая работа [850,0 K], добавлен 16.04.2015

  • Обоснование выбора языка и среды программирования. Обзор и анализ существующих программных решений. Разработка графического и пользовательского интерфейса. Алгоритм бинарного поиска. Методы добавления, удаления элемента из дерева и вывода на экран.

    курсовая работа [1,3 M], добавлен 31.05.2016

  • Древовидная структура – "Бинарное дерево поиска", его структура и взаимосвязь основных компонентов, исследование в глубину. Описание разработанного программного продукта. Главные функции редактирования исходных данных и принципы работы с файлами.

    курсовая работа [1,6 M], добавлен 13.06.2014

  • Организация работы базы данных с помощью сбалансированных В-деревьев: принципы, методы добавления, поиска, удаления элементов из структуры. Процедуры, производящие балансировку и слияние записей в блоке. Реализация программы в Научной библиотеке ОрелГТУ.

    курсовая работа [95,3 K], добавлен 12.08.2011

  • Организация данных с помощью бинарных деревьев. Определение бинарного дерева. Упорядоченное двоичное дерево поиска и его свойства. Программная реализация добавления данных в упорядоченное двоичное дерево с использованием динамических структур данных.

    курсовая работа [459,0 K], добавлен 09.08.2012

  • Способы построения остовного дерева (алгоритма поиска в глубину и поиска в ширину). Вид неориентированного графа. Понятие и алгоритмы нахождения минимальных остовных деревьев. Последовательность построения дерева графов по алгоритмам Крускала и Прима.

    презентация [22,8 K], добавлен 16.09.2013

  • Развитие технологии и языков программирования. Редактирование исходных данных (вставка, удаление, замена) с внесением соответствующих изменений в бинарное дерево. Поиск информации о товарах по заданному ключу с использованием бинарного дерева.

    курсовая работа [1,2 M], добавлен 16.09.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.