Анализ речевого сигнала

Изучение вопросов, таких как отличие цифрового представления сигналов от аналогового, представление звука в цифровом виде, понятие передискретизации и выполнение обработки цифрового звука, для нее применяются универсальные процессоры общего назначения.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 16.09.2010
Размер файла 24,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Федеральное государственное образовательное учреждение высшего профессионального образования «Чувашский государственный университет им. И.Н. Ульянова»

Курсовая работа

Анализ звукового файла

Чебоксары 2007 г.

Чем цифровое представление сигналов отличается от аналогового?

Традиционное аналоговое представление сигналов основано на подобии (аналогичности) электрических сигналов (изменений тока и напряжения) представленным ими исходным сигналам (звуковому давлению, температуре, скорости и т.п.), а также подобии форм электрических сигналов в различных точках усилительного или передающего тракта. Форма электрической кривой, описывающей (также говорят - переносящей) исходный сигнал, максимально приближена к форме кривой этого сигнала.

Такое представление наиболее точно, однако малейшее искажение формы несущего электрического сигнала неизбежно повлечет за собой такое же искажение формы и сигнала переносимого. В терминах теории информации, количество информации в несущем сигнале в точности равно количеству информации в сигнале исходном, и электрическое представление не содержит избыточности, которая могла бы защитить переносимый сигнал от искажений при хранении, передаче и усилении.

Цифровое представление электрических сигналов призвано внести в них избыточность, предохраняющую от воздействия паразитных помех. Для этого на несущий электрический сигнал накладываются серьезные ограничения - его амплитуда может принимать только два предельных значения - 0 и 1. Вся зона возможных амплитуд в этом случае делится на три зоны: нижняя представляет нулевые значения, верхняя - единичные, а промежуточная является запрещенной - внутрь нее могут попадать только помехи. Таким образом, любая помеха, амплитуда которой меньше половины амплитуды несущего сигнала, не оказывает влияния на правильность передачи значений 0 и 1. Помехи с большей амплитудой также не оказывают влияния, если длительность импульса помехи ощутимо меньше длительности информационного импульса, а на входе приемника установлен фильтр импульсных помех.

Сформированный таким образом цифровой сигнал может переносить любую полезную информацию, которая закодирована в виде последовательности битов - нулей и единиц; частным случаем такой информации являются электрические и звуковые сигналы. Здесь количество информации в несущем цифровом сигнале значительно больше, нежели в кодированном исходном, так что несущий сигнал имеет определенную избыточность относительно исходного, и любые искажения формы кривой несущего сигнала, при которых еще сохраняется способность приемника правильно различать нули и единицы, не влияют на достоверность передаваемой этим сигналом информации. Однако в случае воздействия значительных помех форма сигнала может искажаться настолько, что точная передача переносимой информации становится невозможной - в ней появляются ошибки, которые при простом способе кодирования приемник не сможет не только исправить, но и обнаружить. Для еще большего повышения стойкости цифрового сигнала к помехам и искажениям применяется цифровое избыточное кодирование двух типов: проверочные (EDC - Error Detection Code, обнаруживающий ошибку код) и корректирующие (ECC - Error Correction Code, исправляющий ошибку код) коды. Цифровое кодирование состоит в простом добавлении к исходной информации дополнительных битов и/или преобразовании исходной битовой цепочки в цепочку большей длины и другой структуры. EDC позволяет просто обнаружить факт ошибки - искажение или выпадение полезной либо появление ложной цифры, однако переносимая информация в этом случае также искажается; ECC позволяет сразу же исправлять обнаруженные ошибки, сохраняя переносимую информацию неизменной. Для удобства и надежности передаваемую информацию разбивают на блоки (кадры), каждый из которых снабжается собственным набором этих кодов.

Каждый вид EDC/ECC имеет свой предел способности обнаруживать и исправлять ошибки, за которым опять начинаются необнаруженные ошибки и искажения переносимой информации. Увеличение объема EDC/ECC относительно объема исходной информации в общем случае повышает обнаруживающую и корректирующую способность этих кодов.

В качестве EDC популярен циклический избыточный код CRC (Cyclic Redundancy Check), суть которого состоит в сложном перемешивании исходной информации в блоке и формированию коротких двоичных слов, разряды которых находятся в сильной перекрестной зависимости от каждого бита блока. Изменение даже одного бита в блоке вызывает значительное изменение вычисленного по нему CRC, и вероятность такого искажения битов, при котором CRC не изменится, исчезающе мала даже при коротких (единицы процентов от длины блока) словах CRC. В качестве ECC используются коды Хэмминга (Hamming) и Рида-Соломона (Reed-Solomon), которые также включают в себя и функции EDC.

Информационная избыточность несущего цифрового сигнала приводит к значительному (на порядок и более) расширению полосы частот, требуемой для его успешной передачи, по сравнению с передачей исходного сигнала в аналоговой форме. Кроме собственно информационной избыточности, к расширению полосы приводит необходимость сохранения достаточно крутых фронтов цифровых импульсов.

Кроме целей помехозащиты, информация в цифровом сигнале может быть подвергнута также линейному или канальному кодированию, задача которого - оптимизировать электрические параметры сигнала (полосу частот, постоянную составляющую, минимальное и максимальное количество нулевых/единичных импульсов в серии и т.п.) под характеристики реального канала передачи или записи сигнала.

Полученный несущий сигнал, в свою очередь, также является обычным электрическим сигналом, и к нему применимы любые операции с такими сигналами - передача по кабелю, усиление, фильтрование, модуляция, запись на магнитный, оптический или другой носитель и т.п. Единственным ограничением является сохранение информационного содержимого - так, чтобы при последующем анализе можно было однозначно выделить и декоди- ровать переносимую информацию, а из нее - исходный сигнал.

Как звук представляется в цифровом виде?

Исходная форма звукового сигнала - непрерывное изменение амплитуды во времени - представляется в цифровой форме с помощью "перекрестной дискретизации" - по времени и по уровню.

Согласно теореме Котельникова, любой непрерывный процесс с ограниченным спектром может быть полностью описан дискретной последовательностью его мгновенных значений, следующих с частотой, как минимум вдвое превышающей частоту наивысшей гармоники процесса; частота Fd выборки мгновенных значений (отсчетов) называется частотой дискретизации.

Из теоремы следует, что сигнал с частотой Fa может быть успешно дискретизирован по времени на частоте 2Fa только в том случае, если он является чистой синусоидой, ибо любое отклонение от синусоидальной формы приводит к выходу спектра за пределы частоты Fa. Таким образом, для временнОй дискретизации произвольного звукового сигнала (обычно имеющего, как известно, плавно спадающий спектр), необходим либо выбор частоты дискретизации с запасом, либо принудительное ограничение спектра входного сигнала ниже половины частоты дискретизации.

Одновременно с временнОй дискретизацией выполняется амплитудная - измерение мгновенных значений амплитуды и их представление в виде числовых величин с определенной точностью. Точность измерения (двоичная разрядность N получаемого дискретного значения) определяет соотношение сигнал/шум и динамический диапазон сигнала (теоретически это - взаимно-обратные величины, однако любой реальный тракт имеет также и собственный уровень шумов и помех).

Полученный поток чисел (серий двоичных цифр), описывающий звуковой сигнал, называют импульсно-кодовой модуляцией или ИКМ (Pulse Code Modulation, PCM), так как каждый импульс дискретизованного по времени сигнала представляется собственным цифровым кодом.

Чаще всего применяют линейное квантование, когда числовое значение отсчета пропорционально амплитуде сигнала. Из-за логарифмической природы слуха более целесообразным было бы логарифмическое квантование, когда числовое значение пропорционально величине сигнала в децибелах, однако это сопряжено с трудностями чисто технического характера.

ВременнАя дискретизация и амплитудное квантование сигнала неизбежно вносят в сигнал шумовые искажения, уровень которых принято оценивать по формуле 6N + 10lg (Fдискр/2Fмакс) + C (дБ), где константа C варьируется для разных типов сигналов: для чистой синусоиды это 1.7 дБ, для звуковых сигналов - от -15 до 2 дБ. Отсюда видно, что к снижению шумов в рабочей полосе частот 0..Fмакс приводит не только увеличение разрядности отсчета, но и повышение частоты дискретизации относительно 2Fмакс, поскольку шумы квантования "размазываются" по всей полосе вплоть до частоты дискретизации, а звуковая информация занимает только нижнюю часть этой полосы.

В большинстве современных цифровых звуковых систем используются стандартные частоты дискретизации 44.1 и 48 кГц, однако частотный диапазон сигнала обычно ограничивается возле 20 кГц для оставления запаса по отношению к теоретическому пределу. Также наиболее распространено 16-разрядное квантование по уровню, что дает предельное соотношение сигнал/шум около 98 дБ. В студийной аппаратуре используются более высокие разрешения - 18-, 20- и 24-разрядное квантование при частотах дискретизации 56, 96 и 192 кГц. Это делается для того, чтобы сохранить высшие гармоники звукового сигнала, которые непосредственно не воспринимаются слухом, но влияют на формирование общей звуковой картины.

Для оцифровки более узкополосных и менее качественных сигналов частота и разрядность дискретизации могут снижаться; например, в телефонных линиях применяется 7- или 8-разрядная оцифровка с частотами 8..12 кГц.

Представление аналогового сигнала в цифровом виде называется также импульсно-кодовой модуляцией (ИКМ, PCM - Pulse Code Modulation), так как сигнал представляется в виде серии импульсов постоянной частоты (временнАя дискретизация), амплитуда которых передается цифровым кодом (амплитудная дискретизация). PCM-поток может быть как параллельным, когда все биты каждого отсчета передаются одновременно по нескольким линиям с частотой дискретизации, так и последовательным, когда биты передаются друг за другом с более высокой частотой по одной линии.

Сам цифровой звук и относящиеся к нему вещи принято обозначать общим термином Digital Audio; аналоговая и цифровая части звуковой системы обозначаются терминами Analog Domain и Digital Domain.

Что такое АЦП и ЦАП?

Аналогово-цифровой и цифро-аналоговый преобразователи. Первый преобразует аналоговый сигнал в цифровое значение амплитуды, второй выполняет обратное преобразование. В англоязычной литературе применяются термины ADC и DAC, а совмещенный преобразователь называют codec (coder-decoder).

Принцип работы АЦП состоит в измерении уровня входного сигнала и выдаче результата в цифровой форме. В результате работы АЦП непрерывный аналоговый сигнал превращается в импульсный, с одновременным измерением амплитуды каждого импульса. ЦАП получает на входе цифровое значение амплитуды и выдает на выходе импульсы напряжения или тока нужной величины, которые расположенный за ним интегратор (аналоговый фильтр) превращает в непрерывный аналоговый сигнал.

Для правильной работы АЦП входной сигнал не должен изменяться в течение времени преобразования, для чего на его входе обычно помещается схема выборки-хранения, фиксирующая мгновенный уровень сигнала и сохраняющая его в течение всего времени преобразования. На выходе ЦАП также может устанавливаться подобная схема, подавляющая влияние переходных процессов внутри ЦАП на параметры выходного сигнала.

При временной дискретизации спектр полученного импульсного сигнала в своей нижней части 0..Fa повторяет спектр исходного сигнала, а выше содержит ряд отражений (aliases, зеркальных спектров), которые расположены вокруг частоты дискретизации Fd и ее гармоник (боковые полосы). При этом первое отражение спектра от частоты Fd в случае Fd = 2Fa располагается непосредственно за полосой исходного сигнала, и требует для его подавления аналогового фильтра (anti-alias filter) с высокой крутизной среза. В АЦП этот фильтр устанавливается на входе, чтобы исключить перекрытие спектров и их интерференцию, а в ЦАП - на выходе, чтобы подавить в выходном сигнале надтональные помехи, внесенные временной дискретизацией.

Что такое передискретизация (oversampling)?

Это дискретизация сигнала с частотой, превышающей основную частоту дискретизации. Передискретизации может быть аналоговой, когда с повышенной частотой делаются выборки исходного сигнала, или цифровой, когда между уже существующими цифровыми отсчетами вставляются дополнительные, рассчитанные путем интерполяции. Другой способ получения значений промежуточных отсчетов состоит во вставке нулей, после чего вся последовательность подвергается цифровой фильтрации. В АЦП используется аналоговая передискретизация, в ЦАП - цифровая.

Передискретизация используется для упрощения конструкций АЦП и ЦАП. По условиям задачи на входе АЦП и выходе ЦАП должен быть установлен аналоговый фильтр с АЧХ, линейной в рабочем диапазоне и круто спадающей за его пределами. Реализация такого аналогового фильтра весьма сложна; в то же время при повышении частоты дискретизации вносимые ею отражения спектра пропорционально отодвигаются от основного сигнала, и аналоговый фильтр может иметь гораздо меньшую крутизну среза.

Другое преимущество передискретизации состоит в том, что ошибки амплитудного квантования (шум дробления), распределенные по всему спектру квантуемого сигнала, при повышении частоты дискретизации распределяются по более широкой полосе частот, так что на долю основного звукового сигнала приходится меньшее количество шума. Каждое удвоение частоты снижает уровень шума квантования на 3 дБ; поскольку один двоичный разряд эквивалентен 6 дБ шума, каждое учетверение частоты позволяет уменьшить разрядность преобразователя на единицу.

Передискретизация вместе с увеличением разрядности отсчета, интерполяцией отсчетов с повышенной точностью и выводом их на ЦАП надлежащей разрядности позволяет несколько улучшить качество восстановления звукового сигнала. По этой причине даже в 16-разрядных системах нередко применяются 18- и 20-разрядные ЦАП с передискретизацией.

АЦП и ЦАП с передискретизацией за счет значительного уменьшения времени преобразования могут обходиться без схемы выборки-хранения.

Как устроены и работают АЦП и ЦАП?

В основном применяется три конструкции АЦП:

· параллельные - входной сигнал одновременно сравнивается с эталонными уровнями набором схем сравнения (компараторов), которые формируют на выходе двоичное значение. В таком АЦП количество компараторов равно (2 в степени N) - 1, где N - разрядность цифрового кода (для восьмиразрядного - 255), что не позволяет наращивать разрядность свыше 10-12.

· последовательного приближения - преобразователь при помощи вспомогательного ЦАП генерирует эталонный сигнал, сравниваемый со входным. Эталонный сигнал последовательно изменяется по принципу половинного деления (дихотомии), который используется во многих методах сходящегося поиска прикладной математики. Это позволяет завершить преобразование за количество тактов, равное разрядности слова, независимо от величины входного сигнала.

· с измерением временнЫх интервалов - широкая группа АЦП, использующая для измерения входного сигнала различные принципы преобразования уровней в пропорциональные временнЫе интервалы, длительность которых измеряется при помощи тактового генератора высокой частоты. Иногда называются также считающими АЦП.

Среди АЦП с измерением временнЫх интервалов преобладают следующие три типа:

· последовательного счета, или однократного интегрирования (single-slope) - в каждом такте преобразования запускается генератор линейно возрастающего напряжения, которое сравнивается со входным. Обычно такое напряжение получают на вспомогательном ЦАП, подобно АЦП последовательного приближения.

· двойного интегрирования (dual-slope) - в каждом такте преобразования входной сигнал заряжает конденсатор, который затем разряжается на источник опорного напряжения с измерением длительности разряда.

· следящие - вариант АЦП последовательного счета, при котором генератор эталонного напряжения не перезапускается в каждом такте, а изменяет его от предыдущего значения до текущего.

Наиболее популярным вариантом следящего АЦП является sigma-delta, работающий на частоте Fs, значительно (в 64 и более раз) превышающей частоту дискретизации Fd выходного цифрового сигнала. Компаратор такого АЦП выдает значения пониженной разрядности (обычно однобитовые - 0/1), сумма которых на интервале дискретизации Fd пропорциональна величине отсчета. Последовательность малоразрядных значений подвергается цифровой фильтрации и понижению частоты следования (decimation), в результате чего получается серия отсчетов с заданной разрядностью и частотой дискретизации Fd.

Для улучшения соотношения сигнал/шум и снижения влияния ошибок квантования, которое в случае однобитового преобразователя получается довольно высоким, применяется метод формовки шума (noise shaping) через схемы обратной связи по ошибке и цифрового фильтрования. В результате применения этого метода форма спектра шума меняется так, что основная шумовая энергия вытесняется в область выше половины частоты Fs, незначительная часть остается в нижней половине, и практически весь шум удаляется из полосы исходного аналогового сигнала.

Как выполняется обработка цифрового звука?

Цифровой звук обрабатывается посредством математических операций, применяемых к отдельным отсчетам сигнала, либо к группам отсчетов различной длины. Выполняемые математические операции могут либо имитировать работу традиционных аналоговых средств обработки (микширование двух сигналов - сложение, усиление/ослабление сигнала - умножение на константу, модуляция - умножение на функцию и т.п.), либо использовать альтернативные методы - например, разложение сигнала в спектр (ряд Фурье), коррекция отдельных частотных составляющих, затем обратная "сборка" сигнала из спектра.

Обработка цифровых сигналов подразделяется на линейную (в реальном времени, над "живым" сигналом) и нелинейную - над предварительно записанным сигналом. Линейная обработка требует достаточного быстродействия вычислительной системы (процессора); в ряде случаев невозможно совмещение требуемого быстродействия и качества, и тогда используется упрощенная обработка с пониженным качеством. Нелинейная обработка никак не ограничена во времени, поэтому для нее могут быть использованы вычислительные средства любой мощности, а время обработки, особенно с высоким качеством, может достигать нескольких минут и даже часов.

Для обработки применяются как универсальные процессоры общего назначения - Intel 8035, 8051, 80x86, Motorola 68xxx, SPARC - так и специализированные цифровые сигнальные процессоры (Digital Signal Processor, DSP) Texas Instruments TMS xxx, Motorola 56xxx, Analog Devices ADSP-xxxx и др.

Разница между универсальным процессором и DSP состоит в том, что первый ориентирован на широкий класс задач - научных, экономических, логических, игровых и т.п., и содержит большой набор команд общего назначения, в котором преобладают обычные математические и логические операции. DSP специально ориентированы на обработку сигналов и содержат наборы специфический операций - сложение с ограничением, перемножение векторов, вычисление математического ряда и т.п. Реализация даже несложной обработки звука на универсальном процессоре требует значительного быстродействия и далеко не всегда возможна в реальном времени, в то время как даже простые DSP нередко справляются в реальном времени с относительно сложной обработкой, а мощные DSP способны выполнять качественную спектральную обработку сразу нескольких сигналов.

В силу своей специализации DSP редко применяются самостоятельно - чаще всего устройство обработки имеет универсальный процессор средней мощности для управления всем устройством, приема/передачи информации, взаимодействия с пользователем, и один или несколько DSP - собственно для обработки звукового сигнала. Например, для реализации надежной и быстрой обработки сигналов в компьютерных системах применяют специализированные платы с DSP, через которые пропускается обрабатываемый сигнал, в то время как центральному процессору компьютера остаются лишь функции управления и передачи.

1. Характеристики:

>> [y, Fs ,bits] = wavread('D:\music\2002');

частота дискретизации - 44,1 КГц

число бит на отсчет - 16

>> size = wavread('D:\music\2002','size');

число отсчетов - 1736704

число каналов записи - 2(стереозапись)

>> size(1)/Fs;

продолжительность (длительность) звучания - 39.3810с

2. >> prod(size)*8/1024

2. Объем памяти, необходимый для считывания - 27136 Кб

4. График сигнала.

<<plot(y(:,2))

5. Спектрограмма:

<<specgram(y(:,2),[])

1-я форманта ~ 250-320 Гц

2-я форманта ~ 500-650 Гц

3-я форманта ~ 1500 Гц

6. 1)Амплитудная огибающая (преобразование Гилберта):

>> og_y=abs(hilbert(y));

>> plot(og_y(:,1))

2)Амплитудная огибающая (собственный алгоритм):

Функция red.m:

function a=red(y,ots)

max=3;

min=1;

for i=2:ots

if i<ots-10

for j=i:i+10

if(abs(y(max))<abs(y(j)))

max=j;

end

end

for k=min:max

if max==min

max=max+1;

end

x(k,1)=(((k-min)*(abs(y(max))-abs(y(min))))/(max-min))+abs(y(min));

if x(k,1)<y(k)

x(k,1)=y(k);

end

x(k,2)=-x(k,1);

end

min=max;

i=i+10;

else

for l=max:ots

x(l,1)=(((l-min)*(abs(y(max))-abs(y(min))))/max)+abs(y(min));

if x(l,1)<y(l)

x(l,1)=y(l);

end

x(l,2)=-x(l,1);

end

end

end

plot(y)

hold on

plot(x,'g')

>> red(y,size(1))

1)3.wav(п.3 л/р №1):

1. Характеристики:

частота дискретизации - 44,1 КГц

число бит на отсчет - 16

число отсчетов - 1056567

число каналов записи - 2(стереозапись)

продолжительность (длительность) звучания - 23.9584с

Объем памяти, необходимый для считывания - 16509 Кб

4. График сигнала.

<<plot(y(:,2))

5. Спектрограмма:

<<specgram(y(:,2),[])

1-я форманта ~ 200 Гц

2-я форманта ~ 300-1500 Гц

3-я форманта ~ 3000-4000 Гц

6. 1)Амплитудная огибающая (преобразование Гилберта):

2)Амплитудная огибающая (собственный алгоритм),( red(y,size(1))):

7)3.wav(п.3 л/р №1) - звук «б»:

>> y=wavread('d:\lab2\b');

>> specgram(y(:,1),[])

Тот же звук с реверберацией:

1)3.wav(п.3 л/р №1) - звук «к»:

Использованная литература

1. Брейсуэлл Р. Преобразование Хартли: теория и приложения;СПб. [и др.] : Питер,2010. -535c.

2. Добеши И. Десять лекций по вейвлетам; М. : СИНТЕГ, 2001. -233c.


Подобные документы

  • Техническая характеристика сигналов в системах цифровой обработки. Описание программ для обработки цифровой и синтезированной звуковой информации, шумоподавление звука. Профессиональная обработка звука и звуковой волны: сжатие, запись, сэмплирование.

    курсовая работа [82,9 K], добавлен 01.03.2013

  • Понятие и способы дискретизации аналоговых сигналов. Ознакомление с примерами аналого-цифрового преобразование звука. Изучение способов кодирования цифровых изображений, видеоданных и текста. Рассмотрение теоремы Котельникова и теории информации.

    презентация [1,2 M], добавлен 15.04.2014

  • Суть MIDI-технологии и типы музыкальных программ. Основные возможности программ: редакторов цифрового аудио, секвенсоров (программ для написания музыки), анализаторов и реставраторов аудио, трекеров. Копирование и сжатие цифрового звука с компакт-дисков.

    реферат [21,1 K], добавлен 27.02.2009

  • Понятие звука, физиологические и психологические основы его восприятия человеком. Основные критерии и параметры звука: громкость, частота, пространственное положение источника, гармонические колебания. Система пространственной обработки звука EAX.

    презентация [952,3 K], добавлен 10.08.2013

  • Современные методы цифрового сжатия. Классификация алгоритмов сжатия. Оцифровка аналогового сигнала. Алгоритм цифрового кодирования. Последовательное двойное сжатие. Чересстрочность и квантование. Сокращение цифрового потока. Профили, уровни формата MPEG.

    реферат [784,9 K], добавлен 22.01.2013

  • Понятие и сущность процесса кодирования информации, его закономерности и направления использования на современном этапе. Порядок составления и содержание таблицы кодировки. Методика и инструменты компьютерного представления изображений, а также звука.

    презентация [896,4 K], добавлен 22.10.2013

  • Исследование понятия звука, его скорости, длины волны, порогов слышимости. Описание программ для обработки звука, позволяющих записывать музыку, менять тембр звучания, высоту, темп. Особенности звуковых редакторов, реставраторов и анализаторов аудио.

    реферат [5,1 M], добавлен 03.11.2013

  • Разработка программы генератора звука в среде Borland Delphi с использованием стандартных классов TMemoryStream (для хранения звука в виде бинарных данных) и TStrings (для хранения характеристик конкретной частоты). Запись звука в файл (форматы).

    курсовая работа [160,5 K], добавлен 22.11.2014

  • Анализ процесса оцифровки зависимости интенсивности звукового сигнала от времени. Характеристика технологии создания музыкальных звуков в современных электромузыкальных цифровых синтезаторах. Изучение основных звуковых форматов, способов обработки звука.

    курсовая работа [2,3 M], добавлен 23.11.2011

  • Профессиональная обработка звука. Звук и звуковая волна. Программа обработки звука Audacity. Цифровая и аналоговая запись. Аналогово-цифровое преобразование, микширование. Импульсная и частотная модуляция. Хранение оцифрованного звука, сэмплирование.

    курсовая работа [47,9 K], добавлен 13.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.