Средства анализа и управления сетями

Функции и архитектура систем управления сетями, многоуровневое представление задач управления. Взаимодействие агента, менеджера и управляемого ресурса. Стандартные элементы системы управления, передача данных между агентами и станцией управляющей сети.

Рубрика Программирование, компьютеры и кибернетика
Вид книга
Язык русский
Дата добавления 28.01.2010
Размер файла 846,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Средства анализа и управления сетями

Любая сложная вычислительная сеть требует дополнительных специальных средств управления помимо тех, которые имеются в стандартных сетевых операционных системах. Это связано с большим количеством разнообразного коммуникационного оборудования, работа которого критична для выполнения сетью своих основных функций. Распределенный характер крупной корпоративной сети делает невозможным поддержание ее работы без централизованной системы управления, которая в автоматическом режиме собирает информацию о состоянии каждого концентратора, коммутатора, мультиплексора и маршрутизатора и предоставляет эту информацию оператору сети. Обычно система управления работает в автоматизированном режиме, выполняя наиболее простые действия по управлению сетью автоматически, а сложные решения предоставляя принимать человеку на основе подготовленной системой информации. Система управления должна быть интегрированной. Это означает, что функции управления разнородными устройствами должны служить общей цели обслуживания конечных пользователей сети с заданным качеством.

Сами системы управления представляют собой сложные программно-аппаратные комплексы, поэтому существует граница целесообразности применения системы управления - она зависит от сложности сети, разнообразия применяемого коммуникационного оборудования и степени его распределенности по территории. В небольшой сети можно применять отдельные программы управления наиболее сложными устройствами, например коммутатором, поддерживающим технику VLAN. Обычно каждое устройство, которое требует достаточно сложного конфигурирования, производитель сопровождает автономной программой конфигурирования и управления. Однако при росте сети может возникнуть проблема объединения разрозненных программ управления устройствами в единую систему управления, и для решения этой проблемы придется, возможно, отказаться от этих программ и заменить их интегрированной системой управления.

1. Функции и архитектура систем управления сетями

1.1 Функциональные группы задач управления

Системы управления корпоративными сетями существуют не очень давно. Одной из первых систем такого назначения, получившей широкое распространение, был программный продукт SunNet Manager, выпущенный в 1989 году компанией SunSoft. SunNet Manager был ориентирован на управление коммуникационным оборудованием и контроль трафика сети. Именно эти функции имеют чаще всего в виду, когда говорят о системе управления сетью. Кроме систем управления сетями существуют и системы управления другими элементами корпоративной сети: системы управления ОС, СУБД, корпоративными приложениями. Применяются также системы управления телекоммуникационными сетями: телефонными, а также первичными сетями технологий PDH и SDH.

Независимо от объекта управления, желательно, чтобы система управления выполняла ряд функций, которые определены международными стандартами, обобщающими опыт применения систем управления в различных областях. Существуют рекомендации ITU-T X.700 и близкий к ним стандарт ISO 7498-4, которые делят задачи системы управления на пять функциональных групп:

управление конфигурацией сети и именованием;

обработка ошибок;

анализ производительности и надежности;

управление безопасностью;

учет работы сети.

Рассмотрим задачи этих функциональных областей управления применительно к системам управления сетями.

Управление конфигурацией сети и именованием (Configuration Management).Эти задачи заключаются в конфигурировании параметров как элементов сети (Network Element, NE), так и сети в целом. Для элементов сети, таких как маршрутизаторы, мультиплексоры и т. п., с помощью этой группы задач определяются сетевые адреса, идентификаторы (имена), географическое положение и пр.

Для сети в целом управление конфигурацией обычно начинается с построения карты сети, то есть отображении реальных связей между элементами сети и изменении связей между элементами сети - образование новых физических или логических каналов, изменение таблиц коммутации и маршрутизации.

Управление конфигурацией (как и другие задачи системы управления) могут выполняться в автоматическом, ручном или полуавтоматическом режимах. Например, карта сети может составляться автоматически, на основании зондирования реальной сети пакетами-исследователями, а может быть введена оператором системы управления вручную. Чаще всего применяются полуавтоматические методы, когда автоматически полученную карту оператор подправляет вручную. Методы автоматического построения топологической карты, как правило, являются фирменными разработками.

Более сложной задачей является настройка коммутаторов и маршрутизаторов на поддержку маршрутов и виртуальных путей между пользователями сети. Согласованная ручная настройка таблиц маршрутизации при полном или частичном отказе от использования протокола маршрутизации (а в некоторых глобальных сетях, например Х.25, такого протокола просто не существует) представляет собой сложную задачу, Многие системы управления сетью общего назначения ее не выполняют, но существуют специализированные системы конкретных производителей, например система NetSys компании Cisco Systems, которая решает ее для маршрутизаторов этой же компании.

Обработка ошибок (Fault Management). Эта группа задач включает выявление, определение и устранение последствий сбоев и отказов в работе сети. На этом уровне выполняется не только регистрация сообщений об ошибках, но и их фильтрация, маршрутизация и анализ на основе некоторой корреляционной модели, Фильтрация позволяет выделить из весьма интенсивного потока сообщений об ошибках, который обычно наблюдается в большой сети, только важные сообщения, маршрутизация обеспечивает их доставку нужному элементу системы управления, а корреляционный анализ позволяет найти причину, породившую поток взаимосвязанных сообщений (например, обрыв кабеля может быть причиной большого количества сообщений о недоступности сетей и серверов).

Устранение ошибок может быть как автоматическим, так и полуавтоматическим. В первом случае система непосредственно управляет оборудованием или программными комплексами и обходит отказавший элемент за счет резервных каналов и т. п. В полуавтоматическом режиме основные решения и действия по устранению неисправности выполняют люди, а система управления только помогает в организации этого процесса - оформляет квитанции на выполнение работ и отслеживает их поэтапное выполнение (подобно системам групповой работы).

В этой группе задач иногда выделяют подгруппу задач управления проблемами, подразумевая под проблемой сложную ситуацию, требующую для разрешения обязательного привлечения специалистов по обслуживанию сети.

Анализ производительности и надежности (Performance Management). Задачи этой группы связаны с оценкой на основе накопленной статистической информации таких параметров, как время реакции системы, пропускная способность реального или виртуального канала связи между двумя конечными абонентами сети, интенсивность трафика в отдельных сегментах и каналах сети, вероятность искажения данных при их передаче через сеть, а также коэффициент готовности сети или ее определенной транспортной службы. Функции анализа производительности и надежности сети нужны как для оперативного управления сетью, так и для планирования развития сети.

Результаты анализа производительности и надежности позволяют контролировать соглашение об уровне обслуживания (Service Level Agreement, SLA), заключаемое между пользователем сети и ее администраторами (или компанией, продающей услуги). Обычно в SLA оговариваются такие параметры надежности, как коэффициент готовности службы в течение года и месяца, максимальное время устранения отказа, а также параметры производительности, например, средняя и максимальная пропускная способности при соединении двух точек подключения пользовательского оборудования, время реакции сети (если информационная служба, для которой определяется время реакции, поддерживается внутри сети), максимальная задержка пакетов при передаче через сеть (если сеть используется только как транзитный транспорт). Без средств анализа производительности и надежности поставщик услуг публичной сети или отдел информационных технологий предприятия не сможет ни проконтролировать, ни тем более обеспечить нужный уровень обслуживания для конечных пользователей сети.

Управление безопасностью (Security Management). Задачи этой группы включают в себя контроль доступа к ресурсам сети (данным и оборудованию) и сохранение целостности данных при их хранении и передаче через сеть. Базовыми элементами управления безопасностью являются процедуры аутентификации пользователей, назначение и проверка прав доступа к ресурсам сети, распределение и поддержка ключей шифрования, управления полномочиями и т. п. Часто функции этой группы не включаются в системы управления сетями, а реализуются либо в виде специальных продуктов (например, системы аутентификации и авторизации Kerberos, различных защитных экранов, систем шифрования данных), либо входят в состав операционных систем и системных приложений.

Учет работы сети (Accounting Management). Задачи этой группы занимаются регистрацией времени использования различных ресурсов сети - устройств, каналов и транспортных служб. Эти задачи имеют дело с такими понятиями, как время использования службы и плата за ресурсы - billing. Ввиду специфического характера оплаты услуг у различных поставщиков и различными формами соглашения об уровне услуг, эта группа функций обычно не включается в коммерческие системы и платформы управления типа HP Open View, а реализуется в заказных системах, разрабатываемых для конкретного заказчика.

Модель управления OSI не делает различий между управляемыми объектами - каналами, сегментами локальных сетей, мостами, коммутаторами и маршрутизаторами, модемами и мультиплексорами, аппаратным и программным обеспечением компьютеров, СУБД. Все эти объекты управления входят в общее понятие система, и управляемая система взаимодействует с управляющей системой по открытым протоколам OSI.

Однако на практике деление систем управления по типам управляемых объектов широко распространено. Ставшими классическими системы управления сетями, такие как SunNet Manager, HP Open View или Cabletron Spectrum, управляют только коммуникационными объектами корпоративных сетей, то есть концентраторами и коммутаторами локальных сетей, а также маршрутизаторами и удаленными мостами, как устройствами доступа к глобальным сетям. Оборудованием территориальных сетей обычно управляют системы производителей телекоммуникационного оборудования, такие как RADView компании RAD Data Communications, MainStreetXpress 46020 компании Newbridge и т. п.

Рассмотрим, как преломляются общие функциональные задачи системы управления, определенные в стандартах X.700/ISO 7498-4, в задачи такого конкретного класса систем управления, как системы управления компьютерами и их системным и прикладным программным обеспечением. Их называют системами управления системой (System Management System).

Обычно система управления системой выполняет следующие функции.

Учет используемых аппаратных и программных средств (Configuration Management). Система автоматически собирает информацию об установленных в сети компьютерах и создает записи в специальной базе данных об аппаратных и программных ресурсах. После этого администратор может быстро выяснить, какими ресурсами он располагает и где тот или иной ресурс находится, например, узнать о том, на каких компьютерах нужно обновить драйверы принтеров, какие компьютеры обладают достаточным количеством памяти, дискового пространства и т. п.

Распределение и установка программного обеспечения (Configuration Management). После завершения обследования администратор может создать пакеты рассылки нового программного обеспечения, которое нужно инсталлировать на всех компьютерах сети или на какой-либо группе компьютеров. В большой сети, где проявляются преимущества системы управления, такой способ инсталляции может существенно уменьшить трудоемкость этой процедуры. Система может также позволять централизованно устанавливать и администрировать приложения, которые запускаются с файловых серверов, а также дать возможность конечным пользователям запускать такие приложения с любой рабочей станции сети.

Удаленный анализ производительности и возникающих проблем (Fault Management and Performance Management). Эта группа функций позволяет удаленно измерять наиболее важные параметры компьютера, операционной системы, СУБД и т. д. (например, коэффициент использования процессора, интенсивность страничных прерываний, коэффициент использования физической памяти, интенсивность выполнения транзакций). Для разрешения проблем эта группа функций может давать администратору возможность брать на себя удаленное управление компьютером в режиме эмуляции графического интерфейса популярных операционных систем. База данных системы управления обычно хранит детальную информацию о конфигурации всех компьютеров в сети для того, чтобы можно было выполнять удаленный анализ возникающих проблем.

Примерами систем управления системами являются Microsoft System Management Server (SMS), CA Unicenter, HP Operationscenter и многие другие.

Как видно из описания функций системы управления системами, они повторяют функции системы управления сетью, но только для других объектов. Действительно, функция учета используемых аппаратных и программных средств соответствует функции построения карты сети, функция распределения и установки программного обеспечения - функции управления конфигурацией коммутаторов и маршрутизаторов, а функция анализа производительности и возникающих проблем - функции производительности.

Эта близость функций систем управления сетями и систем управления системами позволила разработчикам стандартов OSI не делать различия между ними и разрабатывать общие стандарты управления.

На практике уже несколько лет также заметна отчетливая тенденция интеграции систем управления сетями и системами в единые интегрированные продукты управления корпоративными сетями, например CA Unicenter TNG или ТМЕ-10 IBM/Tivoli. Наблюдается также интеграция систем управления телекоммуникационными сетями с системами управления корпоративными сетями.

1.2 Многоуровневое представление задач управления

Кроме описанного выше разделения задач управления на несколько функциональных групп, полезно разделять задачи управления на уровни в соответствии с иерархической организацией корпоративной сети. Корпоративная сеть строится иерархически, отражая иерархию самого предприятия и его задач. Нижний уровень сети составляют элементы сети - отдельные компьютеры, коммуникационные устройства, каналы передачи данных. На следующем уровне иерархии эти элементы образуют сети разного масштаба - сеть рабочей группы, сеть отдела, сеть отделения и, наконец, сеть предприятия в целом.

Для построения интегрированной системы управления разнородными элемен тами сети естественно применить многоуровневый иерархический подход. Это, в принципе, стандартный подход для построения большой системы любого типа и назначения - от государства до автомобильного завода. Применительно к системам управления сетями наиболее проработанным и эффективным для создания многоуровневой иерархической системы является стандарт Telecommunication Management Network (TMN), разработанный совместными усилиями ITU-T, ISO, ANSI и ETSI. Хотя этот стандарт и предназначался изначально для телекоммуникационных сетей, но ориентация на использование общих принципов делает его полезным для построения любой крупной интегрированной системы управления сетями. Стандарты TMN состоят из большого количества рекомендаций ITU-T (и стандартов других организаций), но основные принципы модели TMN описаны в рекомендации М.3010.

На каждом уровне иерархии модели TMN решаются задачи одних и тех же пяти функциональных групп, рассмотренных выше (то есть управления конфигурацией, производительностью, ошибками, безопасностью и учетом), однако на каждом уровне эти задачи имеют свою специфику. Чем выше уровень управления, тем более общий и агрегированный характер приобретает собираемая о сети информация, а сугубо технический характер собираемых данных начинает по мере повышения уровня меняться на производственный, финансовый и коммерческий.

Модель TMN упрощенно можно представить в виде двухмерной диаграммы (рис. 1).

Рис. 1. Многоуровневое представление задач управления сетью

Нижний уровень - уровень элементов сети (Network Element layer, NE) - состоит из отдельных устройств сети: каналов, усилителей, оконечной аппаратуры, мультиплексоров, коммутаторов и т. п. Элементы могут содержать встроенные средства для поддержки управления - датчики, интерфейсы управления, а могут и представлять вещь в себе, требующую для связи с системой управления разработки специального оборудования - устройств связи с объектом, УСО. Современные технологии обычно имеют встроенные функции управления, которые позволяют выполнять хотя бы минимальные операции по контролю за состоянием устройства и за передаваемым устройством трафиком. Подобные функции встроены в технологии FDDI, ISDN, frame relay, SDH. В этом случае устройство всегда можно охватить системой управления, даже если оно не имеет специального блока управления, так как протокол технологии обязывает устройство поддерживать некоторые функции управления. Устройства, которые работают по протоколам, не имеющим встроенных функций контроля и управления, снабжаются отдельным блоком управления, который поддерживает один из двух наиболее распространенных протоколов управления - SNMP или CMIP. Эти протоколы относятся к прикладному уровню модели OSI.

Следующий уровень - уровень управления элементами сети (network element management layer) - представляет собой элементарные системы управления. Элементарные системы управления автономно управляют отдельными элементами сети - контролируют канал связи SDH, управляют коммутатором или мультиплексором. Уровень управления элементами изолирует верхние слои системы управления от деталей и особенностей управления конкретным оборудованием. Этот уровень ответственен за моделирование поведения оборудования и функциональных ресурсов нижележащей сети. Атрибуты этих моделей позволяют управлять различными аспектами поведения управляемых ресурсов. Обычно элементарные системы управления разрабатываются и поставляются производителями оборудования. Примерами таких систем могут служить системы управления CiscoView от Cisco Systems, Optivity от Bay Networks, RADView от RAD Data Communications и т. д.

Выше лежит уровень управления сетью (Network management layer). Этот уровень координирует работу элементарных систем управления, позволяя контролировать конфигурацию составных каналов, согласовывать работу транспортных подсетей разных технологий и т. п. С помощью этого уровня сеть начинает работать как единое целое, передавая данные между своими абонентами.

Следующий уровень - уровень управления услугами (Service management layer) - занимается контролем и управлением за транспортными и информационными услугами, которые предоставляются конечным пользователям сети. В задачу этого уровня входит подготовка сети к предоставлению определенной услуги, ее активизация, обработка вызовов клиентов. Формирование услуги (service provisioning) заключается в фиксации в базе данных значений параметров услуги, например, требуемой средней пропускной способности, максимальных величин задержек пакетов, коэффициента готовности и т. п. В функции этого уровня входит также выдача уровню управления сетью задания на конфигурирование виртуального или физического канала связи для поддержания услуги. После формирования услуги данный уровень занимается контролем за качеством ее реализации, то есть за соблюдением сетью всех принятых на себя обязательств в отношении производительности и на дежности транспортных услуг. Результаты контроля качества обслуживания нуж ны, в частности, для подсчета оплаты за пользование услугами клиентами сети. Например, в сети frame relay уровень управления услугами следит за заказанными пользователем значениями средней скорости CIR и согласованной пульсации Вс, фиксируя нарушения со стороны пользователя и сети.

Уровень бизнес-управления (Business management layer) занимается вопросами долговременного планирования сети с учетом финансовых аспектов деятельности организации, владеющей сетью. На этом уровне помесячно и поквартально подсчитываются доходы от эксплуатации сети и ее отдельных составляющих, учитываются расходы на эксплуатацию и модернизацию сети, принимаются решения о развитии сети с учетом финансовых возможностей. Уровень бизнес-управления обеспечивает для пользователей и поставщиков услуг возможность предоставления дополнительных услуг. Этот уровень является частным случаем уровня автоматизированной системы управления предприятием (АСУП), в то время как все нижележащие уровни соответствуют уровням автоматизированной системы управления технологическими процессами (АСУТП), для такого специфического типа предприятия, как телекоммуникационная или корпоративная сеть. Но если телекоммуникационная сеть действительно чаще всего является основой телекоммуникационной компании, то корпоративную сеть и обслуживающий ее персонал обычно трудно назвать предприятием. Тем не менее на некоторых западных фирмах корпоративная сеть выделена в автономное производственное подразделение со своим бюджетом и со своими финансовыми договорами на обслуживание, которое данное подразделение заключает с основными производственными подразделениями предприятия.

1.3 Архитектуры систем управления сетями

Выделение в системах управления типовых групп функций и разбиение этих функций на уровни еще не дает ответа на вопрос, каким же образом устроены системы управления, из каких элементов они состоят и какие архитектуры связей этих элементов используются на практике.

Схема менеджер - агент

В основе любой системы управления сетью лежит элементарная схема взаимодействия агента с менеджером. На основе этой схемы могут быть построены системы практически любой сложности с большим количеством агентов и менеджеров разного типа.

Схема менеджер - агент представлена на рис. 2.

Рис. 2. Взаимодействие агента, менеджера и управляемого ресурса

Агент является посредником между управляемым ресурсом и основной управляющей программой-менеджером. Чтобы один и тот же менеджер мог управлять различными реальными ресурсами, создается некоторая модель управляемого ресурса, которая отражает только те характеристики ресурса, которые нужны для его контроля и управления. Например, модель маршрутизатора обычно включает такие характеристики, как количество портов, их тип, таблицу маршрутизации, количество кадров и пакетов протоколов канального, сетевого и транспортного уровней, прошедших через эти порты.

Менеджер получает от агента только те данные, которые описываются моделью ресурса. Агент же является некоторым экраном, освобождающим менеджера от ненужной информации о деталях реализации ресурса. Агент поставляет менеджеру обработанную и представленную в нормализованном виде информацию. На основе этой информации менеджер принимает решения по управлению, а также выполняет дальнейшее обобщение данных о состоянии управляемого ресурса, например, строит зависимость загрузки порта от времени.

Для получения требуемых данных от объекта, а также для выдачи на него управляющих воздействий агент взаимодействует с реальным ресурсом некоторым нестандартным способом. Когда агенты встраиваются в коммуникационное оборудование, то разработчик оборудования предусматривает точки и способы взаимодействия внутренних узлов устройства с агентом. При разработке агента для операционной системы разработчик агента пользуется теми интерфейсами, которые существуют в этой ОС, например интерфейсами ядра, драйверов и приложений. Агент может снабжаться специальными датчиками для получения информации, например датчиками релейных контактов или датчиками температуры.

Менеджер и агент должны располагать одной и той же моделью управляемого ресурса, иначе они не смогут понять друг друга. Однако в использовании этой модели агентом и менеджером имеется существенное различие. Агент наполняет модель управляемого ресурса текущими значениями характеристик данного ресурса, и в связи с этим модель агента называют базой данных управляющей информации - Management Information Base, MIB. Менеджер использует модель, чтобы знать о том, чем характеризуется ресурс, какие характеристики он может запросить у агента и какими параметрами можно управлять.

Менеджер взаимодействует с агентами по стандартному протоколу. Этот протокол должен позволять менеджеру запрашивать значения параметров, хранящихся в базе MIB, а также передавать агенту управляющую информацию, на основе которой тот должен управлять устройством. Различают управление inband, то есть по тому же каналу, по которому передаются пользовательские данные, и управление out-of-band, то есть вне канала, по которому передаются пользовательские данные. Например, если менеджер взаимодействует с агентом, встроенным в маршрутизатор, по протоколу SNMP, передаваемому по той же локальной сети, что и пользовательские данные, то это будет управление inband. Если же менеджер контролирует коммутатор первичной сети, работающий по технологии частотного уплотнения FDM, с помощью отдельной сети Х.25, к которой подключен агент, то это будет управление out-of-band. Управление по тому же каналу, по которому работает сеть, более экономично, так как не требует создания отдельной инфраструктуры передачи управляющих данных. Однако способ out-of-band более надежен, так как он предоставляет возможность управлять оборудованием сети и тогда, когда какие-то элементы сети вышли из строя и по основным каналам оборудование недоступно. Стандарт многоуровневой системы управления TMN имеет в своем названии слово Network, подчеркивающее, что в общем случае для управления телекоммуникационной сетью создается отдельная управляющая сеть, которая обеспечивает режим out-of-band.

Обычно менеджер работает с несколькими агентами, обрабатывая получаемые от них данные и выдавая на них управляющие воздействия. Агенты могут встраиваться в управляемое оборудование, а могут и работать на отдельном компьютере, связанном с управляемым оборудованием по какому-либо интерфейсу. Менеджер обычно работает на отдельном компьютере, который выполняет также роль консоли управления для оператора или администратора системы.

Модель менеджер - агент лежит в основе таких популярных стандартов управления, как стандарты Internet на основе протокола SNMP и стандарты управления ISO/OSI на основе протокола CMIP.

Агенты могут отличаться различным уровнем интеллекта - они могут обладать как самым минимальным интеллектом, необходимым для подсчета проходящих через оборудование кадров и пакетов, так и весьма высоким, достаточным для выполнения самостоятельных действий по выполнению последовательности управляющих действий в аварийных ситуациях, построению временных зависимостей, фильтрации аварийных сообщений и т. п.

Структуры распределенных систем управления

В крупной корпоративной сети полностью централизованная система управления, построенная на базе единственного менеджера, вряд ли будет работать хорошо по нескольким причинам. Во-первых, такой вариант не обеспечивает необходимой масштабируемости по производительности, так как единственный менеджер вынужден будет обрабатывать весь поток сообщений от всех агентов, что при нескольких тысячах управляемых объектов потребует очень высокопроизводительной платформы для работы менеджера и перегрузит служебной управляющей информацией каналы передачи данных в той сети, где будет расположен менеджер. Во-вторых, такое решение не обеспечит необходимого уровня надежности, так как при отказе единственного менеджера будет потеряно управление сетью. В-третьих, в большой распределенной сети целесообразно располагать в каждом географическом пункте отдельным оператором или администратором, управляющим своей частью сети, а это удобнее реализовать с помощью отдельных менеджеров для каждого оператора.

Схема менеджер - агент позволяет строить достаточно сложные в структурном отношении распределенные системы управления.

Обычно распределенная система управления включает большое количество связок менеджер - агент, которые дополняются рабочими станциями операторов сети, с помощью которых они получают доступ к менеджерам (рис. 3).

Каждый агент собирает данные и управляет определенным элементом сети. Менеджеры, иногда также называемые серверами системы управления, собирают данные от своих агентов, обобщают их и хранят в базе данных. Операторы, работающие за рабочими станциями, могут соединиться с любым из менеджеров и с помощью графического интерфейса просмотреть данные об управляемой сети, а также выдать менеджеру некоторые директивы по управлению сетью или ее элементами.

Рис. 3. Распределенная система управления на основе нескольких менеджеров и рабочих станций

Наличие нескольких менеджеров позволяет распределить между ними нагрузку по обработке данных управления, обеспечивая масштабируемость системы.

Как правило, связи между агентами и менеджерами носят более упорядоченный характер, чем тот, который показан на рис. 3. Чаще всего используются два подхода к их соединению - одноранговый (рис. 4) и иерархический (рис. 5).

Рис. 4. Одноранговые связи между менеджерами

Рис. 5. Иерархические связи между менеджерами

В случае одноранговых связей каждый менеджер управляет своей частью сети на основе информации, получаемой от нижележащих агентов. Центральный менеджер отсутствует. Координация работы менеджеров достигается за счет обмена информацией между базами данных каждого менеджера.

Одноранговое построение системы управления сегодня считается неэффективным и устаревшим. Обычно оно вызвано тем обстоятельством, что элементарные системы управления построены как монолитные системы, которые первоначально не были ориентированы на модульность системы (например, многие системы упраОдноранговое построение системы управления сегодня считается неэффективным и устаревшим. Обычно оно вызвано тем обстоятельством, что элементарные системы управления построены как монолитные системы, которые первоначально не были ориентированы на модульность системы (например, многие системы управления, разработанные производителями оборудования, не поддерживают стандартные интерфейсы для взаимодействия с другими системами управления). Затем эти менеджеры нижнего уровня стали объединяться для создания интегрированной системы управления сетью, но связи между ними оказалось возможным создавать только на уровне обмена между базами данных, что достаточно медленно. Кроме того, в базах данных таких менеджеров накапливается слишком детальная информация об управляемых элементах сети (так как первоначально эти менеджеры разрабатывались как менеджеры нижнего уровня), вследствие чего такая информация малопригодна для координации работы всей сети в целом. Такой подход к построению системы управления называется подходом снизу вверх.

Гораздо более гибким является иерархическое построение связей между менеджерами. Каждый менеджер нижнего уровня выполняет также функции агента для менеджера верхнего уровня. Такой агент работает уже с гораздо более укрупненной моделью (MIB) своей части сети, в которой собирается именно та информация, которая нужна менеджеру верхнего уровня для управления сетью в целом. Обычно для разработки моделей сети на разных уровнях проектирование начинают с верхнего уровня, на котором определяется состав информации, требуемой от менеджеров-агентов более низкого уровня, поэтому такой подход назван подходом сверху вниз. Он сокращает объемы информации, циркулирующей между уровнями системы управления, и приводит к гораздо более эффективной системе управления.

Модель TMN в наибольшей степени соответствует иерархической архитектуре связей между менеджерами, хотя известны реализации принципов TMN и в одноуровневых архитектурах.

Платформенный подход

При построении систем управления крупными локальными и корпоративными сетями обычно используется платформенный подход, когда индивидуальные программы управления разрабатываются не с нуля, а используют службы и примитивы, предоставляемые специально разработанным для этих целей программным продуктом - платформой. Примерами платформ для систем управления являются такие известные продукты, как HP OpenView, SunNet Manager и Sun Soltice, Cdbletron Spectrum, IMB/Tivoli TMN10.

Эти платформы создают общую операционную среду для приложений системы управления точно так же, как универсальные операционные системы, такие как Unix или Windows NT, создают операционную среду для приложений любого типа, таких как MS Word, Oracle и т. п. Платформа обычно включает поддержку протоколов взаимодействия менеджера с агентами - SNMP и реже CMIP, набор базовых средств для построения менеджеров и агентов, а также средства графического интерфейса для создания консоли управления. В набор базовых средств обычно входят функции, необходимые для построения карты сети, средства фильтрации сообщений от агентов, средства ведения базы данных. Набор интерфейсных функций платформы образует интерфейс прикладного программирования (API) сис темы управления. Пользуясь этим API, разработчики из третьих фирм создают законченные системы управления, которые могут управлять специфическим оборудованием в соответствии с пятью основными группами функций.

Обычно платформа управления поставляется с каким-либо универсальным менеджером, который может выполнять некоторые базовые функции управления без программирования. Чаще всего к этим функциям относятся функции построения карты сети (группа Configuration Management), а также функции отображения состояния управляемых устройств и функции фильтрации сообщений об ошибках (группа Fault Management). Например, одна из наиболее популярных платформ HP OpenView поставляется с менеджером Network Node Manager, который выполняет перечисленные функции.

Чем больше функций выполняет платформа, тем лучше. В том числе и таких, которые нужны для разработки любых аспектов работы приложений, прямо не связанных со спецификой управления. В конце концов, приложения системы управления - это прежде всего приложения, а потом уже приложения системы управления. Поэтому полезны любые средства, предоставляемые платформой, которые ускоряют разработку приложений вообще и распределенных приложений в частности.

Компании, которые производят коммуникационное оборудование, разрабатывают дополнительные менеджеры для популярных платформ, которые выполняют функции управления оборудованием данного производителя более полно. Примерами таких менеджеров могут служить менеджеры системы Optivity компании Bay Networks и менеджеры системы Trancsend компании 3Com, которые могут работать в среде платформ HP OpenView и SunNet Manager.

Выводы

Желательно, чтобы системы управления сетями выполняли все пять групп функций, определенных стандартами ISO/ITU-T для систем управления объектами любого типа.

Система управления большой сетью должна иметь многоуровневую иерархическую структуру в соответствии со стандартами Telecommunication Management Network (TMN), позволяющую объединить разрозненные системы управления элементами сети в единую интегрированную систему.

В основе всех систем управления сетями лежит схема агент - менеджер. Эта схема использует абстрактную модель управляемого ресурса, называемую базой управляющей информации - Management Information Base, MIB.

Агент взаимодействует с управляемым ресурсом по нестандартному интерфейсу, а с менеджером - по стандартному протоколу через сеть.

В больших системах управления используется несколько менеджеров, которые взаимодействуют друг с другом по одной из двух схем - одноранговой и иерархической.

Иерархическая схема взаимодействия менеджеров соответствует стандартам TMN и является более перспективной.

При построении систем управления активно используется платформенный подход. Платформа системы управления выполняет для менеджеров роль операционной системы для обычных приложений, так как обеспечивает разработчика менеджеров набором полезных системных вызовов общего для любой системы управления назначения.

2. Стандарты систем управления

2.1 Стандартизуемые элементы системы управления

При формализации схемы менеджер - агент могут быть стандартизованы следу ющие аспекты ее функционирования:

протокол взаимодействия агента и менеджера;

интерфейс агент - управляемый ресурс;

интерфейс агент - модель управляемого ресурса;

интерфейс менеджер - модель управляемого ресурса;

справочная система о наличии и местоположении агентов и менеджеров, упрощающая построение распределенной системы управления;

язык описания моделей управляемых ресурсов, то есть язык описания MIB;

схема наследования классов моделей объектов (дерево наследования), которая позволяет строить модели новых объектов на основе моделей более общих объектов, например, модели маршрутизаторов на основе модели обобщенного коммуникационного устройства;

схема иерархических отношений моделей управляемых объектов (дерево включения), которая позволяет отразить взаимоотношения между отдельными элементами реальной системы, например, принадлежность модулей коммутации определенному коммутатору или отдельных коммутаторов и концентраторов определенной подсети.

Существующие стандарты на системы управления отличаются тем, что в них может быть стандартизованы не все перечисленные выше аспекты схемы менеджер - агент.

В стандартах систем управления как минимум стандартизуется некоторый способ формального описания моделей управляемых объектов, а также определяется протокол взаимодействия между менеджером и агентом.

Сегодня на практике применяются два семейства стандартов управления сетями - стандарты Internet, построенные на основе протокола SNMP (Simple Network Management Protocol), и международные стандарты ISO/ITU-T, использующие в качестве протокола взаимодействия агентов и менеджеров протокол CMIP (Common Management Information Protocol).

Стандарты систем управления, основанных на протоколе SNMP, формализуют минимум аспектов системы управления, а стандарты ISO/ITU-T - максимум аспектов, как и большинство стандартов, разработанных ITU-T. Традиционно, в локальных и корпоративных сетях применяются в основном системы управления на основе SNMP, а стандарты ISO/ITU-T и протокол CMIP находят применение в телекоммуникационных сетях.

2.2 Стандарты систем управления на основе протокола SNMP

Концепции SNMP-управления

В системах управления, построенных на основе протокола SNMP, стандартизуются следующие элементы:

протокол взаимодействия агента и менеджера;

язык описания моделей MIВ и сообщений SNMP - язык абстрактной синтаксической нотации ASN.1 (стандарт ISO 8824:1987, рекомендации ITU-T X.208);

несколько конкретных моделей MIB (MIB-I, MIB-II, RMON, RMON 2), имена объектов которых регистрируются в дереве стандартов ISO. Все остальное отдается на откуп разработчику системы управления. Протокол SNMP и тесно связанная с ним концепция SNMP MIB были разработаны для управления маршрутизаторами Internet как временное решение. Но, как это часто бывает со всем временным, простота и эффективность решения обеспечили успех этого протокола, и сегодня он используется при управлении практически любыми видами оборудования и программного обеспечения вычислительных сетей. И хотя в области управления телекоммуникационными сетями наблюдается устойчивая тенденция применения стандартов ITU-T, в которые входит протокол CMIP, и здесь имеется достаточно много примеров успешного использования SNMP-управления. Агенты SNMP встраиваются в аналоговые модемы, модемы ADSL, коммутаторы АТМ и т. д.

SNMP - это протокол прикладного уровня, разработанный для стека TCP/IP, хотя имеются его реализации и для других стеков, например IPX/SPX. Протокол SNMP используется для получения от сетевых устройств информации об их статусе, производительности и других характеристиках, которые хранятся в базе данных управляющей информации MIB (Management Information Base). Простота SNMP во многом определяется простотой MIB SNMP, особенно их первых версий MIB I и MIB II. Кроме того, сам протокол SNMP также весьма несложен.

Существуют стандарты, определяющие структуру MIB, в том числе набор типов ее объектов, их имена и допустимые операции над этими объектами (например, считать).

Древовидная структура MIB содержит обязательные (стандартные) поддеревья, а также в ней могут находиться частные (private) поддеревья, позволяющие изготовителю интеллектуальных устройств управлять какими-либо специфическими функциями устройства на основе специфических объектов MIB.

Агент в протоколе SNMP - это обрабатывающий элемент, который обеспечивает менеджерам, размещенным на управляющих станциях сети, доступ к значениям переменных MIB и тем самым дает им возможность реализовывать функции по управлению и наблюдению за устройством.

Основные операции по управлению вынесены в менеджер, а агент SNMP выполняет чаще всего пассивную роль, передавая в менеджер по его запросу значения накопленных статистических переменных. При этом устройство работает с минимальными издержками на поддержание управляющего протокола. Оно использует почти всю свою вычислительную мощность для выполнения своих основных функций маршрутизатора, моста или концентратора, а агент занимается сбором статис тики и значений переменных состояния устройства и передачей их менеджеру системы управления.

Примитивы протокола SNMP

SNMP - это протокол типа запрос-ответ, то есть на каждый запрос, поступивший от менеджера, агент должен передать ответ. Особенностью протокола являет ся его чрезвычайная простота - он включает в себя всего несколько команд.

Команда Get-request используется менеджером для получения от агента значения какого-либо объекта по его имени.

Команда GetNext-request используется менеджером для извлечения значения следующего объекта (без указания его имени) при последовательном просмотре таблицы объектов.

С помощью команды Get-response агент SNMP передает менеджеру ответ на команды Get-request или GetNext-request.

Команда Set используется менеджером для изменения значения какого-либо объекта. С помощью команды Set происходит собственно управление устройством. Агент должен понимать смысл значений объекта, который используется для управления устройством, и на основании этих значений выполнять реальное управляющее воздействие - отключить порт, приписать порт определенной VLAN и т. п. Команда Set пригодна также для установки условия, при выполнении которого агент SNMP должен послать менеджеру соответствующее сообщение. Может быть определена реакция на такие события, как инициализация агента, рестарт агента, обрыв связи, восстановление связи, неверная аутентификация и потеря ближайшего маршрутизатора. Если происходит любое из этих событий, то агент инициализирует прерывание.

Команда Trap используется агентом для сообщения менеджеру о возникновении особой ситуации.

Версия SNMP v.2 добавляет к этому набору команду GetBulk, которая позволяет менеджеру получить несколько значений переменных за один запрос.

Структура SNMP MIB

На сегодня существует несколько стандартов на базы данных управляющей информации для протокола SNMP. Основными являются стандарты MIB-I и MIB-II, а также версия базы данных для удаленного управления RMON MIB. Кроме этого существуют стандарты для специальных устройств MIB конкретного типа (например, MIB для концентраторов или MIB для модемов), а также частные MIB конкретных фирм-производителей оборудования.

Первоначальная спецификация MIB-I определяла только операции чтения значений переменных. Операции изменения или установки значений объекта являются частью спецификаций MIB-II.

Версия MIB-I (RFC 1156) определяет 114 объектов, которые подразделяются на 8 групп.

System - общие данные об устройстве (например, идентификатор поставщика, время последней инициализации системы).

Interfaces - параметры сетевых интерфейсов устройства (например, их количество, типы, скорости обмена, максимальный размер пакета).

Address Translation Table - описание соответствия между сетевыми и физическими адресами (например, по протоколу ARP).

Internet Protocol - данные, относящиеся к протоколу IP (адреса IP-шлюзов, хостов, статистика о IP-пакетах).

ICMP - данные, относящиеся к протоколу обмена управляющими сообщениями ICMP.

TCP - данные, относящиеся к протоколу TCP (например, о TCP-соединениях)

UDP - данные, относящиеся к протоколу UDP (число переданных, принятых и ошибочных UPD-дейтаграмм).

EGP - данные, относящиеся к протоколу обмена маршрутной информацией Exterior Gateway Protocol, используемому в Internet (число принятых с ошиб ками и без ошибок сообщений).

Из этого перечня групп переменных видно, что стандарт MIB-I разрабатывался с жесткой ориентацией на управление маршрутизаторами, поддерживающими протоколы стека TCP/IP.

В версии MIB-II (RFC 1213), принятой в 1992 году, был существенно (до 185) расширен набор стандартных объектов, а число групп увеличилось до 10.На рис. 6 приведен пример древовидной структуры базы объектов MIB-II. На нем показаны две из 10 возможных групп объектов - System (имена объектов начинаются с префикса Sys) и Interfaces (префикс if). Объект SysUpTimeсодержит значение продолжительности времени работы системы с момента последней перезагрузки, объект SysObjectID - идентификатор устройства (например, маршрутизатора).

Рис. 6. Стандартное дерево MIB-II (фрагмент)

Объект ifNumber определяет количество сетевых интерфейсов устройства, а объект ifEntry является вершиной поддерева, описывающего один из конкретных интерфейсов устройства. Входящие в это поддерево объекты ifType и ifAdminStatus определяют соответственно тип и состояние одного из интерфейсов, в данном случае интерфейса Ethernet.

В число объектов, описывающих каждый конкретный интерфейс устройства, включены следующие.

ifType - тип протокола, который поддерживает интерфейс. Этот объект принимает значения всех стандартных протоколов канального уровня, например rfc877-x25, ethemet-csmacd, iso88023-csmacd, iso88024-tokenBus, iso88025-tokenRlng и т. д.

ifMtu - максимальный размер пакета сетевого уровня, который можно послать через этот интерфейс.

ifSpeed - пропускная способность интерфейса в битах в секунду (100 для Fast Ethernet).

ifPhysAddress - физический адрес порта, для Fast Ethernet им будет МАС - адрес.

ifAdminStatus - желаемый статус порта.

up - готов передавать пакеты.

down - не готов передавать пакеты.

testing - находится в тестовом режиме.

ifOperStatus - фактический текущий статус порта, имеет те же значения, что и ifAdminStatus.

ifInOctets - общее количество байт, принятое данным портом, включая служебные, с момента последней инициализации SNMP-агента.

iflnUcastPkts - количество пакетов с индивидуальным адресом интерфейса, доставленных протоколу верхнего уровня.

IflnNUcastPkts - количество пакетов с широковещательным или мультивещательным адресом интерфейса, доставленных протоколу верхнего уровня.

ifInDiscards - количество пакетов, которые были приняты интерфейсом, оказались корректными, но не были доставлены протоколу верхнего уровня, скорее всего из-за переполнения буфера пакетов или же по иной причине.

ifin Errors - количество пришедших пакетов, которые не были переданы протоколу верхнего уровня из-за обнаружения в них ошибок.

Кроме объектов, описывающих статистику по входным пакетам, имеются аналогичные объекты, но относящиеся к выходным пакетам.

Как видно из описания объектов MIB-II, эта база данных не дает детальной статистики по характерным ошибкам кадров Ethernet, кроме этого, она не отражает изменение характеристик во времени, что часто интересует сетевого администратора.

Эти ограничения были впоследствии сняты новым стандартом на MIB - RMON MIB, который специально ориентирован на сбор детальной статистики по протоколу Ethernet, к тому же с поддержкой такой важной функции, как построение агентом зависимостей статистических характеристик от времени.

Форматы и имена объектов SNMP MIB

Для именования переменных базы MIB и однозначного определения их форматов используется дополнительная спецификация, называемая SMI - Structure of Management Information. Например, спецификация SMI включает в качестве стандартного имя IpAddress и определяет его формат как строку из 4 байт. Другой пример - имя Counter, для которого определен формат в виде целого числа в диапазоне от 0 до 232-1.

При описании переменных MIB и форматов протокола SNMP спецификация SMI опирается на формальный язык ASN.1, принятый ISO в качестве нотации для описания терминов коммуникационных протоколов (правда, многие коммуникационные протоколы, например IP, РРР или Ethernet, обходятся без этой нотации). Нотация ASN. 1 служит для установления однозначного соответствия между терминами, взятыми из стандартов, предназначенных для человеческого использования, и теми данными, которые передаются в коммуникационных протоколах аппаратурой. Достигаемая однозначность очень важна для гетерогенной среды, характерной для корпоративных сетей. Так, вместо того чтобы указать, что некоторая переменная протокола представляет собой целое число, разработчик протокола, использующий нотацию ASN.1, должен точно определить формат и допустимый диапазон переменной. В результате документация на MIB, написанная с помощью нотации ASN.1, может точно и механически транслироваться в форму кодов, характерных для сообщений протоколов.

Нотация ASN.1 похожа на другие метаязыки, например нормальную Бэкусову форму, используемую при описании языков программирования, в частности Алгола. Нотация ASN.1 поддерживает базовый набор различных типов данных, таких как целое число, строка и т. п., а также позволяет конструировать из этих базовых типов составные данные - массивы, перечисления, структуры.

Существуют правила трансляции структур данных, описанных на ASN.1, в структуры данных языков программирования, например C++. Соответственно, имеются трансляторы, выполняющие эту работу. Примера описаний данных с помощью ASN.1 приведены ниже при описании протокольных блоков данных SNMP.

Нотация ASN.1 широко используется при описании многих стандартов OSI, в частности моделей управляемых объектов и структуры сообщений протокола CMIP.


Подобные документы

  • Общие понятия, задачи и характеристика компьютерной сети TMN: технология управления, состав и назначение основных элементов, функциональные возможности, архитектура. Реализация управления в модели ВОС. Сравнительная характеристика протоколов SNMP и CMIP.

    курсовая работа [1,1 M], добавлен 18.03.2011

  • Компьютерные сети и протоколы передачи данных. Устройства, взаимодействующие с компьютерными сетями при помощи протоколов передачи данных. Мобильные вычислительные устройства и операционные системы. Клиент-серверное приложение для управления расписанием.

    дипломная работа [1,8 M], добавлен 11.12.2015

  • История развития протокола SNMP. Структура и база управляющей информации. Форматы и имена объектов SNMP MIB. Протокол управления простым роутером и система управления объектами высшего уровня. Отсутствие средств взаимной аутентификации агентов.

    курсовая работа [238,9 K], добавлен 29.05.2014

  • Назначение и состав, система автоматизированного управления мобильной газораспределительной станцией. Структурная схема соединений системы автоматизированного управления. Алгоритм управляющей программы. Отладка разработанного программного обеспечения.

    дипломная работа [3,4 M], добавлен 20.03.2017

  • Классификация компьютерных сетей (КС) по различным признакам. Исследование современных протоколов управления КС. Анализ архитектур управления КС. Разработка требований, предъявляемых к системам управления КС. Выбор способа организации системы мониторинга.

    дипломная работа [3,3 M], добавлен 13.10.2016

  • Особенности управления информацией в экономике. Понятие и функции системы управления базами данных, использование стандартного реляционного языка запросов. Средства организации баз данных и работа с ними. Системы управления базами данных в экономике.

    контрольная работа [19,9 K], добавлен 16.11.2010

  • Рынок систем управления электрическими котлами. Архитектура информационной системы управления и обслуживания сети котельных на примере ОАО "РЖД". Технические требования, цели и задачи для проектирования. Разработка базы данных информационной системы.

    дипломная работа [2,4 M], добавлен 19.01.2017

  • Сеть доступа как система средств связи между местной станцией и терминалом пользователя с замещением части или всей распределительной сети, типы и функциональные особенности, сферы практического применения. Операционные системы управления сети доступа.

    реферат [2,1 M], добавлен 14.02.2012

  • Понятие системы управления, ее виды и основные элементы. Критерии оценки состояния объекта управления. Классификация структур управления. Особенности замкнутых и разомкнутых систем автоматического управления. Математическая модель объекта управления.

    контрольная работа [1,0 M], добавлен 23.10.2015

  • Создание автоматизированных систем управления для предприятий нефтяной и газовой промышленности. Система управления базами данных (СУБД), ее функциональные возможности, уровневая архитектура. Характеристика реляционных, объектных и распределенных СУБД.

    курсовая работа [434,7 K], добавлен 20.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.