Физические свойства горных пород – коллекторов нефти и газа

Линейная фильтрация нефти и газа в пористой среде. Классификация проницаемых пород. Оценка проницаемости пласта, состоящего из нескольких продуктивных пропластков различной проницаемости. Зависимость проницаемости от пористости. Насыщенность коллекторов.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 08.04.2020
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

, (3.50)

Коэффициент температуропроводности (б) горных пород характеризует скорость прогрева пород, изменения температуры пород, вследствие поглощения или отдачи тепла, или скорость распространения изотермических границ. При нагреве породы расширяются. Способность пород к расширению характеризуется коэффициентами линейного (L) и объёмного (V) теплового расширения.

Коэффициенты линейного (L) и объёмного (V) расширения характеризуют изменение размеров породы при нагревании:

, (3.51)

где: L и V - начальные длина и объём образца.

Взаимосвязи тепловых свойств горных пород выражаются соотношениями:

, , (3.52)

где - коэффициент температуропроводности, м2/с;

- коэффициент теплопроводности, Вт/(м · К);

с - удельная теплоёмкость, Дж/(м · К);

- плотность породы, кг/м3.

Теплопроводность и температуропроводность пород очень низки по сравнению с металлами (табл. 3.3). Поэтому для прогрева призабойных зон требуется очень большая мощность нагревателей.

Теплопроводность горных пород, заполненных нефтью и водой, значительно повышается за счет конвективного переноса тепла жидкой средой. По этой причине для усиления прогрева пород пласта и увеличения глубины прогрева забой скважины одновременно подвергают ультразвуковой обработке. Вследствие упругих колебаний среды, ускоряется процесс передачи тепла за счет конвекции.

Коэффициенты линейного и объёмного расширения изменяются в зависимости от плотности породы аналогично теплоёмкости. Наибольшим значением коэффициентов расширения обладает кварцевый песок и другие крупнозернистые породы. Коэффициент линейного расширения пород уменьшается с ростом плотности минералов.

Температуропроводность горных пород повышается с уменьшением пористости и с увеличением влажности. В нефтенасыщенных породах величина температуропроводности более низка, чем в водонасыщенных породах, так как теплопроводность нефти меньше чем воды.

Таблица 3.3 Тепловых свойства горных пород и пластовых флюидов

Горная порода

с, кДж/(кг?К)

?,

Вт/(м?К)

??103,

м2/с

?L?105, 1/К

Глина

0,755

0,99

0,97

-

Глинистые сланцы

0,772

154-218

0,97

0,9

Доломит

0,93

1,1-4,98

0,86

-

Известняк кристаллический

1,1

2,18

0,5-1,2

0,5-0,89

Известняк доломитизированный

1,51

-

-

-

Кварц

0,692

2,49

1,36

1,36

Мергель

0,915-2,18

-

-

-

Песок (сухой)

0,8

0,347

0,2

0,5

Песок с влажностью 20-25 %

-

3,42

-

-

Песчаник плотный

1,27-3,01

0,838

1,39

0,5

Пластовые флюиды: Нефть

2,1

0,139

0,069-0,086

-

Вода

4,15

0,582

0,14

-

Температуропроводность пород не зависит от минерализации пластовых вод. Температуропроводность и теплопроводность, измеренная вдоль напластования породы, большей частью превышает на 10-50 % значения этих тепловых свойств, измеренных в направлении, перпендикулярном напластованию.

3.7 Характеристика неоднородностей продуктивных пластов

3.7.1 Гранулометрический состав горных пород

Гранулометрическим составом горных пород называют количественное (массовое) содержание в породах частиц различной величины. Гранулометрический состав характеризует степень дисперсности минеральных частиц, слагающих горную породу. От степени дисперсности минералов зависят многие другие коллекторские свойства пористой среды: пористость, проницаемость, удельная поверхность, остаточная водонасыщенность, нефтенасыщенность, силы, капиллярно удерживающие флюиды в пласте и другие.

Размер частиц горных пород изменяется от коллоидных (10-3-10-5 см) до галечника и валунов. Гранулометрический состав нефтесодержащих пород в основном представлен частицами размером от 1 до 0,01 мм в диаметре. По размерам зерен классифицируют структуры обломочных пород на следующие:

- псефитовую, с размером зерен более 2 мм;

- псаммитовую, с преимущественным размером частиц от 2 до 0,1 мм;

- алевритовую, включающую частицы размером 0,1-0,01 мм;

- пелитовую, с размером зерен менее 0,01 мм.

Для определения гранулометрического состава горных пород существует несколько методов. Наиболее распространенными являются ситовый и седиментационный методы, применяемые для слабо и средне сцементированных горных пород. Ситовый анализ применяется преимущественно для характеристики состава псефитов и псаммитов (породу последовательно просеивают через сита с уменьшающим диаметром отверстий), а седиментационный анализ используют для алевритов и пелитов. Результаты анализа гранулометрического состава пород представляют в виде таблиц или диаграмм (рис. 3.14), секторы которых показывают содержание различных фракций. Путём суммирования в последовательном порядке процентного содержания каждой фракции, строят интегральную (кумулятивной) кривую (рис. 3.15).

Рис. 3.14 Изображение состава в виде гистограммы и диаграммы

Рис. 3.15 Гистограмма гранулометрического состава образца (слева): d - диаметр частиц, г = - 10 lg d и интегральная кривая суммарного состава

По построенной интегральной кривой определяют две важные величины: коэффициент однородности (неоднородности) и так называемый действующий диаметр или эффективный размер зерен (dЭф).

Для пород со средней и высокой цементацией применяют метод исследования в шлифах под микроскопом (см. лабораторный практикум).

3.7.2 Удельная поверхность горных пород

Под удельной поверхностью (Sуд.) горных пород понимают суммарную поверхность всех ее зерен в единице объёма породы или суммарную свободную поверхность частиц в единице объёма (Sуд. = F/V, м2/м3).

Удельная поверхность характеризует степень дисперсности породы, более обобщенно, чем гранулометрический состав. Величина её выражается одним численным значением, а не функцией распределения фракций.

Тем не менее соотношение водо-, нефтенасыщенности, степень проявления молекулярно-поверхностных и капиллярных сил при движении пластовых жидкостей в пористой среде и фильтрационная способность зависят с одной стороны от физико-химических свойств жидкости, а с другой от гранулометрического состава, структуры порового пространства, коэффициента пористости пласта и удельной поверхности.

Если пористая среда, через которую происходит фильтрация жидкости крупнозернистая с относительно небольшой удельной поверхностью, роль молекул жидкости, адсорбированных на поверхности зёрен и защемлённых в углах их контакта невелика. Число молекул жидкости, связанных с породой, соизмеримо мало с числом молекул жидкости, движущийся в порах породы.

Если пористая среда, через которую происходит фильтрация жидкости тонкозернистая и имеет большую удельную поверхность (например, глины), число поверхностных молекул жидкости возрастает и становится соизмеримым с числом молекул жидкости, перемещающихся в объёме порового пространства. В этом случае молекулярно-поверхностные силы начинают играть значительную роль

С увеличением дисперсности удельная поверхность породы возрастает. Удельная поверхность возрастает с уменьшением диаметра зерен и коэффициента пористости. Наибольшую удельную поверхность имеют глины. Чем больше мелких частиц пород в гранулярных коллекторах, а следовательно, и мелких пор, тем больше их удельная поверхность.

Исходя из условий, что частицы имеют сферическую форму и, принимая их размер считается, что удельная поверхность однородной породы составляет: для псаммитов менее 950 м2/м3, для алевритов 950-2300 м2/м3, для пелитов более 2300 м2/м3.

Экспериментально измерить удельную поверхность реальных коллекторов очень сложно, в силу её неоднородности. Удельная поверхность неоднородной породы, когда ни одна из указанных фракций не достигает 50 %, колеблется в пределах 900-2100 м2/м3.

Для сравнительных количественных оценок коллекторов было введено понятие "фиктивный грунт". Под фиктивным грунтом предполагается коллектор, сложенный частицами шарообразной формы при квадратной или ромбической укладке (см. рис. 1.9). В 1 м3 породы (V) такой структуры полная поверхность шаров составит площадь(S) и удельную поверхность соответственно:

S = 6·(1-m)/d, Sуд. = S/V (3.52)

где S - площадь поверхности, м2;

m - пористости, м3;

d - диаметр, м;

Sуд. - удельная поверхность, м2/м3.

В коллекторах всегда присутствуют поры различного диаметра. Удельная поверхность зависит и от фазовой проницаемости, и от адсорбционной способности пород. Обычно оценивают удельную поверхность пород по различным эмпирическим соотношениям, функционально зависящих от величин пористости (m) и проницаемости (kпр), например, по одному из вариантов формулы Козени:

Sуд. = 7?105·(m·vm)/(vkпр.). (3.53)

Или по выражению, предложенному К.Г. Оркиным:

Sуд. = с·m·v(m/kпр.), (3.54)

где с - поправочный коэффициент, который учитывает отклонения формы частиц от шарообразной и зависит от величины эффективного диаметра частиц (dэф.) для реальных коллекторов (см. рис. 3.15).

3.7.3 Коллекторские свойства трещиноватых пород

Емкость продуктивных коллекторов и промышленные запасы нефти в нём определяются преимущественно ёмкостью трещиноватого коллектора, объёмом трещин. Трещиноватость пород в той или иной степени характерна для коллекторов всех типов. Большинство исследователей ёмкость трещиноватого коллектора связывают с пустотами трех видов:

1. межзёрновым поровым пространством, пористость которого составляет 2-10 % полезной ёмкости трещиноватого коллектора;

2. кавернами и микрокарстовыми пустотами, пористость которых может достигать 13-15 % полезной ёмкости трещиноватого коллектора;

3. пространство самих трещин.

Причём, пространство самих трещин составляет десятые и сотые доли процента относительного объёма трещиноватой породы. Трещиноватая ёмкость пород несоизмеримо мала с объёмом добываемой из них нефти. Например, 10-15 % трещиноватого пустотного объёма, фильтруют до 80-90 % объёмов жидкости. Исходя из основных коллекторских свойств, обуславливающих ёмкость и пути фильтрации в трещиноватых коллекторах, последние можно подразделить на следующие основные типы:

1. коллектора кавернозного типа, ёмкость которых слагается из полостей каверн и карстов, связанных между собой и со скважиной системой микротрещин;

2. коллектора трещиноватого типа, ёмкость которых определяется в основном системой трещин;

3. коллектора смешанного типа, в том числе и порово-трещиноватые, ёмкость которых представляет сочетания и переходы по площади и по разрезу трещиноватого или кавернозного с поровым видом.

Качество трещиноватого коллектора характеризуют такие параметры, как: густота трещин, интенсивность и плотность трещиноватости пород, раскрытость трещин, зависящие от литологических свойств пород, трещинная пустотность и проницаемость. На величину раскрытости трещин влияют процессы их происхождения. Величина раскрытости трещин колеблется в пределах 14-80 мкм. Как правило, на больших глубинах она составляет 10-20 мкм. Трещиноватость карбонатных пород обычно больше, чем аргиллитов и песчано-алевритовых пород, песчаников и солей.

При одинаковой прочности пород интенсивность трещиноватости коллектора увеличивается при уменьшении его мощности, за счет веса вышележащих пород.

Специальные исследования показали, что ориентированность проницаемости отдельных участков продуктивных пластов относительно залежи обусловлена наличием ориентированной системы трещин по отношению к простиранию складок. Однако отмеченные участки чаще распределены спорадически, преимущественно на периклиналях пологих структур и на сводах структур с крутыми крыльями.

О раскрытии трещин на глубине также существуют различные мнения. В шахтах на небольших глубинах иногда встречаются трещины с раскрытостью до 10 см (шахты Норильска, Ухты, Борислава). На больших глубинах раскрытость составляет 10-20 мкм, но в условиях выщелачивания пород могут встречаться и карсты. При бурении скважин на месторождении Надьлендел в Венгрии наблюдались зависания бурового инструмента в карбонатных коллекторах до 2-3 м на глубине около 3000 м.

Методика исследования коллекторских свойств трещиноватых пластов имеет свои особенности. Во-первых, даже при самых точных методиках для кернов исследования не дают объективной картины из-за разрушения его при бурении в интервалах наибольшей трещиноватости. Отсюда замеры по шлифам под микроскопом не решают проблемы. Поэтому для определения параметров трещиноватости используются в комплексе геологические, гидродинамические и геофизические исследования.

Уже по результатам исследований первых разведочных скважин на новом месторождении характер пласта проявляется в искривлении индикаторных диаграмм (см. рис. 3.16) при условии, что во всем диапазоне заданных забойных давлений они выше давления насыщения нефти газом.

Рис. 3.16 Индикаторные диаграммы, характерные для порово-трещиноватых и трещиноватых пластов (1-5 - номера режимов)

Преобразованные графики обработки кривых восстановления забойного давления (КВД) характеризуются разными углами наклона участков для призабойной и удаленной зон пласта. Эти факты связаны с процессами «дыхания» трещин при изменении давлений в ПЗП, отсюда и уменьшение коэффициентов продуктивности при росте депрессии на пласт (см. рис. 3.16).

При закачке воды в пласт для ППД такие пласты характеризуются искривлением индикаторных диаграмм в сторону оси приемистости, то есть коэффициент приемистости увеличивается с ростом давления закачки.

Случайный характер развития зон трещиноватости проявляется в быстром локальном прорыве закачиваемых вод и преждевременном обводнении добывающих скважин. Эти особенности значительно затрудняют прогнозирование разработки подобных залежей, хотя теория фильтрации для сред с двойной проницаемостью («вложенные среды») разработана достаточно строго.

3.7.4 Неоднородности продуктивных пластов

Физические свойства коллекторов нефти в объеме резервуара (нефтяного пласта) изменяются в широком диапазоне случайным образом. Они могут изменяться по простиранию пласта и по вертикали. Для характеристики этих изменений используется аппарат математической статистики и теории вероятности.

Для отображения и учета неоднородности пород строится статистическая модель фильтрационного поля пласта при условии представительности выборки той или другой случайной оставляющей (пористости, проницаемости и т.д.).

Исследуемые свойства пласта принимаются за случайные величины с определенной функцией распределения или интегральным законом распределения F(x). Производная от функции распределения называется плотностью распределения:

(3.55)

Чаще эти функции используют для отображения неоднородности пород по проницаемости. Пусть хь х2, х3...хп - свойства среды, появляющиеся в генеральной совокупности признака с вероятностью Р1 Р2 Р3...Рn, тогда средневзвешенное значение свойства среды можно вычислить по формуле:

(3.56)

Так как имеем

(3.57)

Приняв искомое свойство пород за непрерывную случайную величину, получим:

(3.58)

где f(x)-плотность распределения свойства.

Для конкретных задач можно использовать ряд других показателей распределения, чаще это среднеквадратическое отклонение - у(х), коэффициент вариации

и пр.

В результате изучения какого-либо свойства получают статистический ряд с заданными исследователем границами разделов (классов). Графически эти результаты отображаются на гистограммах (полигонах распределения):

Рис. 3.17. Гистограмма распределения проницаемости

Графическое изображение накопленной частоты встречаемости признака представляет собой кумулятивную кривую. При увеличении числа разрядов (уменьшении шага классов) гистограмма приближается к графику плотности распределения случайных величин, а кумулятивная кривая - к функции распределения.

Практически редко достигают по объему выборки условия достаточности генеральной совокупности, поэтому подбираются теоретические главные кривые распределения, наилучшим образом описывающие полученное статистическое распределение (используют специальные коррелляционные методы). Теоретические распределения характеризуются формулами, приведенными в математических справочниках. Например, плотности нормального и логарифмически нормального законов распределения имеют соответственно запись:

(3.59)

(3.60)

Законы распределения имеют также аналитические выражения:

(3.61)

(3.62)

3.63)

erf(х)-интеграл вероятности, значения которого табулированы в математических справочниках.

В практике отображения неоднородностей пород помимо вероятностно-статистических методов используют детерминированные методы на базе корреляции разрезов, когда применяют коэффициенты песчанистости, расчлененности, слияния и пр.

Размещено на Allbest.ru


Подобные документы

  • Концепция фазовых проницаемостей, ее сущность и содержание, методы определения. Определение главных факторов, влияющих на фазовые проницаемости коллекторов нефти и газа, направления использования полученных в результате исследований данных веществ.

    курсовая работа [344,0 K], добавлен 04.05.2014

  • Понятие диэлектрической проницаемости как количественной оценки степени поляризации диэлектриков. Зависимость диэлектрической проницаемости газа от радиуса его молекул и их числа в единице объема, жидких неполярных диэлектриков от температуры и частоты.

    презентация [870,1 K], добавлен 28.07.2013

  • Законы фильтрации газированной жидкости, фазовые проницаемости. Методы расчета плоскорадиальной фильтрации с использованием функции Христиановича. Определение дебитов скважин при установившейся фильтрации газированной жидкости различными методами.

    контрольная работа [586,5 K], добавлен 22.09.2013

  • Анализ изменений емкости и диэлектрической проницаемости двухполюсника в зависимости от резонансной частоты, оценка закономерности. Применение измерителя добротности ВМ-560, порядок его калибровки. Построение графиков по результатам проведенных измерений.

    лабораторная работа [426,0 K], добавлен 26.04.2015

  • Понятие молекулярной связи как самой непрочной, ее сущность и особенности. Зависимость эффекта дипольной поляризации в вязкой среде от увеличения ее температуры. Зависимость диэлектрической проницаемости тел от структурных особенностей диэлектрика.

    контрольная работа [19,8 K], добавлен 06.04.2009

  • Теория электрической проводимости и методика её измерения. Теория диэлектрической проницаемости и методика её измерения. Экспериментальные исследования электрической проводимости и диэлектрической проницаемости магнитной жидкости.

    курсовая работа [724,5 K], добавлен 10.03.2007

  • Дифференциальные уравнения неустановившейся фильтрации газа. Основное решение линеаризованного уравнения Лейбензона. Исследование прямолинейно-параллельного установившегося фильтрационного потока несжимаемой жидкости по закону Дарси в однородном пласте.

    курсовая работа [550,5 K], добавлен 29.10.2014

  • Изучение уравнения электромагнитного поля в среде с дисперсией. Частотная дисперсия диэлектрической проницаемости. Соотношение Крамерса–Кронига. Особенности распространения волны в диэлектрике. Свойства энергии магнитного поля в диспергирующей среде.

    реферат [111,5 K], добавлен 20.08.2015

  • Изучение особенностей структуры жидкости. Классификация пластовых вод по условиям залегания. Исследование макроскопических гидрофизических эффектов при малых энергетических воздействиях на водные среды. Разработка месторождения по добыче нефти и газа.

    контрольная работа [234,5 K], добавлен 03.04.2015

  • Понятие и история происхождения сланцевого газа, его главные физические и химические свойства. Способы добычи, используемое оборудование и материалы, оценка степени влияние на экологию. Перспективы применения данного типа газа в будущем в энергетике.

    контрольная работа [28,7 K], добавлен 11.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.