Тепловой расчет парового котельного агрегата ДКВР-10-13

Определение состава и теплоты сгорания топлива. Расчет присосов воздуха и коэффициентов его избытка по отдельным газоходам. Калькуляция топочной камеры. Подсчет геометрических характеристик топок. Анализ выкладки конвективных поверхностей нагрева.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 17.09.2017
Размер файла 472,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

.

13. Определяем количество теплоты, воспринятое поверхностью нагрева, на 1 кг топлива (6.15), (6.16)

,

для температуры 200?С после конвективной поверхности нагрева:

,

,

для температуры 400?С после конвективной поверхности нагрева:

,

.

15. По принятым двум значениям температуры и полученным двум значениям Qб и QТ производится графическая интерполяция для определения температуры продуктов сгорания после поверхности нагрева.

Так как (отличается от менее чем на 50?С), то определяем QT, сохранив прежним коэффициент теплопередачи (6.15), (6.16).

.

Составляем сводную таблицу.

Таблица 9 Теплотехнические характеристики второго газохода

Наименование величины

Условное обозначение

Расчётная формула

Результаты при

200?С

400?С

Температура дымовых газов перед 1-м газоходом, ?С

(5.23)

570

570

Теплосодержание дымовых газов перед 1-м газоходом, кДж/кг

(5.7)

8805

8805

Температура дымовых газов за первым газоходом, ?С

200

400

Теплосодержание дымовых газов за 1-м газоходом, кДж/кг

Таб. 3

3105,955

6380,185

Теплота, отданная продуктам сгорания, кДж/кг

Qб

(6.2)

5609,71

2401

Расчётная температура потока продуктов сгорания в конвективном газоходе, ?С

(6.5)

385

485

Температурный напор, ?С

Дt

(6.6)

193

293

Средняя скорость продуктов сгорания в поверхности нагрева, м/с

(6.7)

7,01

8,08

Коэффициент теплоотдачи конвекцией от продуктов сгорания к поверхности нагрева, Вт/м2·К

(6.8)

58,3

62,54

Толщина излучающего слоя, м

s

(6.10)

0,201

0,201

Коэффициент ослабления лучей трёхатомными газами, (м·МПа)-1

кГ

(5.14)

37,7

36,07

Суммарная сила поглощения газовым потоком, м-ата

крs

(6.9)

0,155

0,148

Степень черноты газового потока

a

Прил.1

0,144

0,138

Коэффициент теплоотдачи излучением не запыленного потока, Вт/м2·К

(6.11)

3,89

4,554

Температура загрязненной стенки, ?С

tз

(6.12)

217

217

Суммарный коэффициент теплоотдачи от продуктов сгорания к поверхности нагрева, Вт/м2·К

(6.13)

62,19

6,094

Коэффициент теплопередачи, Вт/м2·К

К

(6.14)

40,42

42,61

Температурный напор, ?С

Дt

(6.16)

96

285

Количество теплоты, воспринятое поверхностью нагрева, кДж/кг

QТ

(6.15)

1090

3491

6.3 Тепловой расчёт водяного экономайзера

В промышленных паровых котлах, работающих при давлении пара до 2,5 МПа, чаще всего применяются чугунные водяные экономайзеры, а при большем давлении -- стальные. При этом в котельных агрегатах горизонтальной ориентации производительностью до 25 т/ч, имеющих развитые конвективные поверхности, часто ограничиваются установкой только водяного экономайзера. В котельных агрегатах паропроизводительностью более 25 т/ч вертикальной ориентации с пылеугольными топками после водяного экономайзера всегда устанавливается воздухоподогреватель. При сжигании высоковлажных топлив в пылеугольных топках применяется двухступенчатая установка водяного экономайзера и воздухоподогревателя.

1. По уравнению теплового баланса определить количество теплоты, которое должны отдать продукты сгорания при принятой температуре уходящих газов (6.2)

,

где - коэффициент сохранения теплоты (4.12);

- энтальпия продуктов сгорания на входе в экономайзер, определяется по таблице 3 при температуре и коэффициенте избытка воздуха после поверхности нагрева, предшествующей рассчитываемой поверхности (5.7);

- энтальпия продуктов сгорания после рассчитываемой поверхности нагрева, определяется по таблице 3 при принятой в начале расчёта температуре уходящих газов равной 160[эстеркин] (5.7);

- присос воздуха в экономайзер, принимается по таблице 1;

- энтальпия присосанного в конвективную поверхность нагрева воздуха, при температуре воздуха 30?С (4.3).

,

,

.

2. Определяем энтальпию воды после водяного экономайзера

,

где - энтальпия воды на входе в экономайзер [3], кДж/кг;

D - паропроизводительность котла, кг/с;

Dпр - расход продувочной воды, кг/с.

,

.

Температура воды после экономайзера [3].

3. Определяем температурный напор

,

где и - большая и меньшая разности температуры продуктов сгорания и температуры нагреваемой жидкости.

,

,

.

4. Выбираем конструктивные характеристики принятого к установке экономайзера (таблица 10)

Таблица 10 Конструктивные характеристики труб чугунных экономайзеров [3]

Характеристика одной трубы

Экономайзер ВТИ

Длина, мм

2000

Площадь поверхности нагрева с газовой стороны, м2

2,95

Площадь живого сечения для прохода продуктов сгорания, м2

0,12

Число параллельно включенных змеевиков в пакете

,

где D - расход воды через экономайзер, кг/с;

- массовая скорость воды на входе в экономайзер (принимается равной 600кг/(м2·с));[3]

dвн - внутренний диаметр трубы (рисунок 12), мм.

5. Определяем действительную скорость продуктов сгорания в экономайзере

,

где - расчётный расход топлива (4.10), кг/с;

VГ - объем продуктов сгорания при среднем коэффициенте избытка воздуха (таблица 2);

- среднеарифметическая температура продуктов сгорания в экономайзере, ?С;

Fэк - площадь живого сечения для прохода продуктов сгорания, м2.

,

где Fтр - площадь живого сечения для прохода продуктов сгорания одной трубы (таблица 10);

z1 - число труб в ряду (принимается равным 10).

,

где и - температура продуктов сгорания на входе и выходе из экономайзера, ?С.

.

6. Определяем коэффициент теплопередачи

,

где и - коэффициенты определяются с помощью монограммы (приложение 1, рисунок 12).

7. Определяем площадь поверхности нагрева водяного экономайзера

.

8. Окончательно устанавливаем конструктивные характеристики экономайзера

Общее число труб

,

где - площадь поверхности нагрева одной трубы (таблица 10), м2.

Число рядов

.

Составляем сводную таблицу.

Таблица 10 Теплотехнические и конструктивные характеристики экономайзера

Наименование величины

Условное обозначение

Расчётная формула

Результат

Температура дымовых газов перед экономайзером, ?С

рисунок 6

360

Теплосодержание дымовых газов перед экономайзером, кДж/кг

(5.7)

5716,8

Температура дымовых газов после экономайзера, ?С

принято

160

Теплосодержание дымовых газов после экономайзера, кДж/кг

(5.7)

2610,869

Тепловосприятие в водяном экономайзере, кДж/кг

Qб

(6.2)

3069,5

Температура питательной воды перед экономайзером, ?С

из условия

100

Температура питательной воды после экономайзера, ?С

[4]

183

Энтальпия питательной воды перед экономайзером, кДж/кг

[4]

419,1

Энтальпия питательной воды после экономайзера, кДж/кг

(6.15)

774,83

Температурный напор, ?С

Дt

(6.16)

133

Действительная скорость продуктов сгорания в экономайзере, м/с

(6.22)

5,45

Площадь живого сечения для прохода продуктов сгорания, м2

Fэк

(6.23)

1,2

Среднеарифметическая температура продуктов сгорания, ?С

(6.24)

260

Число труб в ряду

z1

принято

10

Коэффициент теплопередачи, Вт/(м2·К)

K

(6.25)

16,97

Площадь поверхности нагрева водяного экономайзера, м2

Hэк

(6.26)

451,2

Общее число труб

n

(6.27)

153

Число рядов

m

(6.28)

15,3

6.4 Невязка теплового баланса

,

где Qл, Q1к, Q2к, Qэк - количество теплоты, воспринятое лучевоспринимающими поверхностями топки, котельными пучками, экономайзером, кДж/кг.

кДж/кг;

где: кДж/кг;

кДж/кг.

кДж/кг,

где: кДж/кг;

кДж/кг.

кДж/кг,

где: кДж/кг;

кДж/кг.

кДж/кг,

где: кДж/кг;

Невязка теплового баланса составляет

Рисунок 9. Угловой коэффициент однорядного гладкотрубного экрана

Рисунок 10.Коэффициент теплоотдачи конвекцией при поперечном омывании коридорных гладкотрубных пучков

а) Степень черноты продуктов сгорания a в зависимости от суммарной оптической толщины среды kps; б) Коэффициент теплоотдачи излучением

Рисунок 12. Коэффициент теплопередачи для чугунных экономайзеров

Библиографический список

1. Компоновка и тепловой расчет парового котла: Учеб. пособие для вузов/ Ю.М. Липов, Ю.Ф. Самойлов, Т.В. Виленский. - М.: Энергоатомиздат, 1988. - 208 с.

2. Эстеркин Р.И. Котельные установки. Курсовое и дипломное проектирование: Учеб. пособ. для техникумов. - Л.: Энергоатомиздат, 1989. - 280 с.

3. Ривкин С. Л., Александров А. А. Теплофизические свойства воды и водяного пара. - М.: «Энергия», 1980. - 424 с.

4. Александров В.Г. Паровые котлы малой и средней мощности. Изд. 2-е, перераб. и доп. Л.: «Энергия», 1972. - 200 с.

Размещено на Allbest.ru


Подобные документы

  • Расчет топочной камеры котельного агрегата. Определение геометрических характеристик топок. Расчет однокамерной топки, действительной температуры на выходе. Расчет конвективных поверхностей нагрева (конвективных пучков котла, водяного экономайзера).

    курсовая работа [139,8 K], добавлен 06.06.2013

  • Описание парового котла. Состав и теплота сгорания топлива. Расчёт объемов и энтальпий воздуха, теплосодержания дымовых газов и продуктов сгорания, потерь теплоты и расхода топлива, топочной камеры, теплообмена в топке и конвективных поверхностей нагрева.

    курсовая работа [1000,2 K], добавлен 19.12.2015

  • Расчет объема продуктов сгорания и воздуха. Тепловой баланс, коэффициент полезного действия и расход топлива котельного агрегата. Тепловой расчет топочной камеры. Расчет конвективных поверхностей нагрева и экономайзера. Составление прямого баланса.

    курсовая работа [756,1 K], добавлен 05.08.2011

  • Описание конструкции и технических характеристик котельного агрегата ДЕ-10-14ГМ. Расчет теоретического расхода воздуха и объемов продуктов сгорания. Определение коэффициента избытка воздуха и присосов по газоходам. Проверка теплового баланса котла.

    курсовая работа [2,4 M], добавлен 23.01.2014

  • Определение состава топлива для котельной установки, расчёт объёмов и энтальпий воздуха и продуктов сгорания. Определение геометрических характеристик топочной камеры, расчёт конвективного парогенератора, конвективных поверхностей нагрева топок.

    курсовая работа [488,4 K], добавлен 27.10.2011

  • Расчетные характеристики топлива. Расчет теоретических объемов воздуха и основных продуктов сгорания. Коэффициент избытка воздуха и объемы дымовых газов по газоходам. Тепловой баланс котла и топки. Тепловой расчет конвективных поверхностей нагрева.

    контрольная работа [168,0 K], добавлен 26.03.2013

  • Расчетные характеристики топлива. Расчёт объема воздуха и продуктов сгорания, КПД, топочной камеры, фестона, пароперегревателя I и II ступеней, экономайзера, воздухоподогревателя. Тепловой баланс котельного агрегата. Расчёт энтальпий по газоходам.

    курсовая работа [1,9 M], добавлен 27.01.2016

  • Определение присосов воздуха и коэффициентов избытка воздуха по отдельным газоходам. Тепловой баланса котла. Метод расчета суммарного теплообмена в топке с пневмомеханическим забрасывателем и цепной решеткой обратного хода. Расчет топочной камеры.

    курсовая работа [203,9 K], добавлен 18.01.2015

  • Принципиальное устройство парового котла ДЕ-6,5-14ГМ, предназначенного для выработки насыщенного пара. Расчет процесса горения. Расчет теплового баланса котельного агрегата. Расчет топочной камеры, конвективных поверхностей нагрева, водяного экономайзера.

    курсовая работа [192,0 K], добавлен 12.05.2010

  • Выбор расчетных температур и способа шлакоудаления. Расчет энтальпий воздуха, объемов воздуха и продуктов сгорания. Расчет КПД парового котла и потерь в нем. Тепловой расчет поверхностей нагрева и топочной камеры. Определение неувязки котлоагрегата.

    курсовая работа [392,1 K], добавлен 13.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.