Общая энергетика

Современные способы получения электрической энергии. Термодинамический цикл паротурбинных электростанций. Устройство парового котла, его основные элементы. Конденсационные устройства паровых турбин. Каскадное и комплексное использование водных ресурсов.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 10.09.2016
Размер файла 2,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Объем водохранилища между отметками НПУ и ФПУ является резервным и используется для трансформации (срезки) половодий и паводков.

До сих пор принималось, что поверхность воды в водохранилище по всей его длине устанавливается горизонтально, образуя так называемый его статический объем. Очевидно, это может быть лишь в том случае, когда приточность в водохранилище отсутствует. Так как в действительности в водохранилище вceгда имеется приток воды, то, строго говоря, поверхность воды по его длине не будет горизонтальной. Это особенно относится к его «хвостовой части», где кривая свободной поверхности воды представляет собой кривую подпора, характеризующую изменение уровня поверхности воды по длине водотока Образовавшимся объем называется динамическим объемом водохранилища (рис 10 15). Величина его определяется к основном значением расхода приточности и во время половодий может быть весьма значительной.

В водноэнергетических расчетах широко используются различные графические зависимости, отражающие функциональные связи между различными параметрами водохранилища (так называемые характеристики водохранилищ) К их числу относится прежде всего топографическая характеристика, которая может быть двух видов -- статической и динамической

Статическая характеристика включает в себя две кривые. Первая-- зависимость отметок уровня от объема водохранилища Zнб=Zнв(V) и обычно называемая объемной. Вторая отражает связь между отметками уровня и площадью зеркала водохранилища Zнб=Zнв(F) Эту характеристику называют площадной

Обе характеристики (рис 10 16) получаются в результате обработки топографических планов местности.

При учете динамической емкости, как было показано выше, объем водохранилища при заданной отметке уровня в створе плотины будет определяться приточностью. Вследствие этого зависимость между значениями уровня и объемом водохранилища будет иметь другой характер, так как будет функцией двух переменных Zнб=Zнв(V,Qприт). Эти кривые (рис. 10.17) называются кривыми динамического объема в отличие от кривой статического объема, изображенной на рис. 10.16, или кривой, соответствующей Qприт=0.

Имеются и другие характеристики водохранилища, которые мы здесь не рассматриваем. Все они являются основным исходным материалом для проведения водноэнергетических расчетов. В такого рода расчетах одним из решающих условий правильности выполнения их является соблюдение водного баланса водохранилища..

В общем виде уравнение водного баланса водохранилища без холостых' сбросов за некоторое время Т может быть представлено следующим равенством:

Wрег=Wприт±ДV-- Wзаб+Wвозвр--Wпот, (10.2)

где Wрег-- зарегулированный объем стока, т. е. тот объем воды, который прошел за время Т через створ гидроузла (так называемая отдача); Wприт -- приток воды в водохранилище за время Т (для одиночной ГЭС это бытовой, т. е. естественный, приток, для каскада -- приток от вышележащей ГЭС с учетом боковой приточности между створами); Д V-- использованный объем водохранилища за период Т. (В формуле знак минус относится к периоду наполнения, знак плюс -- к периоду сработки водохранилища); Wзаб и Wвозвр- величины забираемого из водохранилища и' возвращаемого в него участниками водохозяйственного комплекса (см. § 10.6) за время Т объема стока; Wпот -- потери воды из водохранилища за время Т и обычно включают потери на фильтрацию, испарение, льдообразование и шлюзование.

Если каждый член этого уравнения разделить на время Т, то условие баланса стока может быть выражено через соответствующие расходы.

Рассмотрим теперь характеристику нижнего бьефа. Уровень воды в нижнем бьефе ГЭС определяется тем расходом, который пропускается через турбины или какие-либо другие сооружения (шлюзы, водосбросы) гидроэлектростанции.

При установившемся равномерном движении уровни воды в нижнем бьефе однозначно связаны с протекающим расходом. Эта связь обычно определяется с помощью так называемой кривой связи, отражающей в графическом виде зависимость уровней от расходов Zнб= Zнб(Qнб). Такая кривая представлена на рис 10.18

Зимой при переменном расходе ГЭС в ее нижнем бьефе на берегах образуются наледи, которые уменьшают площадь живого сечения. Поэтому при одних и тех же отметках уровня зимой будет проходить расход меньше, чем летом, и зимняя кривая связи соответственно будет выше, чем летняя (рис. 10.18 и 10.19).

При каскадном расположении ГЭС, если нижний бьеф рассматриваемой ГЭС (обозначим ее № 1) подпирается плотиной нижележащей (ГЭС № 2), то в функциональной зависимости уровня нижнего бьефа от расхода ГЭС № 1 появится дополнительный аргумент -- отметка верхнего бьефа водохранилища второй ГЭС Zвб2 (рис. 10.19). В этом случае рассматриваемая функция будет иметь вид

Zнб1=Zнб1(Qнб1,Zвб2) (10.3)

При неустановившемся движении воды в нижнем бьефе однозначная связь между отметками уровня и расходом нарушается и определение того или другого требует достаточно сложных расчетов, которые сейчас проводятся исключительное помощью ЭВМ.

10.5 Регулирование речного стока водохранилищами ГЭС

Естественный (бытовой) режим речного стока в подавляющем большинстве случаев отличается крайней неравномерностью. Так, на равнинных реках в периоды весеннего половодья (1,5--3 мес) проходит обычно до 60--70% годового стока. Существенно различается годовой сток и в многолетнем разрезе. Такое распределение стока находится в резком противоречии с режимом его потребления большинством водопотребителей и водопользователей. Так, если в суточном разрезе график нагрузки ГЭС отличается значительной неравномерностью, то приточность равнинных рек в течение суток обычно почти неизменна. Отмечаются противоречия и среди неэнергетических потребителей воды.

Неравномерно распределены водные ресурсы и по территории страны. Более 86% водных ресурсов имеется в хозяйственно слабо освоенных северных и восточных районах, вдали qt центров водопотребления, и только около 14% речного стока относится к южной зоне, к территории, где сосредоточено около 85% населения и 80% промышленного и сельскохозяйственного производства.

Все это приводит к необходимости перераспределения естественного стока во времени и по территории. Оно осуществляется с помощью регулирования стока водохранилищами, в которых задерживается избыточный естественный приток, когда он превышает спрос потребителей, и расходуется, когда этот спрос больше притока.

Таким образом, регулированием стока называется процесс перераспределения его водохранилищами.

Степень зарегулированности стока определяется относительной емкостью водохранилища (коэффициентом емкости) в. Этот коэффициент определяется отношением полезного объема водохранилища Vполезн к среднему за многолетний период объему годового стока W0 в створе плотины

в=Vполезн/W0

Различают регулирование водноэнергетическое и водохозяйственное. Водноэнергетическое регулирование осуществляет перераспределение стока для энергетических целей. Мощность ГЭС является функцией не только расхода, но и напора, поэтому процесс водноэнергетического регулирования связан с учетом того и другого и позволяет в конечном счете получить требуемый режим мощности ГЭС, а отсюда и режим выработки электроэнергии. При водохозяйственном регулировании напор не является регулируемым параметром и перераспределяется лишь расход. В этом состоит основное отличие водноэнергетического регулирования от водохозяйственного.

Режим мощности ГЭС и режим выработки ею электроэнергии диктуются не только спросом потребителей, но и тем, насколько экономично этот спрос удовлетворяется. Поэтому водноэнергетическое регулирование неотделимо от определения оптимальных режимов ГЭС или группы электростанций, с которыми параллельно работает данная ГЭС или группа ГЭС.

При комплексном использовании водотока (см. § 10.6), когда последний используется как для энергетических, так и для неэнергетических целей, осуществляется комплексное регулирование, т. е.' напора и расхода для ГЭС и только расхода для других водопользователей и водопотребителей.

При любом виде регулирования потребители воды в некоторые периоды времени работают с расходом воды, превышающим, приток, а в другие периоды времени расходуют воды меньше притока. В первом случае происходит сработка водохранилища, а во втором -- наполнение.

Промежуток времени от начала какого-либо одного периода сработки водохранилища до начала следующего -- после очередного его заполнения -- называется циклом регулирования. Длительность цикла регулирования определяет его разновидности, в соответствии с чем различают краткосрочное регулирование и длительное. К первому виду относят суточное и недельное регулирование, а ко второму -- сезонное, годичное и многолетнее. Рассмотрим кратко каждый из этих видов.

Суточное регулирование. Как сказано, естественные (бытовые) расходы многих рек Qд(t) в течение суток остаются практически неизменными. Исключение составляют лишь периоды половодий и паводков. В период половодья режим работы ГЭС имеет обратную картину и, как правило, неизменен, а в остальное время резко переменен (рис. 10.20,а). Вследствие этого расходы, пропускаемые турбинами ГЭС QГЭС при ее переменном режиме, будут также переменными, меняясь нередко от нуля до полной пропускной способности.

В результате в течение некоторой части суток (рис. 10.20,6) имеется избыточный приток, в другой -- недостаточный. Отсюда суточное регулирование будет заключаться в том, чтобы в часы малой нагрузки ГЭС (рис. 10.20,а) запасти в водохранилище избыточный приток, а в часы повышенной нагрузки его сработать. Если объем водохранилища достаточен для задержания всего избыточного притока в часы малой нагрузки, то этот приток при отсутствии ограничений на режим ГЭС может быть использован для увеличения мощности (против той, которую она могла бы развить, используя естественный расход) в часы пика нагрузки потребителей.

Этот эффект позволяет повысить участие ГЭС в покрытии пика нагрузки, вследствие чего при работе ГЭС в энергосистеме, во-первых, отпадает необходимость в дублировании ее мощности, и, во-вторых, возникает возможность обеспечить более благоприятный режим тепловых электростанций, создавая тем самым соответствующую экономию топлива. Однако этот эффект не сопровождается увеличением выработки электроэнергии. Наоборот, выработка энергии при суточном регулировании будет меньше той, которую давала бы ГЭС, работая на естественном режиме стока, т. е. без регулирования.

Это является следствием того, что, как показывается в курсе гидравлики, средний за сутки уровень воды в нижнем бьефе при неустановившемся режиме в нем всегда будет выше, чем при постоянном расходе, определяемом Qд (рис. 10 20,г). Кроме того, среднесуточный уровень верхнего бьефа Zнб (рис. 10.20,в) будет всегда ниже того, при котором ГЭС работала бы, не имея регулирования, т. е. на естественном расходе при НПУ. Это подтверждается также и графиком изменения напора Нгэс (t), представленным на рис. 10.20д. Здесь Н соответствует напору, определяемому как разность средних уровней zвб и Zy, при QГЭС(t).

Получающиеся потери суточного регулирования зависят прежде всего от величины используемого напора Чем меньше напор, тем сильнее сказываются эти потери, и для низконапорных ГЭС они доходят до 3--5% суточной выработки ГЭС при ее работе на естественном расходе.

По мере увеличения суточного притока режим работы ГЭС будет все более выравниваться и, наконец, может быть достигнуто такое положение, когда ГЭС все 24 ч будет работать с полной установленной или располагаемой мощностью, т е. в базисной части графика нагрузки. Дальнейшее увеличение бытового расхода приведет к необходимости холостого сброса излишков воды помимо турбин, уровень нижнего бьефа при этом повысится (см. рис. 10.18), напор уменьшится, а вместе с ним уменьшится и мощность ГЭС, становясь для низко- и средненапорных ГЭС значительно меньше установленной.

При осуществлении суточного регулирования могут возникнуть различного рода ограничения, накладываемые на режимы ГЭС неэнергетическими участниками комплекса. Так, например, при отсутствии подпора в нижнем бьефе со стороны нижележащей ГЭС водный транспорт может предъявить требования по обеспечению необходимых судоходных глубин в течение всех 24 ч, а также в отношении допустимых скоростей течения при подходе к шлюзам.

Аналогичные требования по поддержанию необходимых глубин могут быть предъявлены водопотребителями (ирригация, промышленное и бытовое водоснабжение). Для удовлетворения этих требований производят попуски в нижний бьеф определенных расходов воды, называемых базисными. Наконец, иногда возникают ограничения режима турбин ГЭС (обычно при небольших нагрузках) по условиям кавитации (см § 9.5), которую длительное время допускать нельзя. Ограничения при суточном регулировании иногда возникают и вследствие отсутствия достаточной емкости водохранилища.

Реализация указанных ограничений обычно приводит к снижению энергоэкономической эффективности работы ГЭС, однако при комплексном использовании водотока это снижение является вполне оправданным с точки зрения народного хозяйства в целом, так как компенсируется отдачей, получаемой от неэнергетических участников комплекса.

Объем водохранилища, необходимый для суточного регулирования, очень небольшой и обычно составляет около 0,5 объема суточного стока расчетного маловодного года.

Недельное регулирование. В нерабочие дни недели нагрузка потребителей электроэнергии резко падает (особенно в воскресенье). В это время гидроэлектростанция может также снизить свою мощность до величины, меньшей той, которую она могла бы развить, работая на естественном расходе. Получающийся избыток (рис. 1021,6) может быть использован на заполнение в0до-хранилища, сработанного за время рабочих дней недели. Сказанное иллюстрирует рис. 10.21,б, где для простоты предполагается, что бытовой расход, как это обычно бывает в периоды маловодья (межень), в течение недели практически не изменяется, нагрузка потребителей системы в рабочие дни практически одинакова и в неделе имеются два выходных дня (рис. 10 21,а). Понятно, что качественно картина не изменится, если нагрузка системы в рабочие дни и приточность не будут неизменными.

Таким образом, недельное регулирование обеспечивает неравномерное потребление воды гидроэлектростанцией в течение недели в соответствии с недельными колебаниями нагрузки потребителей. Если водохранилище одновременно используется и для суточного регулирования, то в нем будет наблюдаться и суточное колебание уровней бьефов (пунктир на рис 1021,в, г). Однако замкнутого цикла суточного регулирования, естественно, при этом не будет, так как уровень водохранилища к концу каждого рабочего дня будет ниже. Продолжительность полного цикла колебаний уровня верхнего бьефа в этом случае (рис 1021,0) будет равна одной педеле

При недельном регулировании, так уке как и при суточном, имеется возможность повысить мощность ГЭС по сравнению с той, которую она могла бы развить, работая на естественном расходе. Однако получаемый в этом случае энергетическии эффект за счет работы ГЭС большую часть времени на пониженных напорах (рис 1021,<3) будет меньше, чем при суточном регулировании Вместе с тем годовая выработка ГЭС недельного регулирования будет несколько выше (за счет некоторого уменьшения холостых сбросов) по сравнению с ГЭС суточного регулирования, так как водохранилище недельного регулирования больше по объему, чем водохранилище суточного регулирования Обычно считается, что при двух выходных днях этот объем не превышает приточности за одни, принятые за расчетные маловодные сутки.

При осуществлении недельного регулирования на соответствующий режим ГЭС могут также накладываться разного рода ограничения как со стороны неэнергетических отраслей комплекса, так и по условиям бескавитационного режима работы турбин. Естественно, что все подобного рода ограничения будут снижать энергоэкономическую эффективность ГЭС

Общим для краткосрочного регулирования является перераспределение сравнительно равномерного суточного и петельного режима прп-точпости в неравномерный режим расходов ГЭС

Годичное регулирование. Естественный гидрологический годовой ре/Ким реки обычно отличается крайней неравномерностью и находится в противоречии с запросами энергетики Применяемое для снятия этого противоречия годичное регулирование путем задержания (частично пли полностью) в водохранилище вод половодья и использование их в течение

маловодного периода позволяет увеличить гарантированную мощность ГЭС и количество вырабатываемой ею энергии по сравнению с ГЭС краткосрочного регулирования за счет уменьшения (или ликвидации) бесполезных сбросов вод половодья. Весь цикл регулирования при этом занимает 1 год. Если после сработки очередного наполнения водохранилища всегда имеются холостые сбросы, то регулирование называется сезонным (неполным годичным) в отличие от годичного (полного), когда в условиях расчетной обеспеченности стока сбросов нет. Как в случае сезонного регулирования, так и годичного в каждом следующем году циклы сработки и наполнения повторяются

Объем водохранилища годичного регулирования обычно составляет от 2 до 30% среднемноголетнего объема годового стока реки, т е. вгр=0,02ч0,30.

Водохранилище годичного регулирования может, как это обычно и бывает, одновременно выполнять и краткосрочное регулирование (суточное и недельное)

На рис 10 22,а представлена общая схема годичного регулирования, а на рис. 1022,6 -- сезонного (имеется период сброса излишков вод). На этих же рисунках представлены соответствующие режимы верхнего бьефа Zвб(t). Ясно, что в особо маловодные годы или при слишком больших (сверх расчетных) изъятиях вод половодья водохранилище может и не наполниться до отметки НПУ.

Нетрудно представить себе, как будет изменяться, если регулирование будет произведено не на постоянный расход QГЭС, а в соответствии с заданным графиком нагрузки ГЭС.

Многолетнее регулирование. Цикл регулирования длится несколько лет Водохранилище наполняется избыточным стоком одного пли нескольких многоводных лети опорожняется в течение ряда маловодных лет. При этом регулировании уровень водохранилища в конце маловодною года будет всегда ниже, чем в начале его Многолетнее регулирование сводится к увеличению стока маловодных лет. Особенностью этого вида регулирования является непостоянство продолжительности цикла регулирования. При неизменном потреблении воды период наполнения и период опорожнения водохранилища определяется исключительно гидрологической обстановкой каждого года Чем больше при этом относительный объем водохранилища, тем, очевидно, реже он заполняется до отметки НПУ.

При многолетнем регулировании, так же как и при годичном, имеется возможность увеличить гарантированную мощность ГЭС и вырабатываемую ею энергию (за счет практически полного устранения бесполезных сбросов во время половодий) по сравнению с ГЭС годичного регулирования и краткосрочного. Само собой разумеется, что и в этом случае водохранилище может осуществлять любое менее длительное регулирование (или сочетание их).

Считается, что для того, чтобы водохранилище ГЭС могло осуществлять многолетнее регулирование, его объем должен составлять не менее 30--50% величины среднего за многолетний период объема годового стока реки, т. е. вмр = 0,3ч0,5

На рис 1023 представлены общая схема многолетнего регулирования и график изменения уровня верхнего бьефа. Как видно из рисунка, период наполнения' в зависимости от водности лет может быть различным В начале регулирования водохранилище было заполнено в первый же год, а после сработки на это потребовалось два года (более маловодных, чем первый год).

Таким образом, при длительном регулировании уменьшается многолетняя и годичная неравномерность расхода, в то время как при краткосрочном регулировании неравномерность расхода за регулируемый период (сутки, неделя) резко возрастает.

Кроме описанных видов регулирования различают специальные виды регулирования, включая каскадное.

10.6 Каскадное и комплексное использование водных ресурсов

Развитие гидроэнергетики СССР осуществляется главным образом за счет каскадного освоения водных ресурсов. В этих условиях гидроэнергетические ресурсы отдельных рек используются не одной гидроэлектростанцией, а несколькими, последовательно расположенными друг за другом. При этом в каскаде могут быть как плотинные, так и деривационные гидроэлектростанции.

Как показывает практика, каскадные схемы позволяют полнее и экономичнее использовать энергетический потенциал реки, поскольку они, в частности, уменьшают энергетические потери водотока. Энергоэкономическая эффективность каскада при проектировании определяется количеством ступеней и месторасположением каждого гидроузла, определяющего размеры водохранилища, напора, мощности и капитальных вложений. Особое значение при этом приобретают экологические аспекты. В числе наиболее крупных объединенных каскадов страны следует отметить Лнгаро-Енисейский, в том числе завершаемая строительством Саяно-Шушенская ГЭС мощностью 6400 МВт и действующая Красноярская ГЭС 6000 МВт. Это уникальный каскад по своим энергоэкономическим показателям. Достаточно сказать, что себестоимость вырабатываемой электроэнергии на этих ГЭС составляет всего несколько сотых копейки. Вторым объединенным крупнейшим каскадом является Волжско-Камский.

Энергоэкономическая эффективность действующих каскадов при заданном естественном режиме речного стока определяется исключительно оптимальным распределением нагрузки между отдельными электростанциями системы и характером требований на воду со стороны других отраслей народного хозяйства, которые при этом должны выполнять отдельные ГЭС.

Кроме повышения энергетической эффективности каскадные схемы позволяют существенно повысить эффективность использования стока и другими отраслями народного хозяйства.

Использование водных ресурсов одновременно несколькими отраслями народного хозяйства называется комплексным Комплексное использование обеспечивает от данного гидроузла больший экономический эффект, чем использование их какой-либо одной отраслью народного хозяйства

Участники (компоненты) комплексного использования образуют водохозяйственный комплекс. Те из компонентов водохозяйственного комплекса, которые используют воду как вещество и изымают ее из данного водоисточника, называются водопотребителями. Эта вода по истечении некоторого времени, иногда достаточно длительного, может вновь поступить в водооборот, но уже в другом створе или даже в другом бассейне. При этом многие водопотребители возвращают воду существенно худшего качества. Те же участники комплекса, которые полностью или почти полностью возвращают после использования воду того же качества (например, ГЭС) или совсем ее не изымают из водотока (например, водный транспорт), называются водопользователями.

Каждый вид водопользования предъявляет свои требования к качеству воды. Наиболее разнообразные требования, диктуемые технологическими процессами производства, предъявляет промышленность. Для некоторых технологических процессов к качеству воды предъявляются более высокие требования, чем к питьевой.

Поддержание должного уровня качества воды, используемой для хозяйственно- и культурно-бытовых нужд, обеспечивается «Правилами охраны поверхностных вод от загрязнения сточными водами», разработанными Министерством здравоохранения СССР. Эти правила являются обязательными для всех видов водопотребления, и выполнение их контролируется соответствующими службами Государственного санитарного надзора СССР.

Размещено на Allbest.ru


Подобные документы

  • Паровая турбина как один из элементов паротурбинной установки. Паротурбинные (конденсационные) электростанции для выработки электрической энергии, их оснащение турбинами конденсационного типа. Основные виды современных паровых конденсационных турбин.

    реферат [1,3 M], добавлен 27.05.2010

  • Описание процессов получения электроэнергии на тепловых конденсационных электрических станциях, газотурбинных установках и теплоэлектроцентралях. Изучение устройства гидравлических и аккумулирующих электростанций. Геотермальная и ветровая энергетика.

    реферат [3,5 M], добавлен 25.10.2013

  • Состав паротурбинной установки. Электрическая мощность паровых турбин. Конденсационные, теплофикационные и турбины специального назначения. Действие теплового двигателя. Использование внутренней энергии. Преимущества и недостатки различных видов турбин.

    презентация [247,7 K], добавлен 23.03.2016

  • Промышленная и альтернативная энергетика. Преимущества и недостатки гидроэлектростанций, тепловых и атомных электростанций. Получение энергии без использования традиционного ископаемого топлива. Эффективное использование энергии, энергосбережение.

    презентация [1,2 M], добавлен 15.05.2016

  • Принцип работы тепловых паротурбинных, конденсационных и газотурбинных электростанций. Классификация паровых котлов: параметры и маркировка. Основные характеристики реактивных и многоступенчатых турбин. Экологические проблемы тепловых электростанций.

    курсовая работа [7,5 M], добавлен 24.06.2009

  • Назначение и основные типы котлов. Устройство и принцип действия простейшего парового вспомогательного водотрубного котла. Подготовка и пуск котла, его обслуживание во время работы. Вывод парового котла из работы. Основные неисправности паровых котлов.

    реферат [643,8 K], добавлен 03.07.2015

  • Описание принципиальной тепловой схемы паротурбинной электростанции и определение термического коэффициента её полезного действия. Превращения энергии на ТЭЦ и характеристика технологической схемы котел – турбина. Устройство двухвальных турбогенераторов.

    реферат [1,1 M], добавлен 25.10.2013

  • Ознакомление с предприятием по выработке тепловой и электрической энергии. Безопасность труда на энергопредприятиях; средства защиты человека от вредных производственных факторов. Изучение тепловой схемы установки, устройства паровых турбин и котлов.

    курсовая работа [7,6 M], добавлен 04.02.2014

  • История развития паровых турбин и современные достижения в данной области. Типовая конструкция современной паровой турбины, принцип действия, основные компоненты, возможности увеличения мощности. Особенности действия, устройства крупных паровых турбин.

    реферат [196,1 K], добавлен 30.04.2010

  • Производство электрической энергии. Основные виды электростанций. Влияние тепловых и атомных электростанций на окружающую среду. Устройство современных гидроэлектростанций. Достоинство приливных станций. Процентное соотношение видов электростанций.

    презентация [11,2 M], добавлен 23.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.