Организация эксплуатации и ремонта электрооборудования электрических станций и сетей

Общая характеристика энергосистемы. Нагрев электрооборудования, измерение температур и работа изоляции. Эксплуатация и ремонт генераторов, синхронных компенсаторов, электродвигателей, трансформаторов, кабельных линий. Ликвидация аварий на электростанции.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 08.11.2012
Размер файла 4,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Использование асинхронного режима для оставления в работе генератора при потере возбуждения хотя бы на время, необходимое для перевода на резервное возбуждение, позволяет в большинстве случаев избежать аварийных остановок генераторов. Но при этом необходимо соблюдать следующие условия.

Для турбогенераторов с косвенным охлаждением активная нагрузка должна быть не выше 60% номинальной, а продолжительность режима не более 30 мин.

Турбогенераторы с непосредственным охлаждением мощностью до 300 МВт включительно по условию нагрева элементов торцевых зон статора, особенно крайних пакетов активной стали, непосредственно соприкасающихся с обмоткой, могут работать без возбуждения 15 мин (генераторы ТВФ -30 мин) с нагрузкой не более 40% номинальной. Разгрузка до допустимого предела должна производиться вручную или автоматически в течение 2 мин. При этом время разгрузки до 60% номинальной для турбогенераторов менее 150 МВт не должно превышать 60 с, а для турбогенераторов большей мощности-30 с.

В гидрогенераторах из-за большого скольжения (3- 5%), обусловленного меньшим, чем в турбогенераторах, асинхронным моментом, при асинхронном режиме быстро перегревается успокоительная обмотка. Поэтому работа гидрогенераторов в асинхронном режиме не допускается, и при потере возбуждения они отключаются специальной защитой от токовой перегрузки статора.

При потере возбуждения необходимо снизить активную нагрузку до допустимых значений (если нет автоматики) и попытаться доступными со щита управления средствами (изменением положения штурвала шунтового реостата, воздействием на корректор и компаундирование и т.д.) восстановить возбуждение. Если сделать это не удается, следует перейти на резервное возбуждение с отключением на время перехода АГП.

Генератор может выпасть из синхронизма при недостаточном возбуждении или в результате аварии в системе. Для восстановления синхронизма увеличивают ток возбуждения и снижают активную нагрузку. Если генератор не войдет в синхронизм, он должен быть отключен от сети.

«Работа генераторов в режиме синхронных компенсаторов»

В ряде случаев для поддержания необходимого уровня напряжения в системе целесообразно генераторы использовать как синхронные компенсаторы. Включенный в сеть генератор переводится в режим синхронного компенсатора прекращением подачи в турбину энергоносителя (пара или воды). На гидротурбине затем срывается вакуум, а если рабочее колесо расположено ниже уровня воды в нижнем бьефе, то дополнительно производится отжатие воды давлением воздуха из ресиверов. Удаление воды из области рабочего колеса сокращает до минимума потери на его вращение.

Длительное вращение паровых турбин, за исключением некоторых типов мощностью менее 6 МВт, в беспаровом режиме не допускается из-за возможности перегрева лопаток ротора. В последнее время для устранения перегрева лопаток применяют схемы вентиляции турбин небольшим количеством пара, что позволяет использовать мощные турбогенераторы в качестве синхронных компенсаторов без отсоединения от турбины.

Регулирование реактивной нагрузки на генераторе, переведенном в режим компенсатора, производится изменением тока в роторе.

В случае использования турбогенератора в качестве синхронного компенсатора при длительном простое турбины в ремонте или по другим причинам муфта между генератором и турбиной разбирается. Установкой специальных упоров ограничивается осевое перемещение ротора генератора. Смазка подшипников генератора производится от маслонасосов турбины с установкой заглушек на напорные маслопроводы к подшипникам турбины. Как правило, пуск отсоединенного от турбины генератора производится подъемом частоты вращения с нуля от другого генератора. Такой пуск называется частотным. При частотном пуске мощность ведущего (развертывающего) генератора во избежание его перегрузки должна составлять не менее одной трети мощности ведомого (развертываемого) генератора. Оба генератора до пуска включаются на резервную систему шин.

До пуска на ведомом генераторе включается маслонасос для прогрева масла в подшипниках до температуры 35-40 °С. Подготавливаются к толчку турбина и ведущий генератор. После того как все подготовительные работы окончены, включается АГП и на ведущем генераторе устанавливается ток возбуждения, равный току, который обеспечивает номинальное напряжение статора при XX генератора. На ведомом генераторе устанавливается ток возбуждения, равный половине тока, обеспечивающего номинальное напряжение статора при XX. Затем без промедления производят пуск ведущей турбины с минимально возможной первоначальной частотой вращения. Сразу же должно начаться вращение ротора ведомого генератора. Если ротор ведомого генератора не стронется с места или по показаниям амперметров статора и ротора будут наблюдаться качания его, следует несколько увеличить ток возбуждения ведущего генератора.

Если с пуском турбины начнется синхронное вращение ротора ведомого генератора, частоту вращения обоих генераторов плавно поднимают до номинальной. Регулированием тока возбуждения выравнивают ЭДС генераторов для снижения до минимального значения уравнительного тока между статорами генераторов и затем производят синхронизацию обоих генераторов с сетью.

«Перевод генератора с воздуха на водород и с водорода на воздух»

Чтобы не допустить образования взрывоопасной смеси, перевод генератора с воздуха на водород и обратно выполняется с предварительным вытеснением из него воздуха и водорода двуокисью углерода или азотом. Замену одного газа другим можно производить циклами или порциями: вначале впустить в генератор заменяющий газ, поднимая давление газа в генераторе до верхнего предела 0,03 - 0,05 МПа, затем выпустить в атмосферу заменяемый газ или его смесь из генератора, снижая давление до нижнего предела 0,01-0,02 МПа, потом вновь впустить вытесняющий газ и т. д. Однако более рационально операцию производить не циклами, а непрерывно, впуская заменяющий и выпуская заменяемый газ непрерывно. Продолжительность операции при этом сократится примерно в 2 раза.

На вытеснение воздуха двуокисью углерода при неподвижном роторе расходуется 1,3-1,5 объема статора, а при вращающемся роторе 1,8-2 объема.

Двуокись углерода в генератор для вытеснения воздуха подается от централизованной установки или от баллонов. При отсутствии централизованной установки в целях уменьшения скорости испарения двуокиси углерода и тем самым замедления охлаждения баллонов рекомендуется разряжать столько баллонов одновременно, сколько их можно подключить к коллектору (см. рис. 3.14). При этом, чтобы не допустить подъема давления на коллекторе выше 0,5- 0,6 МПа, вентили на баллонах открывают медленно, каждый раз понемногу. Когда вентили на всех баллонах окажутся открытыми полностью, а давление газовой смеси в генераторе, несмотря на это, не поднимется, разряженные баллоны заменяют полными.

Первый отбор пробы газовой смеси на анализ из водородного коллектора следует сделать после выпуска в генератор двуокиси углерода в количестве 1,3 объема статора при неподвижном роторе и 1,8 объема статора при вращающемся роторе.

После того как содержание двуокиси углерода в газовой смеси генератора достигнет не менее 85%, вытеснение воздуха заканчивается и производится продувка осушителя водорода, поплавкового гидрозатвора, бачка продувки и всех импульсных трубок путем выпуска газовой смеси из них. Смесь газов, содержащая не менее 85% двуокиси углерода, не будет взрывоопасной в присутствии водорода.

Если применен азот, то вытеснение воздуха считается законченным после того, как содержание кислорода в газовой смеси снизится до 3%.

Для вытеснения двуокиси углерода водородом водородный коллектор генератора при помощи схемной перемычки соединяется с линией от водородной или электролизной установки, а коллектор двуокиси углерода с атмосферной трубой.

При открытых вентилях на водородной линии и коллекторе в генератор подается водород. Одновременно открытием вентиля на линии, соединяющей коллектор двуокиси углерода с атмосферной трубой, двуокись углерода в смеси с воздухом и водородом выпускается из генератора.

Контроль за вытеснением двуокиси углерода водородом при вращающемся с номинальной частотой роторе рекомендуется вести по дифференциальному манометру. При чистоте водорода 90% включается автоматический газоанализатор и отбирается из вентиля на коллекторе двуокиси углерода первая проба газовой смеси для химического анализа.

При неподвижном роторе контроль за вытеснением двуокиси углерода водородом ведется по результатам химического анализа проб, отбираемых из коллектора двуокиси углерода, начиная с того момента, когда в генератор будет введено водорода не менее одного объема статора. Вытеснение двуокиси углерода водородом считается законченным при достижении чистоты водорода, указанной в § 4.3. По достижении необходимой чистоты водорода в генераторе должны быть продуты осушитель водорода, поплавковый гидрозатвор, бачок продувки и все импульсные трубки.

Вытеснение водорода двуокисью углерода мало отличается от вытеснения воздуха углекислотой. Вытеснение водорода считается законченным при содержании окиси углерода в газовой смеси, отобранной из водородного коллектора, не менее 85% при вращающемся роторе и не менее 95% при неподвижном роторе.

Первый анализ газа в водородном коллекторе рекомендуется производить после ввода в генератор двуокиси углерода в количестве, равном 1,1-1,2 объема статора при неподвижном роторе и 2 объемам при вращающемся роторе.

Вытеснение двуокиси углерода воздухом производится так же, как и водородом, с той лишь разницей, что перемычка между водородным коллектором и водородной линией снята, а между водородным коллектором и линией сжатого воздуха установлена. Вытеснение двуокиси углерода воздухом считается законченным, когда анализ пробы газа из углекислотного коллектора покажет полное отсутствие в нем двуокиси углерода.

«Обслуживание системы водяного охлаждения обмоток»

Попадание воздуха или водорода в систему водяного охлаждения обмоток может привести к образованию газовых пробок в головках и каналах проводников стержней обмотки, что нарушит нормальную циркуляцию охлаждающего конденсата и вызовет сильный быстрый перегрев проводников.

Для вытеснения воздуха из водяной системы ее заполнение конденсатом производится при открытых дренажах на напорном и сливном коллекторах обмотки, на теплообменниках и фильтрах. Система считается заполненной лишь после прекращения выделения пузырьков воздуха из контрольных дренажных трубок обмотки статора.

Персонал должен 2 раза в смену осматривать газовую ловушку (рис. 34), подключенную к сливному коллектору через постоянно открытый вентиль для контроля за появлением газа в конденсате. При появлении газа в ловушке делается его химический анализ.

При появлении в корпусе генератора небольшого количества воды (до 500 см3 за смену) ее следует слить и проверить, нет ли течи или конденсации влаги на стенках газоохладителей. Если нет, а вода скапливается вновь, то это указывает на появление течи в системе водяного охлаждения обмотки. В этом случае, а также при появлении большого количества воды генератор должен быть немедленно разгружен и отключен от сети.

Для контроля за наличием циркуляции конденсата по всем параллельным ветвям под клинья в пазах статора заложены терморезисторы, от которых при повышении температуры сверх 75 °С обеспечивается подача сигнала. При появлении сигнала нагрузка генератора должна быть уменьшена настолько, чтобы температура снизилась до 75 °С. При первой возможности генератор останавливают для выяснения причины повышенного нагрева.

Рисунок 34 Газовая ловушка

Работа генератора при отсутствии циркуляции запрещается во всех режимах, кроме режима XX без возбуждения.

При снижении расхода конденсата на 25% действует предупредительная сигнализация, а на 50% - аварийная. С момента подачи аварийного сигнала в течение 2 мин должна быть снята токовая нагрузка, а через 4 мин и напряжение.

Избыточное давление конденсата на входе должно поддерживаться в пределах 0,3±0,05 МПа.

Температура входящего конденсата должна поддерживаться на уровне 40±5°С, а температура выходящего конденсата не должна превышать 85 °С.

«Обслуживание щеточных аппаратов»

Искрение щеток на коллекторе может перейти в круговой огонь, а на кольцах ротора в КЗ между кольцами. Таких тяжелых последствий можно избежать, если работа щеточных аппаратов будет проверяться не только в дневное время специально выделенным монтером, но регулярно и сменным персоналом при приемке и в течение смены. Все замеченные ненормальности в работе щеточных аппаратов должны устраняться по возможности немедленно или в кратчайший срок.

Рисунок 35 Щеткодержатель на кольцах ротора

Искрение щеток на кольцах ротора может быть вызвано следующими причинами:

-недостаточным нажатием всех или части щеток. Давление пружин на все щетки должно быть одинаковым. В щеткодержателях (рис. 35), устанавливаемых на кольцах ротора, сжатие пружины и ее давление на щетку по мере срабатывания щетки уменьшаются. Поэтому периодически необходимо восстанавливать нормальное давление пружин на щетки перемещением нажимной планки 1на одну, а если требуется, то и на большее число прорезей в стойке 2 щеткодержателя;

-плохой шлифовкой щеток. Если поставить щетки без подгонки к поверхности кольца, то они будут касаться кольца не всем сечением, а частично. Плотность тока на уменьшенной поверхности соприкосновения будет выше допустимой, что и вызовет искрение. Поэтому при замене щеток рабочая поверхность новых щеток должна быть подогнана (пришлифована) к поверхности кольца на остановленном генераторе;

-подгаром рабочей поверхности колец в результате искрения щеток. Для устранения подгара кольца шлифуются шкуркой. После окончания шлифовки все щетки поочередно вынимаются из щеткодержателя и очищаются от попавших на рабочую поверхность абразивных частиц снятием небольшого слоя с рабочей поверхности ножом;

-заеданием части щеток в щеткодержателях. Заедание щетки приводит к тому, что по мере срабатывания она перестает касаться кольца и ток переходит на другие щетки, вызывая их перегрузку. Чтобы щетка не застревала, зазор между ней и стенками щеткодержателя должен быть 0,1- 0,3 мм. Большой зазор также недопустим, так как он будет приводить к перекосу и заеданию щетки;

-срабатыванием щеток до минимально допустимого размера;

-вибрацией щеток из-за биения поверхности колец в результате неравномерной выработки или по другим причинам. Устранить вибрацию и искрение щеток, вызванные неравномерной выработкой колец, можно только проточкой колец или обработкой их вращающимся наждачным кругом.

Вибрация щеток может быть вызвана и вибрацией конца вала ротора вместе с кольцами. Вибрация щеток может появиться и при удовлетворительном состоянии поверхности колец от повышенного нажатия на них пружин.

Как и на кольцах, искрение щеток на коллекторе возбудителя может быть вызвано указанными выше причинами. Но в отличие от искрения на кольцах щетки на коллекторе могут искрить и по другим причинам: из-за выступания коллекторного миканита, из-за неудовлетворительной наладки коммутации, при слабом креплении коллекторных пластин, при появлении ненадежного контакта в петушках, при витковом замыкании в обмотке главных или дополнительных полюсов.

На коллекторах возбудителей отечественных генераторов применяются электрографитированные щетки марок ЭГ-4, ЭГ-14, ЭГ-8 и ЭГ-74. Более мягкими являются щетки, расположенные в указанном ряду слева, а лучшими по коммутирующей способности - справа.

«Паразитные токи в валах и подшипниках»

Из-за неравномерности зазора между ротором и статором, зазоров в стыках между пакетами активной стали и по другим причинам магнитная система машины в какой-то мере несимметрична. Если эту несимметричность условно изобразить в виде зазора в правой половине сердечника (рис. 36), то при повороте на 90° магнитные сопротивления для потоков Ф1 и Ф2 сравняются, а при дальнейшем вращении сопротивление для потока Ф1 станет меньше, чем для потока Ф2, потом вновь сравняется, затем станет меньше для потока Ф2 и т. д. Это приводит к изменению магнитных потоков и вызывает появление в теле ротора токов, которые, если не принять мер, будут проходить не по пути 1с большим индуктивным сопротивлением, а по пути 2 (через подшипники и станину), имеющему значительно меньшее индуктивное сопротивление. Из-за малого сопротивления даже при малых значениях наведенной ЭДС токи по валу и подшипникам могут достигать нескольких тысяч ампер. Этот ток даже при меньших значениях вызвал бы повреждение червячных пар и подшипников турбины, а также подшипников и вкладышей уплотнений генераторов. Поэтому у машин с горизонтальным валом под стул подшипника со стороны возбудителя и под подшипники возбудителя, а у вертикальных гидрогенераторов под лапы верхней крестовины устанавливаются изоляционные прокладки. Кроме того, подшипники изолируются от маслопроводов с установкой коротких участков труб с двумя изолированными фланцами, позволяющими контролировать состояние изоляции каждого маслопровода на работающей машине.

Сопротивление изоляции стула подшипника, измеренное перед сборкой подшипника, должно быть не менее 1 МОм, а для подпятников и подшипников гидрогенераторов - не менее 0,3 МОм.

1- путь тока с большим индуктивным сопротивлением; 2 - путь тока с малым индуктивным сопротивлением: а - поперечный разрез; б - продольный разрез

Рисунок 36 Схема прохождения токов, вызванных несимметрией магнитной системы машины

При работе генератора не реже чем 1 раз в месяц следует проверять по схеме рис. 37, не нарушена ли эта изоляция. При этом измеряется напряжение U1 на концах вала и U2 между изолированным стулом и плитой. При замере напряжения U2 сопротивление изоляции масляных пленок на подшипнике со стороны турбины и на том подшипнике, на котором производится измерение, закорачивают, как показано на рис. 37

Рисунок 37 Измерение напряжения для проверки состояния изоляции стула подшипника

Если напряжения U1 и U2 равны, то изоляция стула подшипника исправна. Если же напряжение U2 равно нулю, то изоляция нарушена.

При работе паровой турбины вследствие трения лопаток последних ступеней ротора о пар происходит заряд ротора электричеством. Значение напряжения, которое может сообщить подобный заряд ротору, зависит от сопротивления изоляции масляной пленки подшипников и доходит до 800 В и выше. Напряжение, создаваемое зарядом ротора от пара, затрудняет обслуживание турбины, так как при прикосновении к валу, например при измерении частоты вращения ручным тахометром или при протирке деталей вблизи вала, персонал «бьет током». Искровые разряды электричества через масляную пленку повреждают поверхности червячных пар и выводят их из строя. Поэтому для отвода заряда с ротора турбины на его валу в доступном месте, а при отсутствии такой возможности и внутри корпуса подшипника устанавливается электрощетка, скользящая по валу и отводящая заряд на заземленный корпус. Обеспечение надежного контакта этой щетки с валом турбины не менее важно, чем поддержание в исправном состоянии изоляции подшипников.

«Перевод генератора с рабочего возбудителя на резервный и обратно»

Переход с рабочего возбудителя на резервный и обратно может производиться или с включением возбудителей на параллельную работу и, следовательно, без снятия возбуждения с генератора, или с отключением одного возбудителя и включением другого с предварительным отключением АГП и переводом генератора в асинхронный режим. В обоих случаях генератор от сети не отключается.

Достоинство первого способа состоит в том, что он не требует снижения нагрузки на генераторе и перевода его в асинхронный режим. Но параллельная работа возбудителей, имеющих разные характеристики, может вызвать появление уравнительного тока. Поэтому при переходе с одного возбудителя на другой без снятия возбуждения параллельная работа возбудителей должна продолжаться не более 2-3 с.

Рисунок 38 Схема резервного возбуждения: Р0 и А о -рубильник и автоматический выключатель соответственно основного возбудителя; Рр и Ар -то же резервного возбудителя

Отключать рубильником (рис. 38) ток мощных возбудителей небезопасно. Поэтому для генераторов с непосредственным охлаждением ротора, имеющих повышенный ток возбуждения, в цепи основного и резервного возбудителей устанавливаются автоматические выключатели, и перевод возбуждения производится с их помощью.

При втором способе перехода с одного возбудителя на другой появление уравнительного тока исключается. Но перевод генератора в асинхронный режим допустим, если нагрузка не превышает 20-40% номинальной.

При переходе с основного возбудителя любого типа на резервный без снятия возбуждения с генератора на резервном возбудителе устанавливается напряжение на 10% выше напряжения на кольцах ротора. Переключением вольтметра на сборке возбуждения проверяется совпадение полярностей основного и резервного возбудителей. Резервный возбудитель подключается на шины сборки возбуждения автоматическим выключателем или рубильником. После этого не позже чем через 3 с отключается автоматический выключатель или рубильник основного возбудителя.

Для перехода с одного возбудителя на другой со снятием возбуждения с генератора нагрузка на генераторе снижается до допустимой при асинхронном режиме. Производятся необходимые изменения в режиме работы турбины и котлоагрегата. Возбудитель, вводимый в работу, возбуждается, как и при переводе с одного возбудителя на другой; возбуждение с генератора не снимается. Отключается АГП, затем работающий возбудитель. Включается возбудитель, вводимый в работу, и после этого АГП. Регулируется возбуждение генератора воздействием на вновь включенный возбудитель.

В случаях, не терпящих отлагательства, например при сильном искрении на коллекторе, угрожающем перейти в круговой огонь, отключение АГП производится немедленно. Одновременно с отключением АГП приступают к разгрузке генератора и по достижении необходимого значения ее переходят с поврежденного возбудителя на исправный.

Вопросы для повторения

В каких случаях и как производится проверка совпадения фаз и исправность схемы синхронизации?

Порядок включения генераторов в сеть по способу точной синхронизации и самосинхронизации. В каких случаях и для каких машин допустимо применять способ самосинхронизации?

Как зависят длительно допустимые токи статора и ротора от температуры охлаждающей среды?

Почему необходимо поддерживать номинальные параметры водорода по давлению, чистоте, влажности (температуре точки росы), содержанию кислорода?

Почему должна быть снижена полная мощность генератора при повышении или понижении напряжения сверх 5% номинального?

Чем ограничивается работа турбогенераторов в режиме недовозбуждения?

По отношению к какому току дается кратность допустимой перегрузки и почему? В каких случаях кратность перегрузки следует определять по отношению к длительно допустимому току при фактической температуре охлаждающей среды?

Чем опасен несимметричный режим работы для генераторов? Какие меры предусматриваются для предотвращения повреждения генератора в случае неполнофазного отключения блока?

Чем опасен асинхронный режим работы генераторов с потерей возбуждения? В течение какого времени и с соблюдением каких условий он допустим?

Способы контроля за появлением водорода в водяной системе генераторов с водяным охлаждением обмоток.

Порядок перевода генератора с рабочего возбудителя на резервный и обратно.

«Объем и периодичность ремонта генераторов и синхронных компенсаторов, подготовка к ремонту»

В типовой объем капитального ремонта входят разборка и сборка генератора с выемкой или без выемки ротора; осмотр, чистка и проверка всех доступных деталей и узлов, в том числе возбудителя с полной его разборкой; разборка и ремонт оборудования выводов и ячейки машины, маслосистемы, систем газоохлаждения и водяного охлаждения генератора и обмоток; проведение испытаний и измерений; устранение всех выявленных дефектов. Как правило, производится проточка колец ротора и коллектора возбудителя.

При необходимости в период капитального ремонта производятся специальные работы: замена дефектных стержней обмотки статора, устранение витковых замыканий в обмотке ротора, замена колец ротора и роторных бандажей, реконструкция уплотнений вала ротора и др.

Капитальные и текущие ремонты генераторов должны совмещаться с капитальными и текущими ремонтами турбин. Капитальные ремонты турбогенераторов до 100 МВт включительно должны проводиться 1 раз в 3-5 лет; турбогенераторов более 100 МВт - 1 раз в 3-4 года; синхронных компенсаторов - не чаще чем через 4-5 лет; гидрогенераторов - 1 раз в 4-6 лет.

Первый ремонт впервые введенных в работу турбогенераторов, гидрогенераторов и синхронных компенсаторов, включая усиление крепления лобовых частей и переклиновку пазов статора, проводится не позднее чем через 8000 ч работы после ввода в эксплуатацию. Такое требование вызывается тем, что в начальный период работы происходит интенсивная приработка частей и деталей друг к другу, подсушка изоляции и крепежных деталей, что может вызвать ослабление их креплений. Кроме того, большая часть дефектов, допущенных при изготовлении, проявляется именно в начальный период работы машины.

Перед остановкой генератора на капитальный ремонт необходимо измерить вибрацию всех подшипников и крестовин при различных нагрузках и на холостом ходу с возбуждением и без возбуждения. Если генератор имеет недопустимо высокую вибрацию и предварительным исследованием установлено, что для ее устранения требуется балансировка ротора, то балансировку желательно выполнить до вывода турбины в ремонт, так как по окончании ремонта времени на балансировку и последующую сборку торцевых крышек и масляных уплотнений обычно не хватает. По тем же соображениям целесообразно до вывода в ремонт турбины выполнить проточку и шлифовку колец и уплотняющих дисков на валу ротора.

Для проверки состояния изоляции подшипников и уплотнений со стороны возбудителя необходимо измерить напряжение на валу, определить утечку газа и выявить все неплотности, обратив особое внимание на узлы, не разбираемые при ремонте.

После отключения генератора от сети при номинальной частоте его вращения следует измерить сопротивление изоляции обмотки ротора мегомметром. При пониженном сопротивлении изоляции измерение продолжается и в процессе снижения частоты вращения ротора до полной остановки. Если при этом сопротивление изоляции обмотки ротора восстановится до нормального значения, то ненадежное место в изоляции, вероятней всего, находится в верхней части обмотки под клином или роторным бандажом.

Чтобы проверить, нет ли в обмотке ротора витковых замыканий, определяют сопротивление обмотки при различных напряжениях переменного тока, изменяемого в пределах от 0 до 220 В. Такие измерения производятся при номинальной частоте вращения и по мере снижения ее. Более пологое расположение кривых изменения сопротивления в зависимости от напряжения и частоты вращения по сравнению с ранее снятыми или кривыми однотипных генераторов укажет на наличие витковых замыканий в обмотке.

Объем текущего ремонта определяется с учетом состояния генератора. Как правило, при текущем ремонте производятся чистка щеточных аппаратов на кольцах ротора и возбудителя, замена сработавшихся щеток, осмотр и чистка доступных без вскрытия частей и деталей, аппаратуры системы возбуждения, АГП, высоковольтной аппаратуры. Если есть необходимость, то производят чистку газоохладителей, теплообменников, фильтров, камер и аппаратуры системы охлаждения, вскрытие и ремонт масляных уплотнений вала ротора, устранение утечек водорода, осмотр и чистку лобовых частей обмотки и выводов статора.

Текущие ремонты генератора производятся, как правило, по мере необходимости, обычно не реже 1 раза в год.

«Разборка и сборка генератора»

Перед разборкой и снятием частей и деталей следует убедиться в наличии маркировки на них и на отсоединяемых концах кабелей, и если ее нет, то нанести, чтобы при сборке все поставить на свое место. Если концы кабелей на щитке зажимов или внутри возбудителя будут перепутаны, это приведет к отказу в работе возбуждения генератора. Изменение порядка расположения деталей на роторе или якоре возбудителя может привести к нарушению балансировки и появлению вибрации. В других случаях изменение положения деталей может привести к задеванию отдельных частей друг за друга.

1- торцевая крышка; 2 - скоба; 3 - вновь привариваемые гайки; 4 - ограничитель; 5 - нижние болты

Рисунок 39 Скоба для снятия торцевых крышек статора, имеющих смещенный центр тяжести

Снятие торцевых крышек. В современных турбогенераторах торцевые крышки имеют выступающие внутрь ребра жесткости и диффузоры. Центр тяжести крышек смещен от рымов внутрь генератора. При снятии таких крышек при помощи троса, закрепленного на рымах, в момент отжатия их из заточки они рывком перейдут в наклонное положение и повредят при этом диффузором изоляцию лобовых частей обмотки статора. Чтобы не допустить повреждения обмотки заводом предусмотрена подвеска к крышке противовеса в виде цилиндра с песком. На станциях для снятия крышек генератора типа ТВФ-100 применяется более удобное приспособление в виде скобы (рис. 39). Скоба 2, изготовленная из двутавровой балки, прикрепляется к крышке 1 при помощи четырех болтов.

Вывод ротора из статора и ввод его обратно-наиболее ответственные операции по разборке и сборке генератора. Масса ротора в крупных генераторах достигает десятков тонн. Даже легкое задевание ротора за активную сталь и тем более за лобовую часть обмотки статора приведет к повреждению изоляции обмотки и активной стали. Поэтому при выводе и вводе ротора необходимо непрерывно следить за наличием зазора между ним и статором.

Трос, применяемый для выемки ротора, не должен касаться поверхностей скольжения на шейках вала и дисков для уплотнений, вентиляторов, контактных колец, токоподводов и роторных бандажей.

После выемки ротор должен быть уложен на клети из деревянных брусьев или укороченных шпал, укладываемых под нерабочие части вала или под бочку ротора.

Для предохранения ротора от повреждения и уменьшения возможного скольжения троса в местах захвата ротора

под трос должен быть подложен картон или транспортерная лента. На роторе с непосредственным охлаждением, имеющем пазовые клинья с выступающими заборниками и выпусками, для предохранения клиньев от повреждений в местах захвата тросом между пазами закладываются рейки из дерева твердых пород.

1 - пружина; 2 - раздвижные пластины; 3 - ползун с клином; 4 - полоса

Рисунок 40. Щуп для измерения зазора между ротором и статором

Перед выводом ротора и после ввода его специальным щупом (рис. 40) измеряются зазоры между ротором и статором с обеих сторон вверху, внизу, слева и справа. При измерении зазора необходимо следить за тем, чтобы раздвижные пластинки щупа не опирались на пазовые клинья, а на поверхности зубцов статора и ротора не было наплыва лака.

Зазоры в диаметрально противоположных точках не должны отличаться от среднего значения более чем на: 10% для турбогенераторов с косвенным охлаждением; 5% для турбогенераторов с непосредственным охлаждением; 20% для гидрогенераторов, если заводом-изготовителем не указаны меньшие размеры. Большая несимметрия зазоров может вызвать появление вибрации и повышенный нагрев поверхности ротора.

Рисунок 41 Вывод ротора с помощью двух тележек

Вывод ротора из статора по распространенному способу ЛПЭО «Электросила» для турбогенераторов 50 МВт и выше производится в порядке, показанном на рис. 41 После снятия возбудителя и торцевых крышек при помощи крана приподнимают вал ротора со стороны возбудителя, под вал устанавливают опорную балку и опускают на нее ротор. Затем удаляют вкладыш и стул подшипника со стороны возбудителя и делают настил из досок или деревянных брусьев, по которому укладывают направляющие из стальных брусьев или рельсов.

В верхнюю часть воздушного зазора между ротором и статором заводят стальной лист толщиной 10-12 мм, изогнутый по окружности активной стали статора, и затем опускают его в нижнюю часть зазора и закрепляют тросом для предохранения от перемещения во время вывода ротора.

На направляющие со стороны возбудителя устанавливается тележка, на которую опускается и закрепляется полукольцами вал ротора. Уровень направляющих должен быть таким, чтобы ротор занимал концентричное положение относительно статора. Далее закрепляется однороликовая тележка на валу ротора со стороны турбины. Ротор со стороны турбины приподнимают краном за полумуфту и удаляют нижнюю половину вкладыша подшипника. При помощи тали или лебедки и перемещения моста крана в сторону возбудителя выдвигают ротор из статора, пока трос, на котором подвешен ротор, не коснется корпуса генератора.

Конец ротора со стороны турбины опускают, и тележка, закрепленная на нем, ставится на стальной лист, уложенный в расточке статора. Поддерживая краном ротор за вал со стороны возбудителя, при помощи тали или лебедки выдвигают ротор из статора более чем на половину его длины. Подвешивают ротор за бочку тросами на крюк крана, добиваясь при подъеме его горизонтального положения, и окончательно выводят из статора.

Рисунок 42 Приспособления для подвески ротора

На ряде станций при разборке генераторов с водородным охлаждением вместо громоздкой балки применяется простое и удобное приспособление для подвески ротора к корпусу статора (рис. 42), состоящее из стального стропа 3, талрепов 2 и проушин 1. Для крепления проушин к корпусу статора используются отверстия и болты, предназначенные для крепления торцевых крышек. Талрепы служат для регулировки положения подвешенного ротора относительно статора. Если сделать дополнительные отверстия в проушинах, то одно и то же приспособление можно использовать для различных типов генераторов.

Рисунок 43 Телескопический удлинитель вала ротора

Применение телескопического удлинителя (рис. 43) облегчает вывод и ввод ротора. В заводском удлинителе 2 ротора генератора ТВФ-100, имеющем длину 1000 мм, удалена крестовина жесткости и вместо нее вставлена выдвижная труба / длиной 1360 мм. При выдвижении этой трубы общая длина удлинителя увеличивается до 1860 мм, что обеспечивает вывод ротора из статора на необходимое расстояние без применения стального листа, заводимого в статор, и второй тележки.

Вывод ротора при помощи указанных приспособлений производится в следующем порядке: вал ротора со стороны возбудителя приподнимают краном на 5-8 мм и при помощи приспособления подвешивают к корпусу генератора. Стул заднего подшипника удаляют, и ротор опускается на тележку, установленную на рельсы. Приспособление для подвески ротора переносят на сторону турбины. Вал ротора со стороны турбины на стропах подвешивают на крюк крана, и ротор выдвигается из статора настолько, чтобы можно было вставить удлинитель ротора с убранной внутрь выдвижной трубой. Выдвижение ротора производят перемещением крана в сторону возбудителя и одновременно вращением колес тележки ломами.

Рисунок 44 Вывод ротора при помощи телескопического удлинителя

При помощи крана подают удлинитель и прикрепляют его болтами к полумуфте ротора. Затем ротор выдвигают на 1000 мм и подвешивают на приспособлении. Из удлинителя выдвигают внутреннюю трубу. Ротор стропится на крюк крана за конец этой трубы (рис. 44, а) и выводится из статора еще на 800 мм. После этого ротор стропится за середину бочки (рис. 44, б) и полностью выводится из статора. Ввод ротора в статор производится в обратном порядке.

При установке торцевых щитов генераторов с водородным охлаждением очень важно не допустить неплотностей в разъемах между корпусом и торцевыми щитами и между их половинками.

При сборке торцевых щитов должны замеряться зазоры между ними и вентиляторами; зазоры должны быть в пределах, указанных в заводском паспорте.

«Ремонт статора»

Ремонтные работы начинают с осмотра статора со стороны расточки и спинки. Легким обстукиванием проверяют, плотно ли закреплены распорки в вентиляционных каналах, не ослаблены ли клинья в пазах, прочно ли закреплены нажимные пальцы, создают ли они необходимое нажатие на крайние пакеты активной стали, особенно если зубцы разрезные, нет ли следов местного нагрева стали в виде цветов побежалости или темных пятен.

Если клинья в пазах имеют слабину, необходимо произвести переклиновку пазов статора.

Плотность прессовки стали проверяется ножом: при плотной прессовке нож не должен входить между листами при нажатии на него. При обнаружении местных ослаблений прессовки, следов нагрева, свежих вмятин или забоин активной стали следует произвести внеочередное испытание ее на нагрев.

Осматривается изоляция обмотки. При этом проверяется, нет ли трещин или выпучивания изоляции стержней в вентиляционных каналах и в местах выхода стержней из паза, не имеет ли следов перегрева изоляция головок, нет ли механических повреждений на изоляции лобовых частей, не попадает ли на обмотку масло. Проверяется, не ослабло ли крепление и нет ли провисания лобовых частей.

При наличии в статоре пыли, грязи или масла производятся его очистка и протирка. Если ротор не вынимался, то производится осмотр только лобовых частей, спинки статора, воздушного зазора между ротором и статором.

Ослабленные крепления лобовых частей необходимо усилить добавлением или заменой прокладок, подтягиванием болтов, заменой шпагатных бандажей.

Попавшая на обмотку грязь удаляется деревянными или другими неметаллическими лопатками, а масло - тряпками, смоченными в бензине. После очистки от масла, грязи или при неудовлетворительном состоянии лакового покрова обмотка с помощью пульверизатора покрывается эмалью ГФ-92ХС.

При наличии стяжных болтов, проходящих в активной стали, измеряется сопротивление их изоляции мегомметром на 1000 В. Обнаруженные повреждения изоляции должны быть устранены.

В генераторах с водородным охлаждением производится проверка креплений фланцев статорных выводов к выводной плите и уплотняющих гаек на их стержнях.

Производится очистка водяных камер и трубок у газоохладителей от грязи и отложений. Органические отложения внутри трубок удаляются шомполами с ершами с последующей продувкой сжатым воздухом или влажным паром давлением 0,3-0,5 МПа. Затвердевшие в трубках неорганические отложения удаляются промывкой 2-3%-ным раствором соляной кислоты с последующей промывкой водой.

Масло и грязь, скопившиеся на наружных оребренных поверхностях трубок, удаляются промывкой их горячей водой или влажным паром.

Резиновые прокладки, предотвращающие выход водорода наружу через зазор между корпусом и охладителем, имеющие хотя бы неглубокие трещины или потерявшие эластичность, должны быть заменены новыми.

Газоохладители испытываются давлением воды, равным двукратному номинальному, но не ниже 0,3 МПа при воздушном и 0,5 МПа при водородном охлаждении. При испытании, продолжающемся 10 мин, не должно наблюдаться снижения давления воды в газоохладителе и течи. Трубки, имеющие течь, забиваются металлическими пробками с обоих концов. В каждом охладителе в соответствии с заводской инструкцией может быть заглушено не более 5-15% трубок.

У генераторов с водяным охлаждением проверяется, нет ли течей обмотки вместе с коллекторами и соединительными шлангами, вначале опрессовкой воздухом при избыточном давлении 0,3 МПа, а затем опрессовкой водой при давлении 1,0 МПа.

При ремонте статора проверяются отсутствие обрывов цепи термометров сопротивления, состояние их изоляции, надежность крепления датчиков и проводников, подтягиваются болтовые соединения на выводном щитке. Проверяются цепи и приборы измерения температур вне генератора. Все дефекты, не требующие выемки стержней, должны быть устранены.

«Ремонт ротора»

При осмотре вынутого ротора проверяется, не ослабли ли клинья в пазах, нет ли на носиках и остальной поверхности роторных бандажей, на крайних клиньях в пазах и поверхности зубцов подгара или цветов побежалости, указывающих на местные перегревы, нет ли налета ржавчины у посадочных мест бандажных и центрирующих колец, указывающих на ослабление посадки и наличие контактной коррозии, не сместились ли роторные бандажи или пазовые клинья.

Поверхность бандажных и центрирующих колец и места изменения сечения вала ротора зачищаются до блеска, осматриваются с помощью лупы и проверяются цветной дефектоскопией с целью обнаружения трещин. Проверяется крепление вентиляторов. Трещины на вентиляционных лопатках обнаруживаются легкими ударами молотка. Лопатки, имеющие трещины, издают дребезжащий звук.

Измеряются глубина выработки и «бой» контактных колец. Проверяется надежность крепления выступающих краев изоляции под кольцами и изоляции токоподводов. Изоляция очищается от пыли и покрывается лаком.

Проверяется состояние шеек и дисков уплотнения на валу. При наличии на зубцах, бандажных и центрирующих кольцах ротора трещин, подгаров, цветов побежалости, следов контактной коррозии бандажи подлежат снятию для более тщательного обследования и ремонта.

Если перед ремонтом из-за наличия выработки на кольцах наблюдались вибрация и искрение щеток, а также если замером, который следует произвести при вращении ротора валоповоротным устройством непосредственно перед выводом генератора в ремонт, будет обнаружен «бой» колец, равный 0,1 мм, то кольца должны быть проточены и отшлифованы.

Проточка колец и дисков уплотнений на валу, производимая при вращении ротора валоповоротным устройством турбины, увеличивает время простоя турбоагрегата в ремонте. Для сокращения продолжительности ремонта проточку колец и дисков на валу производят на отсоединенном от турбины генераторе при вращении ротора в собственных подшипниках при помощи передвижного устройства.

Для проточки колец или дисков устанавливается суппорт от токарного станка с поперечным и продольным перемещением. Обработка колец может производиться как резцом, так и закрепленным на суппорте вращающимся абразивным кругом.

Шлифовка колец производится при вращении ротора от турбины с частотой вращения 500-700 об/мин.

Уменьшение диаметра контактных колец по мере их срабатывания и проточки ввиду снижения при этом их механической прочности допускается до значения, указанного заводом-изготовителем.

Проточка дисков уплотнений на валу производится при наличии на их поверхности глубокой выработки и неровностей. Чаще всего такая необходимость возникает после подплавления вкладышей. Проточка необходима также при конусности рабочей поверхности дисков, превышающей 0,05-0,07 мм.

Обработку рабочих поверхностей дисков, имеющих сравнительно неглубокие выработку и неровности или небольшую конусность, целесообразно производить при помощи чугунной скобы-притира (рис. 45) с применением смеси карбида бора с керосином или наждачного порошка, а на заключительной стадии - пасты ГОИ. Ротор во время обработки вращается валоповоротным устройством.

1 - рукоятка для вращения диска; 2 - диск; 3 - притир

Рисунок 45 Притир для обработки диска на валу

Роторы генераторов с водородным охлаждением проверяются на газоплотность. Для этого в центральное отверстие ротора со стороны колец вместо постоянной ставится временная заглушка с патрубком и газоплотным вентилем, через который в ротор подается сжатый воздух в смеси с фреоном, давление которого на 0,05-0,1 МПа больше рабочего давления в генераторе. Затем при помощи течеискателя ГТИ-3 убеждаются в отсутствии утечек через заглушку в торце вала со стороны турбины, через отверстия для токоведущих болтов и т.д.

Газоплотность ротора считается удовлетворительной, если в течение 6 ч снижение давления не превысит 10% начального.

В роторах с непосредственным водородным охлаждением обмотки с самовентиляцией после очистки от пыли проверяют продуваемость их вентиляционных каналов. Важность этой проверки определяется тем, что ни электрическими испытаниями, ни по показаниям щитовых приборов генератора нарушение продуваемости каналов обнаружить практически невозможно. Между тем нарушение продуваемости каналов может привести к местному перегреву и повреждению меди обмотки.

«Ремонт масляных уплотнений»

Перед остановкой генератора в ремонт следует проверить отсутствие водорода в масле, сливаемом из опорных подшипников, превышение температуры баббита относительно масла, поступающего на уплотнения (не должно быть выше 15-20 °С), суммарный расход масла в сторону водорода (не должен быть выше 3-5 л/мин в зависимости от типа генератора), отсутствие масла в корпусе генератора и признаков низкой подвижности вкладышей.

Попадание масла в корпус генератора возможно по следующим причинам: из-за увеличения слива масла из уплотнений в сторону водорода при заедании вкладыша; из-за недопустимо высокого перепада между давлениями масла и водорода в уплотнениях, в которых масло отжимает вкладыш от упорного диска; из-за увеличенных зазоров между маслоуловителями и валом; из-за неплотности в разъемах между корпусом уплотнения и маслоуловителями или между половинками маслоуловителей; из-за засорения отверстий в маслоуловителях, через которые масло должно стекать в камеру уплотнений.

Недопустимое превышение температуры баббита чаще всего является результатом неправильной шабровки, износа или повреждения рабочей поверхности вкладыша, неудовлетворительного состояния диска на валу ротора, попадания с маслом в зазор между вкладышем и диском мелкого грата от сварки, мелкой стружки, не удаленной после обработки вкладыша, ржавчины, а также частиц затвердевшего лака.

Низкая подвижность вкладышей обнаруживается по резким колебаниям температуры баббита и расхода масла в сторону водорода и по выбросам водорода в картеры опорных подшипников, вызывающим иногда веерообразный выброс масла из подшипников. Этот дефект может быть вызван малым зазором между корпусом и вкладышем, неудовлетворительной шлифовкой рабочей поверхности корпусов уплотнений и центрирующих поясков вкладышей.

Очень важно после переделки маслопроводов, подающих масло на уплотнения, произвести их тщательную очистку и прокачку маслом, минуя уплотнения, по временной перемычке в течение 6-8 ч. Подачу масла периодически следует прекращать и затем возобновлять толчком.

После сборки уплотнений проверяются подвижность вкладышей и автономность камер двухпоточных уплотнений. При этом производится промывка уплотнений маслом при отжатых вкладышах.

До пуска генератора производится опрессовка генератора с проверкой отсутствия фреона в сливных камерах уплотнений со стороны воздуха.

«Ремонт возбудителя»

При ремонте возбудителя, как правило, коллектор должен быть проточен, если «бой» его поверхности превышает 0,05 мм, а также если на нем образовались хотя и равномерные по всей окружности, но глубокие (более 0,2- 0,3 мм) кольцевые выработки. При меньшей глубине кольцевых равномерных выработок неровности целесообразно удалить шлифовкой, чтобы не допустить искрения под щетками при перемещении якоря в осевом направлении.

«Бой» коллектора измеряется индикатором часового типа при вращении ротора генератора и якоря возбудителя валоповоротным устройством.

Проточка коллектора возбудителя с двумя подшипниками, как правило, производится на токарном станке.

Продолжительная шлифовка коллектора наждачной бумагой без колодки приводит к тому, что кромки пластин «заваливаются» и щетки касаются пластин только в средней части (рис. 46).

Рисунок 46 Состояние поверхности коллекторных пластин:

а - после правильной шлифовки; б - после неправильной

Для хорошо налаженного возбудителя это не имеет большого значения. Если же на коллекторе наблюдается искрение или предстоит настройка коммутации, то «заваливание» кромок пластин затруднит устранение искрения или приведет к неточной настройке. Для уменьшения «заваливания» кромок пластин шлифовку коллектора наждачной бумагой целесообразно производить с применением деревянной колодки, подогнанной по поверхности коллектора, или специальным абразивным бруском на бакелитовой основе.

При ремонте возбудителя миканит между коллекторными пластинами должен быть выбран (продорожен) на глубину 1,5- 2 мм. Если производится проточка, то продороживание коллектора целесообразно произвести до проточки.

Рисунок 47 Правильное расположение щеток на коллекторе

Для обеспечения равномерного слоя политуры и равномерного износа поверхности коллектора размещение щеток на коллекторе производится, как показано на рис. 47. За щеткой одной полярности должна следовать щетка другой полярности. Вторая пара щеток по отношению к предыдущей паре размещается с некоторым сдвигом по образующей коллектора, чтобы политурой и износом были охвачены и промежутки между щетками первой пары.

Если возбудитель работает без искрения, то при его ремонте следует стремиться к сохранению воздушных зазоров под полюсами такими, какими они были до разборки, если даже они окажутся несколько несимметричными. Следует учитывать, что на заводе зазоры под полюсами выверяются по контрольному валу (рис. 48), который полезно иметь и на станции. При ремонте же они обычно замеряются непосредственно между полюсами и якорем. Наличие неровностей или наплывов лака на поверхности якоря и полюса может исказить результат замера. Кроме того, не исключено, что некоторая неравномерность зазоров могла быть специально допущена на заводе для получения симметричности магнитной системы.

1 - штифт на резьбе; 2 - контрольный вал

Рисунок 48 Контрольный вал для выверки зазоров под полюсами

Симметричность магнитной системы имеет важнейшее значение для безыскровой работы возбудителя. Проверяется она измерением сопротивления обмоток каждого главного и дополнительного полюсов переменному току или измерением падения напряжения на обмотках полюсов при одном и том же токе. На обмотку возбудителя плавно подается напряжение 220 В, а на дополнительную обмотку 20-30 В. Магнитная система симметрична, если разница в падении напряжения не превышает 1 -1,5%.

«Вибрация электрических машин и ее устранение»

Вибрация электрических машин может возникнуть из-за механической неуравновешенности роторов; несимметрии электромагнитных сил; неправильной центровки валов турбин и генераторов или нарушения ее из-за тепловых деформаций, а также осадки фундамента, неправильной сборки или износа деталей соединительной муфты между генератором и турбиной; износа или неправильной шабровки подшипников, появления трещин в сварке фундаментной плиты и т.д.

Вибрация может появиться также при тепловой нестабильности ротора. Из-за температурной деформации обмоток, витковых замыканий или неравномерных потоков охлаждающего газа по вентиляционным каналам возникает неравномерный нагрев бочки ротора по окружности, что приводит к изменению упругой линии прогиба ротора и нарушению его уравновешенности. Например, для ротора длиной 8000 мм разность температур на противоположных образующих бочки всего лишь 2°С приводит к прогибу ротора на 0,17 мм.


Подобные документы

  • Структура подразделений и служб электроснабжения АО "ВК РЭК" - поставщика электроэнергии на рынке Восточного Казахстана. Организация и технология техобслуживания и ремонта генераторов и двигателей, силовых трансформаторов, электрических и кабельных линий.

    отчет по практике [963,5 K], добавлен 24.01.2013

  • Монтаж внутренних электрических сетей, прокладка кабельных линий в земле, внутри зданий, в каналах, туннелях и коллекторах. Электрооборудование трансформаторных подстанций, электрические машины аппаратов управления. Эксплуатация электрических сетей.

    курсовая работа [61,8 K], добавлен 31.01.2011

  • История создания Печорских Электрических сетей. Техническое обслуживание и ремонт трансформаторов. Непрерывная винтовая обмотки мощных трансформаторов электрического подвижного состава. Охрана труда и правила безопасности при монтаже электрооборудования.

    отчет по практике [570,1 K], добавлен 17.12.2012

  • Организация эксплуатации энергосистемы для обеспечения бесперебойного снабжения потребителей электроэнергией. Основные мероприятия, выполняемые при обслуживании электрооборудования для повышения эффективности его работы, виды профилактических работ.

    реферат [23,8 K], добавлен 05.12.2009

  • Характеристика электрического оборудования, электроснабжение открытых горных работ. Подсчет электрических нагрузок, выбор силовых трансформаторов. Расчет сечения воздушных и кабельных ЛЭП. Контроль за исправностью изоляции электроустановок карьера.

    курсовая работа [2,4 M], добавлен 02.12.2010

  • Обоснование периодичности текущего ремонта электрооборудования. Описание технологии текущего ремонта электродвигателя. Компоновка участка по проведению ТО и ТР электрооборудования. Выбор оборудования для диагностирования и ремонта. Задачи проектирования.

    курсовая работа [227,3 K], добавлен 27.02.2009

  • Назначение электрооборудования цеха. Организация технического обслуживания. Трудоемкость ремонтов электродвигателей. Эксплуатация цеховых сетей. Кабельные линии, пускорегулирующие аппараты. Техника безопасности при техобслуживании электрооборудования.

    курсовая работа [232,1 K], добавлен 16.05.2012

  • Послеремонтные испытания трехфазного трансформатора, автотрансформатора. Измерение сопротивления изоляции обмоток. Сушка изоляции синхронных компенсаторов. Способ нагрева обмоток постоянным током. Объемы текущих капитальных ремонтов электродвигателей.

    контрольная работа [126,8 K], добавлен 16.12.2010

  • Способы прокладки кабельных линий, техническая документация, инструкция. Предназначение сборных кабельных конструкций, способы крепления к основаниям. Эксплуатация кабельных линий внутрицеховых сетей, проверка состояния электроизоляционных материалов.

    курсовая работа [2,0 M], добавлен 06.06.2013

  • Назначение и устройство насосной станции. Техническая эксплуатация ее электрооборудования и сетей. Неисправности асинхронных двигателей насосной установки, влияющих на расход электроэнергии. Технология их ремонта и процесс их испытания после него.

    курсовая работа [173,5 K], добавлен 06.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.