Основные сведения о радиационной безопасности

Физическая природа и источники радиационной опасности для человека и природной среды. Виды ионизирующих излучений, их характеристики и взаимодействие с веществом. Источники ионизирующих излучений. Основы радиационной безопасности биологических систем.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 22.08.2012
Размер файла 196,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

кобальт-60 - применяется в терапии и как индикатор;

цезий-137 - применяется в терапии;

углерод-14 - медикобиологические исследования;

индий-111, 113 - используется для диагностики путем скенирования печени (при диагностике гепатита и церроза), полостей сердца, ангиография почек.

Поглощенная доза в облучаемом с целью терапии органе очень велика и, как правило, составляет 20-60 Гр за несколько сеансов. Индивидуальная доза на критический орган может составлять до нескольких Грей на одну процедуру. В Республике Беларусь средняя индивидуальная доза облучения населения от радиоизотопной диагностики составляет около 5мЗв/год.

Примечание. В Республике Беларусь имеется более 2000 рентгеновских установок для диагностики.

Наиболее опасными антропогенными источниками ионизирующих излучений являются атомные электростанции в результате аварий на них и возможные взрывы ядерных боеприпасов и радиологических боеприпасов.

На территории Республики Беларусь атомных электростанций (АЭС) и ядерного оружия нет, но названные источники расположены вблизи границ страны, и как показал опыт эксплуатации Чернобыльской АЭС, аварии на них или другие происшествия представляют большую радиационную угрозу для населения. Коротко познакомимся с этими источниками.

Атомная электростанция, как источник радиационной опасности

Радиационная опасность на АЭС (при аварии на ней) определяется спецификой ее устройства, типом используемого топлива, его количества и особенностями эксплуатации.

Основным элементом АЭС является ядерный реактор. В нем в качестве горючего используется уран. Как известно природный уран представляет смесь урана-238 - 99,2%, урана-235 - 0,71% и уран-234 - 0,006%.

Известно, что при облучении ядра атома урана нейтронами может быть три вида взаимодействия в зависимости от энергии нейтрона, типа ядерного вещества и его массы:

нейтрон поглощается ядром атома и оно испускает гамма-квант;

нейтрон проскакивает ядро без последствий;

нейтрон вызывает распад ядра на два осколка с выбросом нескольких нейтронов (обычно 2-3), гамма-квантов, излучений других видов с общей энергией примерно 200 МэВ.

Интерес представляет только третий случай, когда энергию распада можно использовать в ядерном реакторе. Ядра 238U могут делиться только нейтронами (быстрыми нейтронами) с энергией более 1,1 МэВ, а ядра 235U могут делиться только тепловыми нейтронами. Очевидно, что в ядерном реакторе целесообразно в качестве ядерного горючего использовать 235U, так как технически получить тепловые нейтроны задача не сложная. Однако для обеспечения цепной реакции необходимо, чтобы масса 235U была достаточной. Для этого концентрацию 235U в природном уране повышают обычно до 2%-6%, т.е. обогащают 238U.

Для нормальной работы реактора с одной стороны необходимо, чтобы цепная ядерная реакция поддерживалась, а с другой необходимо исключить возможность ядерного взрыва.Чтобы исключить ядерный взрыв, необходимо чтобы после каждого цикла деления оставался только один нейтрон из 2-3, который продолжал бы процесс деления. Остальные нейтроны должны быть или поглощены или уйти из активной зоны. Часть нейтронов поглощается 238U, превращаясь в 239Pu, а часть нейтронов может быть поглощена графитом, бором или другим веществом. Следует заметить, что при делении ядер 235U образуются нейтроны, энергия которых выше требуемой для поддержания цепной реакции деления. Поэтому принимаются меры по замедлению нейтронов. Таким образом, в качестве ядерного топлива используют 235U.

В странах СНГ на АЭС используют ядерные реакторы двух типов: реактор большой мощности канальный (РБМК-1000) и водо-водяной энергетический реактор (ВВЭР-440, ВВЭР-1000).

В реакторе канального типа вода внутри реактора нагревается до температуры, близкой к кипению, превращается в пар непосредственно в активной зоне и далее пар следует на турбину, на валу которой находится электрический генератор. В водо-водяном реакторе имеется два контура. В первом контуре вода нагревается в активной зоне, но в пар не превращается, так как находится под высоким давлением. Теплая вода поступает в парогенератор, где отдает тепло воде второго контура. После этого пар со второго контура подается на турбину, приводя ее в движение.

Каждый из названных типов реакторов имеет свои достоинства и свои недостатки. Водо-водяные реакторы более надежные, но дорогостоящие.

Рассмотрим подробней принцип работы реактора большой мощности канальный (РБМК), который установлен на ЧАЭС рис.1.19).

Канальные реакторы не имеют трудоемкого в изготовлении прочного корпуса, сложного и дорогостоящего парогенератора, позволяют производить перегрузку топлива без остановки реактора и использовать менее обогащенное ядерное топливо, но менее надежны в эксплуатации. В частности, в канальных реакторах наблюдается положительная реактивность при нарушении циркуляции теплоносителя через активную зону. Это требует более высокой квалификации обслуживающего персонала и предосторожности при эксплуатации реактора.

В канальных реакторах значительное количество тепловой энергии аккумулируется в графитовой кладке и металлоконструкциях, что замедляет спад тепловой мощности реактора после срабатывания аварийной защиты. Наличие большого парового объема в контуре охлаждения существенно замедляет темп падения давления теплоносителя при аварийном разрыве трубопровода.

РБМК представляет собой цилиндр высотой 7м и диаметром 14м. Размещается он в бетонной шахте размером 21х21м и высотой 25м. В качестве замедлителей нейтронов используется графитовая кладка цилиндрической формы. В ней имеются вертикальные отверстия, в которые устанавливаются технологические каналы. В каждом канале размещается кассета с двумя тепловыделяющими сборками, в каждой из которых по 18 тепловыделяющих элементов (твэлов).

Теплоносителем служит обессоленная вода, которая поднимается снизу вверх к каждому технологическому каналу. Омывая твэлы, вода нагревается, частично испаряется. Отвод кипящей воды производится в паросепаратор, где пар отделяется от воды, очищается от радиоактивных продуктов и подается на турбину. Конденсат отработанного в турбине пара через сепаратор вновь возвращается в реактор. Температура на выходе реактора составляет примерно 280°С.

Как видно из схемы (рис.1.19) в состав активной зоны реактора включены также управляющие графитовые стержни. Если стержни утоплены, то реактор "заглушен", цепная реакция прекращается. Чтобы реактор начал работать стержни надо поднимать. для исключения случайного перегрева активной зоны существует система автоматики, которая позволяет регулировать тепловой режим реактора.

Особенностью ядерного реактора является то, что в него загружается большое количество ядерного горючего (190 тонн).

В процессе работы ядерного реактора, распадающиеся радиоактивные вещества остаются в активной зоне (в твэлах). Как видно из рис.1.20 из осколков ядерного деления больше всего образуется изотопов с номерами от 80 до 105 (первый пик) и от 130 до 150 (второй пик). Среди них

большинство с коротким периодом полураспада, но есть и относительно долгоживущие (стронций-90, цезий-137 и некоторые другие).

При взрыве ядерного устройства распределение осколков деления другое.

В замкнутом пространстве активной зоны непрерывно образующиеся короткоживущие изотопы одновременно и распадаются. В то же время изотопы с большим периодом полураспада накапливаются. И чем дольше «выгорает» ядерное топливо, тем в большей степени радиоактивная смесь обогащается долгоживущими радиоизотопами. Среди множества радиоактивных осколков в активной зоне образуются разнообразные изотопы йода. Особую опасность представляет утечка в окружающую среду йода-131 с периодом полураспада 8,05 суток. В начальный период аварии именно йод-131 определяет радиобиологическую обстановку на пораженной территории.

Другой изотоп йода распадается с образованием радиоактивного ксенона:

йод-135 (6,7 часа) > ксенон-135 (9,13 часа) > цезий-135

Так в реакторе происходит накопление радиоактивных благородных газов, которые при аварии первыми попадают в окружающую среду. Ксенон-135 сильно поглощает нейтроны. Активную зону рассчитывают таким образом, чтобы поглощение ксеноном компенсировалось избытком нейтронов в цепном процессе.

Но если реактор остановлен, из-за распада йода-135 ксенон продолжает накапливаться и его может оказаться так много, что снова запустить реактор становится затруднительно (нужно ждать 2-3 суток пока основная масса ксенона распадется).

Как уже ранее упоминалось, уран-238, поглощая нейтроны, образует «долгоживущий» плутоний-239 по схеме:

уран-238 + нейтрон > уран-239 (Т = 23 мин) > нептуний-239 (Т = 2 суток) > плутоний-239 (Т = 24000 лет)

Являясь альфа-излучателем, и выпадая вблизи АЭС в виде мелких частиц, плутоний-239 представляет особую опасность для человека, попадая в организм человека вместе с пищей, водой и воздухом.

Другой изотоп йода распадается с образованием радиоактивного

Ядерные боеприпасы, как источники радиационной опасности

Особую радиационную опасность представляют различные виды ядерного оружия при их применении или при несанкционированных взрывах. К этому оружию относят: атомные, термоядерные, нейтронные боеприпасы и радиологическое оружие.

Принцип действия ядерных боеприпасов основан на использовании внутриядерной энергии, выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза легких ядер - дейтерия и трития в более тяжелые.

При рассмотрении реакции деления тяжелых ядер урана отмечалось, что для развития цепной реакции деления должна быть критическая масса, чтобы коэффициент развития реакции был больше 1. Для достижения критической массы применяют различные способы, в частности можно увеличить плотность ядерного вещества (боеприпасы имплозивного типа, рис.1.21), достичь критической массы за счет мгновенного соединения двух докритических масс (рис.1.22), создают необходимую геометрическую форму заряда, устанавливают отражатели нейтронов и др. В результате цепная реакция деления носит взрывной характер.

При взрыве такого боеприпаса выделяется мощность примерно 20 000 тонн тротила, а в цепную реакцию вступает только около 1 кг ядерного взрывчатого вещества (урана-235 или плутония-239), а остальная часть ядерного взрывчатого вещества вступить в реакцию не успевает и рассеивается в окружающем пространстве энергией взрыва.

Мощность зарядов, в которых используются реакции деления тяжелых ядер ограничена и не превышает 100000 тонн. Поэтому для получения боеприпасов большей мощности используют реакции синтеза легких ядер дейтерия или трития. Реакция синтеза происходит по следующей формуле

Д + Т 42Не + n + 17,6 МэВ

Эта реакция возможна только при температуре в десятки и сотни миллионов градусов. Такая температура необходима лишь для начала синтеза, а затем он поддерживается за счет собственной энергии. Такую температуру можно получить только при взрыве ядерного боеприпаса, который фактически становится детонатором взрыва и используется в термоядерном боеприпасе. Оценка энергетического эффекта термоядерной реакции показывает, что при синтезе 1 кг гелия выделяется в 5 раз больше энергии, чем при делении 1 кг урана-235. А главное можно изготовить термоядерный боеприпас любой мощности.

На практике в качестве термоядерного горючего используют дейтерид лития. В результате его облучения нейтронами образуется тритий, который вступает в реакцию с дейтерием и при этом выделяется основное количество энергии. Реакция происходит по схеме

63Li + n T + 42Hе + 4,8 МэВ

Применение дейтерида лития позволяет избавиться от дорогостоящего радиоактивного трития. Принципиальная схема термоядерного боеприпаса (водородной бомбы) приведена на рис. 1.23.

Рис.1.23. Схема устройства термоядерного боеприпаса типа "деление-синтез"

1 - ядерный детонатор (заряд деления); 2 - заряд для реакции синтеза (дейтерид лития);

3 - корпус

Примечание. Если корпус водородной бомбы изготовить из урана-238, то быстрые нейтроны, которые образуются в термоядерном боеприпасе при взрыве способны вызвать деление и урана-238. В результате выполняются три фазы: "деление - синтез - деление" и мощность такого боеприпаса еще больше возрастает.

Поражающими факторами ядерного оружия являются ударная волна, световое излучение, электромагнитный импульс, проникающая радиация и радиоактивное заражение местности. Первые три поражающих фактора рассматривались в первой части учебного пособия.

Проникающая радиация представляет собой поток нейтронов и гамма лучей в момент взрыва. Они обладают значительной проникающей способностью и распространяются в воздушном пространстве во все стороны на расстояние до 2,5-3 км. Время их действия исчисляются секундами. Нейтроны, облучая поверхность земли вызывают наведенную радиоактивность, которая на несколько часов становится дополнительным источником облучения людей и биологического мира. Облучение нейтронами представляет особую опасность для жизни и здоровья человека. Учитывая особую поражающую способность нейтронного излучения, ученые смогли создать специальные нейтронные боеприпасы, основным поражающим действием которых является проникающая радиация.

Нейтронный боеприпас представляет собой малогабаритный термоядерный заряд мощностью не более 10000 тонн тротила, у которого основная доля энергии выделяется за счет реакций синтеза ядер дейтерия и трития, а количество энергии, получаемой в результате деления тяжелых ядер в детонаторе, минимально, но достаточно для начала реакции синтеза. Нейтронная составляющая такого малого по мощности ядерного взрыва в 5-10 раз больше, чем заряда деления той же мощности. Нейтроны обладают способностью проникать даже через броню танков и поражать людей. Время действия нейтронов несколько секунд. Схема устройства нейтронного боеприпаса показана на рис.1.24.

Рис.1.24. Схема устройства нейтронного боеприпаса "пушечного типа"

1 - корпус боеприпаса с системой удержания плазмы в зоне реакции; 2 - смесь дейтерия и трития; 3 - отражатель нейтронов; 4 - заряд плутония-239; 5 - источники нейтронов;

6 - заряд обычного взрывчатого вещества; 7 - детонатор

Справка. При подрыве на высоте 120-180 м нейтронного боеприпаса мощностью 1 кт немедленная смерть наступает в зоне радиусом 130 м, а лучевая болезнь со смертельным исходом наблюдается на открытой местности наблюдается на удалении до 1600 м.

Кроме проникающей радиации при ядерном взрыве происходит и радиоактивное заражение местности. Источниками радиоактивного заражения являются:

осколки деления атомов ядерного горючего;

наведенная радиоактивность;

неразделившаяся часть яднрного горючего.

Осколки деления ядер урана или плутония - это от 200 до 300 изотопов 36 химических элементов, периоды полураспада которых составляют от долей секунды и до многих десятков и сотен лет.

Наведенная радиоактивность возникает в грунте под воздействием нейтронов проникающей радиации.

Неразделившаяся часть ядерного горючего представляет собой атомы урана-233,235,238 и плутония-239.

Радиоактивное заражение местности возникает после выпадения с облака взрыва осколков деления на поверхность и неразделившейся части ядерного горючего. Основной вклад в радиоактивное заражение местности вносят осколки деления ядерного горючего и наведенная радиоактивность. Неразделившаяся часть ядерного горючего выпадает в основном в районе взрыва.

Таким образом, при взрыве ядерного боеприпаса уровень радиоактивного заражения местности, особенно в районе взрыва, очень высокий, но быстро спадает по закону Вэя-Вигнера. При аварии на АЭС степень радиоактивного заражения будет меньше, но спад радиации происходит крайне медленно.

Вопросы для самоконтроля

Дайте краткую характеристику космогенных радионуклидов.

Радон, степень его опасности для здоровья человека.

Калий-40, степень его опасности для здоровья человека.

Примеры использования радионуклидов в народном хозяйстве.

Принцип работы ядерного реактора и АЭС.

Принцип действия ядерного боеприпаса имплозивного типа.

Принцип действия ядерного боеприпаса "пушечного" типа.

Принцип действия нейтронного боеприпаса.

Глава 2. ОСНОВЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ БИОЛОГИЧЕСКИХ СИСТЕМ

2.1 БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Знание механизма воздействия радиации на человека, возможностей органов и систем человека противостоять радиации позволяет принять дополнительные меры по выживанию в условиях радиоактивного заражения или загрязнения среды.

Известно, что тело человека состоит: из воды примерно на 65%, белков, человеческих клеток на 18%, жиров на 10%, углеводов на 5%, других органических и неорганических веществ на 2%. Если из рассмотрения исключить воду, то белки составят 51,5%, липиды - 47,7%, клетки - 3%.

Воздействие радиации происходит как на молекулярном уровне, так и на уровне клеток, органов и систем человека.

2.1.1 ВОЗДЕЙСТВИЕ ЭНЕРГИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА БИОЛОГИЧЕСКУЮ ТКАНЬ

При облучении биологической ткани ионизирующими излучениями схематично все процессы можно выразить следующим образом: физический этап (поглощение энергии), физико-химический этап (возбуждение атомов или их ионизация), химический этап (образование свободных радикалов), биомолекулярные повреждения (изменения молекул белков, нуклеиновых кислот), биологические и физиологические изменения в организме. Схематично эти процессы отражены на рис.2.1.

Вслед за поглощением энергии ионизирующего излучения, сопровождаемым физическими изменениями клеток, происходят процессы химического и биологического характера, которые закономерно приводят, прежде всего, к повреждению жизненно важных биомолекул в клетке.

Эффекты воздействия ионизирующего излучения могут длиться от долей секунды до столетий (таблица 2.1).

В результате действия излучений на организм наблюдаются изменения на всех уровнях организации живой материи (таблица 2.2).

От чего же зависит действие радиоактивных веществ на организм?

Так называемая биологическая эффективность зависит от многих факторов:

вида радиоактивного вещества;

энергии излучения;

периода полураспада;

величины всасывания (накопления);

скорости выведения из организма.

Рис. 2.1 Основные этапы воздействия радиации на биологическую ткань

2.1.2 МЕХАНИЗМ ВОЗДЕЙСТВИЯ РАДИАЦИИ НА МОЛЕКУЛЫ И КЛЕТКИ

Ионизирующее излучение обладает высокой биологической активностью. Оно способно разрывать любые химические связи и индуцировать длительно протекающие реакции. Реакции вовлекают в химические превращения сотни и тысячи молекул. Первичное действие излучений на организм может быть непосредственным и косвенным.

Прямое действие ионизирующих излучений вызывает ионизацию атомов и молекул, образование ионов, возникновение возбужденных атомов, появление радикалов. Активные молекулы и обломки молекул индуцируют различные химические реакции, повреждая комплексы клеток.

Косвенное действие излучений заключается в том, что образованные радикалы воды и пероксиды вступают в химические реакции с молекулами белка, с липидами и т.д. и приводят к структурным изменениям тканей и клеток.

Таблица 2.1 Биологическое действие ионизирующих излучений

Время

Эффект воздействия

10-24 - 10-4с

10-15 - 10-8 с

Поглощение энергии (рентгеновкое, гамма, нейтронное излучения).

Поглощение энергии (электроны, протоны, альфа-частицы).

10-12 - 10--8 с

Физический и химический этапы. Перенос энергии в виде ионизации на первичной траектории. Ионизация и электронное возбуждение молекул.

10-7 - 10-5 с,

несколько часов

Химические повреждения. Прямое действие Косвенное действие. Образование свободных радикалов из воды. Возбуждение молекул до теплового равновесия.

Микросекунды, секунды, минуты, несколько часов

Биомолекулярные повреждения. Изменения молекул белков, нуклеиновых кислот под влиянием процессов обмена.

Минуты, часы, недели

Ранние биологические и физиологические эффекты. Биохимические повреждения. Гибель клеток, гибель отдельных животных.

Годы, столетия

Отдаленные биологические эффекты. Стойкое нарушение функций. Генетические мутации, действие на потомство. Соматические эффекты: рак, лейкоз, сокращение продолжительности жизни, гибель организма.

Таблица 2.2 Радиационные повреждения

Уровень биологической организации

Радиационные повреждения

Молекулярный

Повреждение ферментов, ДНК, РНК, нарушение обмена веществ

Субклеточный

Повреждение клеточных мембран, ядер, хромосом, митохондрий, лизосом

Клеточный

Остановка деления и гибель клеток, трансформация в злокачественные клетки

Тканевой, органный

Повреждение центральной нервной системы, костного мозга, желудочно-кишечного тракта

Организменный

Смерть или сокращение продолжительности жизни

Популяционный

Изменение генетических характеристик в результате мутаций

Молекула воды

Наиболее многочисленными в организме человека являются молекулы воды. При облучении молекул воды ионизирующими излучениями образуются различные радикалы:

Н2О Н2О+ + е- Н2О* Н* + ОН*

Н2О Н+ + ОН* Н* + ОН* Н2О*

Н2О + е- Н2О* ОН* + ОН* Н2О2

Н2О+ + Н2О Н3О+ + ОН*

Свободные радикалы Н*, ОН* особенно химически активны. Время их жизни 10-15с. За это время они либо реагируют между собой с образованием молекулы воды, пероксидов водорода, либо с растворенным субстратом.

Продукты радиолиза воды (пероксид водорода) вступают в реакцию с липидами, белками, что приводит к гибели тканевых элементов, разрушению надклеточных структур (нитей хроматина), происходит разрыв углеродных связей, нарушения ферментативных систем, синтеза ДНК, белка. Нарушаются обменные процессы в организме. В связи с нарушением обмена веществ и энергии прекращается и замедляется рост тканей, наступает гибель клеток. Всасывание продуктов клеточного распада вызывает отравление организма, что приводит к преждевременному старению.

Наша справка. О степени и органах отравления можно судить, учитывая, что в мышцах 50% воды, в костях - 13% воды, в печени - 16% воды, в крови - 5% воды. Особенно опасен атомарный кислород, разрушающий мембраны клеток. Присутствие кислорода в момент облучения клетки приводит к усилению лучевого поражения примерно в три раза (кислородный эффект).

В организме человека имеются «гигантские молекулы» - это нуклеиновые кислоты, белки и полисахариды. Основу жизни на Земле составляет молекула ДНК (дезоксирибонуклеиновой кислоты). Она входит в состав клеток.

Молекула ДНК

Из основ биологии известно, что молекула ДНК - это хранитель генетической информации и она же «руководит» синтезом белка в соматических клетках. Она является составной частью всех живых организмов, входит в состав хромосом, которые имеются в ядре клетки. При облучении молекулы ДНК она возбуждается в целом, но из-за миграции энергии в молекуле происходит разрыв в самом слабом месте, а именно рвутся водородные связи между отдельными участками молекулы.

Механизм миграции энергии заключается в том, что при выбивании электрона происходит миграция дефектного участка по полинуклеотидной цепи до участка с повышенными электрон-донорными свойствами. Такое место - чаще всего участок локализации тимина или цитозина, где и образуются свободные радикалы этих оснований. При косвенном действии излучений именно на этих участках происходит реакция с продуктами радиолиза воды.

Если между нуклеотидами происходят однонитчатые разрывы, то работает механизм репарации (восстановления) под генетическиским контролем.

Примечание. Между нуклеотидами ковалентные водородные связи (связь с помощью двух электронов).

Установлено, что в молекуле может быть восстановлено до 7 разорванных связей в однонитиевых разрывах и при этом поражения генов молекулы не наблюдается. Но если количество однонитиевых разрывов больше 7 или имеются двухнитиевые разрывы, то происходят хромосомные аберрации (разорванные концы и целые фрагменты в дальнейшем "склеиваются" в новых сочетаниях, и закодированная в генах информация искажается или теряется совсем.

По мере накопления дозы облучения растет и количество хромосомных аберраций по линейно-квадратичному закону и зависит от вида облучения.

Таким образом, в результате аберраций искажаются гены, возможна и гибель молекулы ДНК. Находясь в составе хромосом соматической клетки, молекулы ДНК могут вызвать бесконтрольное деление, приводящее к раку.

Молекула белка

Ученые считают, что именно белок, как одна из молекул жизни появилась первой на Земле.

Белок - это высокомолекулярное органическое соединение, построенное из 20 аминокислот. Аминокислоты появились на Земле, когда в атмосфере появились метан, аммиак, пары воды. Воздействие ультрафиолетового солнечного излучения привело к образованию формальдегида, затем цианистого водорода. Именно они являются ключом к разгадке появления белков и нуклеиновых кислот. В 1953 году в Чикаго американский ученый Миллер экспериментально установил, что если подвергать воздействию электрическим зарядом смесь метана, воды и водорода можно получить до 2% различных аминокислот. Из 20 аминокислот в организме человека синтезируется только 12, остальные 8 в готовом виде поступают в организм вместе с пищей. Белки в организме разнообразны. Свыше 10 миллионов белков выполняют разные функции: структурные, регуляторные (гормоны), каталитические (ферменты), защитные (антитела), транспортные (гемоглобин), энергетические и др.

Постоянное обновление белка лежит в основе обмена веществ и он играет важную роль в жизнедеятельности организма. До 20% поглощенной энергии облучения связано с повреждением белка. При облучении молекул белка ионизирующими излучениями она возбуждается в целом и за счет миграции энергии (как в молекуле ДНК) разрыв происходит в наиболее слабых местах, а именно в связях между аминокислотами. В отличие от молекулы ДНК, молекула белка системы защиты от радиации не имеет.

Таким образом, в результате прямого действия ионизирующих излучений в боковых цепях аминокислот возникают свободные радикалы. При косвенном действии свободные радикалы образуются при взаимодействии белковых молекул с продуктами радиолиза воды. Образование свободных радикалов влечет за собой изменения структуры белка:

разрыв водородных, гидрофобных, дисульфидных связей;

модификация аминокислот в цепи;

образования сшивок и агрегатов;

нарушение вторичной и третичной структуры белка.

Такие нарушения в структуре белка приводят к нарушению его функций. Но большое количество молекул белка в организме, их постоянное обновление позволяет на биологическом уровне противостоять радиации с учетом степени их облучения.

Большая разновидность белков, разные размеры, количество, разные функции вызывают при облучении и разные последствия. Например, только ферментов, ускоряющих химические реакции более 1000. Разрушение отдельных из них приводит к угнетению функций отдельных систем. Последствия облучения во многом зависят от структуры белка.

Различают первичную, вторичную, третичную и четвертичную структуру белка. Наиболее подвержена облучению четвертичная структура и менее подвержена первичная структура. Это объясняется их прочностью. О последствиях облучения белка можно судить только, если известен тип белка, вид и время облучения.

Липиды

Липиды - жироподобные вещества и жиры, плохо растворимые в воде. Они входят в состав клеточных перегородок (мембран). В связи с плохой проводимостью тепла, они выполняют защитную функцию, а также играют и роль запасных питательных веществ в организме человека.

При облучении липидов ионизирующими излучениями последствия во многом зависят от того, какие именно липиды облучаются. Если липиды не активно участвуют в процессах обмена веществ, то они мало влияют на здоровье человека.

Действие ионизирующих излучений на липиды следующее. Под влиянием облучения происходит образование свободных радикалов ненасыщенных жирных кислот, которые при взаимодействии с кислородом образуют перекисные радикалы, а они, в свою очередь, реагируют с нативными жирными кислотами. Это процесс перекисного окисления липидов. Так как липиды - основа биомембран, то перекисное окисление повлечет за собой изменение их свойств. А поскольку клетка представляет собой систему взаимосвязанных мембран и многие процессы клеточного метаболизма проходят именно на мембранах, то в клетке нарушаются биохимические процессы. Выражено нарушение энергетического обмена, что связано с повреждением митохондрий. Нарушение целостности наружной мембраны клетки приводит к сдвигу ионного баланса клетки из-за выравнивания концентраций натрия и калия (в клетке - повышенное количество калия, в межклеточном пространстве - натрия).

Углеводы

Общая формула углеводов может быть представлена в виде Сn(H2O)m. Учитывая, что молекула углерода более устойчива к облучению, чем молекула воды, то при облучении возникают радикалы воды, о свойствах которых уже говорилось ранее. Поскольку углеводы - источник энергии в организме, то при их разрушении такой источник исчезает, что приводит к угнетению многих жизненно важных систем организма.

Воздействие ионизирующих излучений на углеводы следующее. Под действием излучения происходит отрыв атома водорода от кольца углеводной молекулы, образуются свободные радикалы, а затем - перекиси. Из продуктов распада углеводов - глицеринового - синтезируется метилглиоксаль - вещество, ингибирующее синтез ДНК и белка, и подавляющее деление клеток. Чувствительна к облучению и гуалуроновая кислота, являющаяся составным элементом соединительной ткани.

Клетка

Клетка - это один из основных структурных, функциональных и воспроизводящих элементов живой материи, ее элементарная живая система. В 1г человеческой ткани примерно 600 миллионов клеток, у новорожденного человека число клеток составляет 2·1012, которое еще больше возрастает по мере роста организма.

Клетка имеет достаточно сложное строение и изучается в биологии.

Справка. Если рассматривать только химический состав клетки, то в нее входит более 100 химических элементов, но на долю 4-х из них приходится 98% массы клетки - это кислород (65-75%), углерод (15-18%), водород (8-10%), азот (1,5-3%). В значительных количествах в организме человека имеются: сера, фосфор, хлор, калий, натрий, магний, кальций, железо. Остальные микроэлементы имеются в незначительных количествах. Воды в клетке 70-80%. Кроме химических, в клетке имеются и биологические молекулы: белки - (10-20%), жиры - (1-1,5%), углеводы - (2%), нуклеиновые кислоты (1-2%).

В организме человека можно выделить много видов клеток, выполняющих разные функции. Различают клетки: половые, соматические, жировые, лейкоциты, лимфоциты и др. Радиобиологический закон выделяет два типа клеток. Делящиеся клетки (и малодифференцированные ткани) относятся к радиочувствительным. Такими являются кроветворные клетки костного мозга, зародышевые клетки семенников, кишечный и плоский эпителий.

Справка.У детей все клетки делятся до окончания роста, а у взрослых делятся только клетки кожи, желудочно-кишечного тракта, глаз и крови. Остальные клетки периодически обновляются.

Неделящиеся клетки (и дифференцированные ткани) относят к радиоустойчивым. К ним относят мозг, мышцы, печень, почки, хрящи, связки. Исключение в этом списке составляют лимфоциты, несмотря на их дифференциацию и неспособность к делению.

Наибольший вред организму приносит облучение соматических клеток и клеток крови. Рассмотрим в качестве примера вначале соматическую клетку, так как их в организме много. Выделим в клетке только те элементы, которые больше всего подвержены воздействию радиации и вызывают наиболее тяжелые последствия. Поняв механизм воздействия радиации на клетку можно предпринимать меры защиты, которые снизят результаты этого воздействия.

Модель клетки (ее фрагметы) показана на рис.2.4. Клетка состоит из мембраны, цитоплазмы, ядра, рибосом, митохондрий, транспортных молекул тРНК (рибонуклеиновой кислоты), матричных мРНК, молекул АТФ (аденозинтрифосфата), рибосомных рРНК и др. В ядре клетки находится 46 хромосом.

Примечание: в клетке 80% рРНК, 5% - мРНК, 15% - тРНК. Рибосомы - клеточные органеллы, в которых синтезируются молекулы белка. Матричные (информационные) мРНК «снимают копию» с участков молекул ДНК и доставляют в рибосомы информацию о типах белка, которые необходимо синтезировать. Транспортные тРНК из тока кровеносных сосудов забирают аминокислоты и транспортируют в рибосомы, где рибосомные рРНК строят белок. Иногда для синтеза белка несколько рибосом объединяются по «команде» мРНК. Обычно в данный момент времени задачу синтеза белка решают только около 10% рибосом, остальные «отдыхают».

Рис.2.4 Модель соматической клетки (фрагмент cинтеза белка)

При облучении клетки, например, бета-частицами, прежде всего, повреждается мембрана. Если учесть, что давление внутри клетки больше, чем в межклеточном пространстве, то через образовавшиеся «бреши» будет вытекать цитоплазма. В этом случае ядро вырабатывает ферменты, которые тРНК транспортируют к местам повреждений мембраны и «зашивают» бреши. Таким образом, тРНК вместо того, чтобы заниматься своим делом - транспортировать аминокислоты в рибосомы для синтеза белка, занимаются «ремонтом» мембраны. Если интенсивность облучения превышает некоторый предел, то тРНК задачу «ремонта» мембраны решить не могут и клетка погибает. Дальнейшее проникновение бета-частиц в клетку может вызвать разрушения любых органел. При облучении бета-частицами самих молекул тРНК они повреждаются и не могут выполнять свои функции.

При облучении рибосом, за счет разрушений рибосомной РНК и белка, в рибосоме может быть построен другой белок, который ведет себя как инородное тело. Такое облучение не всегда представляет большую опасность, так как в последующих циклах может быть сформирован и «свой» белок. Повреждение матричных мРНК также может привести к формированию «чужого» белка. Если в последующих циклах облучение отсутствует или не приведет к разрушению мРНК, то информация для строительства белка будет достоверной.

Наиболее драматичная ситуация возникает, если поражаются хромосомы и их главная часть - молекулы ДНК. В этом случае клетка или погибает или начинает бесконтрольно делиться. Если учесть воздействие ионизирующего излучения и на другие основные органеллы клетки, то можно выделить следующие последствия облучения:

при облучении ядра клетки возможны: подавление клеточного деления (если клетка делится), двунитчатые разрывы нуклиотидов и хромосомные аберрации, однонитчатые разрывы нуклеотидов и репарация (восстановление) связей, нарушение синтеза ДНК и остановка деления (для делящихся клеток), генные мутации, нарушение транспортной функции и репарация, нарушение синтеза клеточных белков, запуск механизма бесконтрольного деления (в соматических клетках);

нарушение проницаемости цитоплазматической мембраны;

цитолиз лизосом (лизосомы - цитоплазматические включения, с которыми связано накопление некоторых ферментов и процессы внутриклеточного пищеварения);

нарушение энергетического обмена за счет разрушения (повреждения) митохондрий и молекул АТФ (аденозинтрифосфорной кислоты);

нарушение синтеза белков в рибосомах;

радиационный автолиз эндоплазматической сети (специальная структура цитоплазмы).

Если обобщить реакцию клетки на облучение (биологическая стадия), то можно выделить три возможные типа реакции на облучение:

1.Радиационный блок митозов (временная задержка деления);

2. Митотическая (репродуктивная) гибель клетки;

3. Интерфазная гибель клетки.

Наиболее универсальная реакция клетки на воздействие ионизирующих излучений - временная задержка деления (радиационный блок митозов). Длительность его зависит от дозы: на каждый Грей дозы облучения клетка отвечает задержкой митоза в 1 час. Проявляется этот эффект независимо от того, выживет ли клетка в дальнейшем. Причем с увеличением дозы облучения увеличивается не число реагирующих клеток, а именно время деления каждой клетки. Эта реакция имеет огромное приспособительное значение: увеличивается длительность интерфазы, оттягивается вступление клетки в митоз, создаются благоприятные условия для нормальной работы системы репарации ДНК.

При увеличении дозы облучения, развивается митотическая гибель клетки. Этоотносится к клеткам, которые не делятся или делятся редко. В клетке не выражены дегенеративные процессы.

Показателем выживаемости клетки является ее способность проходить 5 и более делений.

Варианты митотической гибели:

клетка гибнет в процессе одного из первых четырех пострадиационных митозов, невзирая на отсутствие видимых изменений;

облученные клетки после первого радиационного митоза формируют так называемые «гигантские» клетки (чаще в результате слияния «дочерних» клеток). Такие клетки способны делиться не более 2-3 раз, после чего погибают. Основная причина митотической гибели клетки - повреждение ее хромосомного аппарата, приводящее к дефициту синтеза ДНК.

Интерфазная гибель клетки наступает до вступления клетки в митоз. Для большинства соматических клеток человека она регистрируется после облучения в дозах в десятки и сотни Грей. Лимфоциты (радиочувствительные клетки) гибнут по этому механизму даже при небольших дозах.

Механизм интерфазной гибели следующий. За счет разрывов в молекуле ДНК нарушается структура хроматина. В мембранах идет процесс перекисного окисления липидов. Изменения ДНК-мембранного комплекса вызывают остановку синтеза ДНК. Повреждение мембраны лизосом приводит к выходу из них ферментов - протеаз и ДНК-аз. Эти ферменты разрушают ДНК, что ведет к пикнозу ядра. Повреждение мембран митохондрий ведет к выходу из них кальция, который активирует протеазы. Все это приводит к гибели клетки.

Степень разрушения клетки зависит не только от поглощенной дозы, но и ее распределения во времени. Если полученная доза растянута во времени, то ущерб будет меньше. Особенно это касается делящихся клеток. Впрочем, последствия для делящихся клеток во многом зависят от того, на какой фазе деления клетки имело место облучение. Итак, возможны три варианта последствий облучения клетки:

полное выживание клетки без последствий;

процесс выживания и деления осложнен и клетка погибает;

появление живой, но измененной клетки.

Третий случай наиболее опасен. При облучении делящейся соматической клетки возможно развитие рака, так как может быть порожден процесс бесконтрольного деления измененных клеток.

Рассмотрим последствия облучения половой клетки. Первая эмбриональная клетка, образующаяся после слияния сперматозоида с яйцом, особенно чувствительна к облучению. В первые 5 суток гибель зародыша наиболее вероятна, затем могут быть поражения мозга, уродства.

Облучение после органообразования у зародыша вызывает рождение хилого потомства. От радиации обычно быстро гибнут клетки лимфоцитов, незрелые клетки костного мозга, половые железы и клетки хрусталика глаза.

Как уже отмечалось, клетки крови чувствительны к облучению и поэтому ее заболевания - одна из проблем радиационной безопасности.

Наша справка. Кровь - непрозрачная, клейкая жидкость красного цвета, солоноватого вкуса, состоящая из двух частей: плазмы и форменных ферментов (эритроцитов, лейкоцитов и тромбоцитов). Объем плазмы у человека равен 55-60% общего объема крови. Она состоит (на 90-91%) из воды и сухого остатка (9-10%), в котором имеются белки и соли. В плазме содержатся также глюкоза, молочная кислота, жирные кислоты, ферменты, некоторые микроэлементы.

Основную массу форменных элементов крови составляют эритроциты. Они выполняют ряд важных функций: 1) поглощение кислорода в легких и перенос его в капилляры, поглощение углекислоты в капиллярах тканей и доставка ее в легкие; 2) сохранение активной реакции крови; 3) поддержание ионного состава крови; 4) участие в водно-солевом обмене; 5) адсорбция токсинов.

При облучении крови радиацией количество эритроцитов ежесуточно снижается и за месяц их потеря может достигнуть 25% от исходного уровня. В результате развивающаяся анемия замедляет процессы репарации, а дефицит кислорода в костном мозге нарушает его способность восстанавливать кроветворение.

Лейкоциты - типичные ядерные клетки. Они выполняют защитную функцию в борьбе с инфекцией.

При облучении ионизирующими лучами количество лейкоцитов уменьшается пропорционально полученной дозе. Сокращение лейкоцитов снижает сопротивляемость организма человека инфекциям.

Лимфоциты - наиболее чувствительный показатель тяжести поражения от ионизирующих излучений. Сокращение числа лимфоцитов наблюдается сразу после облучения и достигает максимума на 1-е - 3-и,сутки, тем самым подавляется иммунная система.

Тромбоциты играют важную роль в процессе свертывания крови. При облучении радиацией их количество падает, а следовательно появляются проблемы со свертываемостью крови.

Под действием радиации могут возникнуть нарушения кроветворения на различных этапах клеточного обновления. Может быть временное прекращение деления клеток, гибель малодифференцированных клеток, нарушение продолжительности созревания, жизни большинства зрелых функционирующих клеток. Самым серьезным из названных заболеваний является нарушение дифференциации клеток, приводящее к лейкозу.

Лейкоз - это заболевание, характеризующееся избыточным образованием неполноценных клеток крови (эритроцитов, лейкоцитов, тромбоцитов). Эту болезнь называют «раком» крови или белокровием.

Выводы:

1. Молекулы ДНК и клетки человека могут противостоять радиоактивному облучению, но только при определенной интенсивности и времени действия облучения.

2. Гибель отдельных клеток не означает гибели органа или организма в целом, вместо погибших клеток стимулируется деление новых. Появление живой, но измененной клетки вызывает опасность развития рака.

3. Наиболее разрушительными для организма человека являются радикалы воды.

Особенность раковых заболеваний - длительный латентный период, т.е. рак, проявляется не сразу, а через значительное время после облучения. Особенности заболевания различными видами рака демонстрируется на рис. 2.5.

Вопросы для самоконтроля

Основные этапы воздействия радиоактивных излучений на организм.

Основные радиационные повреждения.

Возможные последствия облучения соматической клетки при синтезе белков.

Возможные последствия радиоактивного облучения всех типов клеток.

Реакции клетки на облучение.

Размещено на Allbest.ru


Подобные документы

  • Природа и источники ионизирующего излучения, его физические свойства, воздействие на окружающую среду и гигиеническое нормирование. Наведенная радиоактивность, радиоактивный распад. Методы измерения ионизирующих излучений и измерительная техника.

    курсовая работа [582,7 K], добавлен 28.01.2014

  • Принятие Международной системы единиц Генеральной конференцией по мерам и весам в 1960 году. Соотношение между единицами СИ и внесистемными единицами в области радиационной безопасности. Энергетическое и временное распределения ионизирующего излучения.

    контрольная работа [46,1 K], добавлен 19.11.2010

  • Метрология ионизирующих излучений и точность дозиметрических методов. Дозы и их характеристики, эквивалент поглощения. Единицы измерений физических величин. Основные методы дозиметрии: биологические, физические, химические, ионизационные и люминисцентные.

    презентация [313,6 K], добавлен 12.02.2015

  • Физические основы дозиметрии ионизирующих излучений. Основные понятия и величины клинической дозиметрии. Формирование дозного поля в зависимости от вида и источника излучения. Профессиональные обязанности лучевого терапевта. Понятие поглощенной энергии.

    презентация [63,4 K], добавлен 06.05.2013

  • Понятие и свойства радиоактивных излучений, их ионизирующая и проникающая способности. Особенности взаимодействия излучений с живым организмом. Важность экологических проблем, связанных с защитой природы и человека от действия ионизирующих излучений.

    методичка [210,8 K], добавлен 30.04.2014

  • Виды ионизирующих излучений. Экспозиционная, поглощенная и эквивалентная дозы. Виды взаимодействия нейтронов с ядрами атомов. Расчет биологической защиты ядерного реактора. Критерии биологической опасности радионуклидов в случае внутреннего облучения.

    лекция [496,7 K], добавлен 01.05.2014

  • Природа и виды ионизирующих излучений. Взаимодействие электронов с веществом. Торможение атомных ядер. Зависимость линейного коэффициента ослабления гамма-излучения в свинце от энергии фотонов. Диффузия в структуре полупроводник-металл-диэлектрик.

    курсовая работа [1,2 M], добавлен 12.04.2012

  • Характерные параметры атомной физики. Рассеяние или поглощение нейтронов. Источники ионизирующего излучения. Фазы ионизации. Соматические воздействия. Пороговые дозы детерминированных эффектов при кратковременном облучении. Стохастические эффекты.

    презентация [179,9 K], добавлен 03.08.2016

  • Типы ионизирующих излучений. Единицы измерения доз и радиации. Взаимодействие ионизирующего излучения с веществом. Расчет дозных распределений. Дозиметрия при имплантации источников. Разработка программного обеспечения для расчета изодозных полей.

    дипломная работа [2,0 M], добавлен 18.07.2014

  • Измерение удельной активности цезия в образцах природной среды. Физико-химические свойства элемента. Загрязнение почв цезием, поведение в атмосфере. Формы нахождения радионуклидов в почве и их влияние на миграцию. Обнаружение ионизирующих излучений.

    реферат [173,9 K], добавлен 14.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.