Радиоэлектронные газоразрядные приборы

Электрический ток в газах, их ионизация. Самостоятельный и несамостоятельный разряд. Линии напряженности электрического поля. Классификационная характеристика стабилитронов. Схема понижения стабильного напряжения с помощью добавочного резистора.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 24.03.2012
Размер файла 4,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

TFT - дисплеи

Проходя путь от опытных черно-белых дисплеев, жк-дисплеи дошли до уровня развития на котором используется технология называемая TFT(Thin Film Transistors). Она основана на активных матрицах на базе тонкопленочных транзисторов. В этом случае на стеклянную подложку наносится слой аморфного кремния, на котором формируются транзисторы - по одному на каждый пиксель. Транзисторы исполняют роль посредника между системой адресации и ЖК-ячейками. Существуют и панели на основе тонкопленочных диодов (TFD). В активных матрицах исключается влияние процесса выборки (адресации) на соседние ячейки, каждый пиксел изолирован. Благодаря этому задержки при "переключении" жидкокристаллических ячеек удается сократить до 25 мс, что уже позволяет активно-матричным дисплеям соперничать с CRT-мониторами. Как только ячейка получает заряд, она, подобно конденсатору, хранит его, но недостаточно долго. В то время как сканирование матрицы завершается, ячейки, обработанные первыми, уже начинают терять заряд. Чтобы избежать неоднородности изображения, к каждой ячейке подключают дополнительный конденсатор, который "подпитывает" ее на протяжении цикла сканирования.

Общий принцип действия всех TFT LCD показан на рисунке 8: свет от неоновой лампы проходит через систему отражателей, направляется через первый поляризационный фильтр и попадает в слой жидких кристаллов, контролируемый транзистором; затем свет проходит через цветовые фильтры (как и в CRT, каждый пиксель матрицы строится из трёх компонент цвета - красной, зелёной и синей). Транзистор создаёт электрическое поле, задающее пространственную ориентацию жидких кристаллов. Свет, проходя через такую упорядоченную молекулярную структуру, меняет свою поляризацию, и в зависимости от неё будет либо полностью поглощён вторым поляризационным фильтром на выходе (образуя чёрный пиксель), либо не будет поглощаться или поглотится частично (образуя различные цветовые оттенки, вплоть до чистого белого).

Рисунок 8.

Цветные фильтры для красного, зелёного и синего цветов интегрированы в стеклянную основу и расположены близко друг к другу. Каждый пиксел (точка) состоит из трёх ячеек указанных цветов (субпикселей). Это означает, что при разрешении 1280 x 1024 точки экран содержит ровно 3840 x 1024 транзистора и пиксельных элемента. Шаг пиксела для 15.1" TFT-дисплея (1024 x 768 точек) составляет примерно 0.30 мм, а для 18.1" TFT (1280 x 1024 точки) примерно 0.28 мм.

Рисунок 9. Строение пикселя TFT-дисплея.

Пикселы TFT-дисплея. Левый верхний угол ячейки содержит тонкоплёночный транзистор (Thin Film Transistor). Цветные фильтры дают возможность ячейкам менять свои естественные цвета RGB. Точки явственно различимы, при этом чем меньше расстояние между ними, тем больше максимально возможное разрешение. Однако TFT также имеют физическое ограничение, которое определяется максимальной площадью экрана.

Самый распространённый тип цифровых панелей основан на технологии, сокращённо называемой TN TFT или TN+Film TFT (Twisted Nematic + Film). Термин Film обозначает дополнительное наружное плёночное покрытие, позволяющее увеличить угол обзора со стандартных 90 градусов (по 45 с каждой стороны) до приблизительно 140 градусов. Схема работы TN TFT дисплея показана на рисунке 10:

1. Когда транзистор находится в выключенном состоянии, то есть не создаёт электрическое поле, молекулы жидких кристаллов находятся в своём нормальном состоянии и выстроены так, чтобы менять угол поляризации проходящего через них светового потока на 90 градусов (жидкие кристаллы образуют спираль). Поскольку угол поляризации второго фильтра перпендикулярен углу первого, то проходящий через неактивный транзистор свет будет без потерь выходить наружу, образуя яркую точку, цвет которой задаётся световым фильтром.

2. Когда транзистор генерирует электрическое поле, все молекулы жидких кристаллов выстраиваются в линии, параллельные углу поляризации первого фильтра, и тем самым никоим образом не влияют на проходящий через них световой поток. Второй поляризующий фильтр поглощает свет полностью, создавая чёрную точку на месте одной из трёх цветовых компонент.

Проблемы с допустимым углом обзора экрана характерны для ЖК, обеспечивающих полутона. Результирующая интенсивность пропущенного панелью света вследствие явления двойного лучепреломления в жидких кристаллах зависит от угла (j) между нормалью к фронту световой волны и направлением директора молекул ЖК, как sin2j. Это означает, что в полностью включенном состоянии при значениях j вплоть до 30° интенсивность пропущенного света изменяется не более чем на 10%, в то время как при уровне серого 50% (угол между директором и нормалью к поверхности экрана составляет 45°) - на 90%, что ведет к серьезным искажениям градаций яркости или цветов при незначительном изменении угла обзора. Одним из самых простых способов избежать влияния двойного лучепреломления является нанесение на поверхности панели полимерных компенсирующих пленок, которые имеют показатель преломления другого знака, нежели жидкий кристалл.

Оригинальный способ разрешения проблемы нашел Гюнтер Баур в 1971 г. На основе его методики корпорация Hitachi в 1995 г. разработала технологию IPS (In-Plane Switching). Баур предложил новую схему ЖК-ячейки, в которой молекулы в нормальном состоянии не закручены в спираль на 90°, а ориентированы параллельно друг другу. Бороздки на нижней и верхней полимерных пленках параллельны, и все управляющие электроды расположены на одной стороне панели. При подаче напряжения электрическое поле разворачивает молекулы ЖК в плоскости экрана. Угол между директором и плоскостью панели остается постоянным. К сожалению, IPS имеет и некоторые недостатки, например на 50% ниже яркость.

Японское подразделение фирмы IBM предложило и совершенствует методику OCB (Optically Compensated Bend). В ее основе так называемые Pi-ячейки, в которых используется возможность изменять параметры двойного лучепреломления жидких кристаллов. Луч света, попадая в ячейку, немного изменяет свое направление, как бы "прижимаясь" к направлению вектора нормали к поверхности экрана, а покидая ее, возвращается к своему первоначальному направлению распространения.

Специалисты Sharp реализовали другую технологию расширения угла обзора -- ASM (Axially Symmetric aligned micro-cell Mode). На цветном фильтре формируются специальные выступающие стенки, покрытые ориентирующей полимерной пленкой (Рисунок 11). Они образуют индивидуальные ЖК-ячейки с необычным аксиально-симметричным расположением молекул кристалла (наподобие лопастей вентилятора). Стенки, ограничивающие ЖК-ячейки, получаются в результате внедрения в состав кристалла молекул полимеризованной смолы и облучения полученной смеси ультрафиолетовым излучением после фазового разделения. ASM относится к классу методик стабилизации ЖК с помощью полимеров. Согласно другому методу использования полимеров, их в небольшом количестве домешивают к жидким кристаллам, что позволяет контролировать ориентацию молекул ЖК непосредственно внутри ячейки, а не только на двух граничных поверхностях, как это происходит в случае полимерных пленок.

Рисунок 11

Ферродиэлектрические жидкие кристаллы

Одним из слабых мест любой ЖК-панели является регенерация изображения. Сложные процессы зарядки и разрядки ячеек, короткое время сохранения ими заданного состояния, опасность накопления значительных зарядов -- все это усложняет производство. Косвенно удается упростить управляющую электронику, используя ферродиэлектрические жидкие кристаллы (FLCD). Если придать группе молекул определенную ориентацию, они (в отсутствие внешних воздействий) будут сохранять ее в течение неограниченного периода времени, образуя единый домен. Ферродиэлектрические ячейки не требуют частой регенерации, сканирование будет происходить только в моменты смены кадров. К тому же они обладают отменной скоростью реакции - 10 мс. Однако их бистабильная природа затрудняет генерацию полутонов. Создаются дисплеи и на основе антиферродиэлектрических ЖК (AFLCD). Самые последние их модификации позволяют частично снять эту проблему.

Размещено на Allbest.ru


Подобные документы

  • Условия возникновения электрического разряда в газах. Принцип ионизации газов. Механизм электропроводности газов. Несамостоятельный газовый разряд. Самостоятельный газовый разряд. Различные типы самостоятельного разряда и их техническое применние.

    реферат [32,3 K], добавлен 21.05.2008

  • Электрический разряд в газах. Ионизация газов. Механизм электропроводности газов. Несамостоятельный газовый разряд. Самостоятельный газовый разряд. Различные типы самостоятельного разряда и их техническое применение.

    реферат [22,1 K], добавлен 17.05.2006

  • Явление ионизации и рекомбинации в газах, его физическое обоснование и значение. Самостоятельный и несамостоятельный газовый разряд, их сравнительное описание, применение и основные влияющие факторы. Понятие о плазме, ее характеристика и свойства.

    презентация [3,7 M], добавлен 13.02.2016

  • Силовые линии напряженности электрического поля для однородного электрического поля и точечных зарядов. Поток вектора напряженности. Закон Гаусса в интегральной форме, его применение для полей, созданных телами, обладающими геометрической симметрией.

    презентация [342,6 K], добавлен 19.03.2013

  • Элементарный электрический заряд. Закон сохранения электрического заряда. Напряженность электрического поля. Напряженность поля точечного заряда. Линии напряженности силовые линии. Энергия взаимодействия системы зарядов. Циркуляция напряженности поля.

    презентация [1,1 M], добавлен 23.10.2013

  • Свойства силовых линий. Поток вектора напряженности электрического поля. Доказательство теоремы Гаусса. Приложение теоремы Гаусса к расчету напряженности электрических полей. Силовые линии на входе и на выходе из поверхности. Обобщенный закон Кулона.

    реферат [61,6 K], добавлен 08.04.2011

  • Порядок и закономерности движения зарядов в газе, связанные с ним физические законы. Ионизация газа электронами путем отрыва одного электрона. Зависимости коэффициента ионизации газа электронами от напряженности электрического поля и давления неона.

    реферат [142,5 K], добавлен 14.11.2011

  • Электромагнитное поле. Система дифференциальных уравнений Максвелла. Распределение потенциала электрического поля. Распределения потенциала и составляющих напряженности электрического поля и построение графиков для каждого расстояния. Закон Кулона.

    курсовая работа [1,1 M], добавлен 12.05.2016

  • Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.

    контрольная работа [5,6 M], добавлен 14.12.2009

  • Тлеющий газовый разряд как один из видов стационарного самостоятельного электрического разряда в газах. Применение его как источника света в неоновых лампах, газосветных трубках и плазменных экранах. Создание квантовых источника света, газовых лазеров.

    презентация [437,2 K], добавлен 13.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.