Астрономия древней Греции

Традиционная версия античной астрономии. Научный метод древнегреческой астрономии и доминирующая методология в античной астрономии. Представление об астрономических познаниях греков. Философский фундамент астрономии. Структура Вселенной по Аристотелю.

Рубрика Философия
Вид реферат
Язык русский
Дата добавления 21.10.2010
Размер файла 49,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Астрономия Древней Греции

Астрономия Древней Греции -- астрономические познания и взгляды тех людей, которые писали на древнегреческом языке, независимо от географического региона: сама Эллада, эллинизированные монархии Востока, Рим или ранняя Византия. Древнегреческая астрономия является одним из важнейших этапов развития не только астрономии как таковой, но и науки вообще. В трудах древнегреческих учёных находятся истоки многих идей, лежащих в основании науки Нового времени. Между современной и древнегреческой астрономией существует отношение преемственности, в то время как наука других древних цивилизаций оказала влияние на современную только при посредничестве греков.

Историография древнегреческой астрономии

За небольшими исключениями[1], до нас не дошли специальные труды античных астрономов, и мы можем восстанавливать их достижения в основном на основании сочинений философов, не всегда имевших адекватное представление о тонкостях научных теорий и к тому же далеко не всегда являвшихся современниками научных достижений, о которых они пишут в своих книгах. Часто при реконструкции истории античной астрономии используются труды астрономов средневековой Индии, поскольку, как полагает большинство современных исследователей, индийская средневековая астрономия в значительной мере базируется на греческой астрономии доптолемеева (и даже догиппархова) периода[2]. Тем не менее, у современных историков пока еще нет однозначного представления о том, как происходило развитие древнегреческой астрономии.

Традиционная версия античной астрономии[3] делает основной упор на объяснение иррегулярности планетных движений в рамках геоцентрической системы мира. Считается, что большую роль в развитии астрономии сыграли досократики, сформулировавшие представление о природе как о самостоятельном бытии, независящей от воли богов и тем самым давшим философское обоснование поискам внутренних закономерностей жизни природы. Однако ключевой фигурой при этoм оказывается Платон (V - IV вв. до н.э.), который поставил перед математиками задачу выразить видимые сложные движения планет (включая попятные движения) как результат сложения нескольких простых движений, в качестве которых представлялись равномерные движения по кругу. В ообсновании этой программы большую роль сыграло учение Аристотеля. Первой попыткой решить «задачу Платона» задачу стала теория гомоцентрических сфер Евдокса, за которой последовала теория эпициклов Аполлония Пергского. При этом ученые не столько стремились объяснять небесные явления, сколько рассматривали их как повод для абстрактных геометрических задач и философских спекуляций[4]. Соответственно, астрономы практически не занимались развитием методики наблюдений и созданием теорий, способных предсказывать те или иные небесные явления. В этом, как считают, греки сильно уступали вавилонянам, которые с давних пор изучали закономерности движения небесных тел. Согласно этой точке зрения, решительный перелом в античной астрономии произошел только после того, как в их руки попали результаты наблюдений вавилонских астрономов (что случилось благодаря завоеваниям Александра Македонского). Только тогда греки почувствовали вкус к пристальному наблюдению звёздного неба и применению геометрии к вычислению положений светил. Первым на этот путь, как считается, вступил Гиппарх (вторая половина II в. до н.э.), построивший первые модели движения Солнца и Луны, не только удовлетворяющие требованиям философам, но и объясняющие данные наблюдений. С этой целью он разработал новый математический аппарат -- тригонометрию[5]. Кульминацией античной астрономии явилось создание птолемеевой теории движения планет (II в. н.э.).

Согласно альтернативной точке зрения, проблема построения планетной теории вообще не входила в число основных задач древнегреческих астрономов. По мнению сторонников этого подхода, в течении длительного времени греки либо вообще не знали о попятных движениях планет, либо не придавали этому особого значения[6]. Главной задачей астрономов была разработка календаря и методов определения времени по звёздам[7]. Основополагающая роль при этом приписывается Евдоксу, но не столько как создателю теории гомоцентрических сфер, сколько как разработчику концепции небесной сферы. По сравнению со сторонниками предыдущей точки зрения, ещё более фундаментальной оказывается роль Гиппарха и особенно Птолемея, поскольку задача построения теории видимых движений светил на основании наблюдательных данных связывается именно с этими астрономами.

Наконец, существует и третья точка зрения, являющаяся, в некотором смысле, противоположной второй. Развитие математической астрономии её сторонники связывают с пифагорейцами, которым приписывается и создание концепции небесной сферы, и постановка задачи построения теории попятных движений, и даже первая теория эпициклов[8]. Сторонники этой точки зрения оспаривают тезис о неэмпирическом характере астрономии догиппархова периода, указывая на высокую точность астрономических наблюдений астрономов III века до н.э.[9] и использование этих данных Гиппархом для построения своих теорий движения Солнца и Луны[10], широкое использование в космологии спекуляций о ненаблюдаемости параллаксов планет и звёзд[11]; некоторые результаты наблюдений греческих астрономов оказались доступными их вавилонским коллегам[10]. Основы тригонометрии как математического фундамента астрономии также были заложены астрономами III века до н.э.[12] Значительным стимулом для развития античной астрономии явилось создание в III веке до н.э. Аристархом Самосским гелиоцентрической системы мира и её последующая разработка[13], в том числе с точки зрения динамики движения планет[14]. Гелиоцентризм при этом считается хорошо укоренённым в античной науке, а отказ от него связывается с вненаучными, в частности, религиозными и политическим факторами.

Научный метод древнегреческой астрономии

Главным достижением астрономии древних греков следует считать геометризацию Вселенной, что включает в себя не только систематическое использование геометрических конструкций для представления небесных явлений, но и строгое логическое доказательство утверждений по образцу евклидовой геометрии.

Доминирующей методологией в античной астрономии была идеология «спасения явлений»: необходимо найти такую комбинацию равномерных круговых движений, с помощью которых может быть смоделирована любая неравномерность видимого движения светил. «Спасение явлений» мыслилось греками как чисто математическая задача, и не предполагалось, что найденная комбинация равномерных круговых движений имеет какое-либо отношение к физической реальности. Задачей физики считался поиск ответа на вопрос «Почему?», то есть установление истинной природы небесных объектов и причин их движений исходя из рассмотрения их субстанции и действующих во Вселенной сил; применение математики при этом не считалось необходимым.

Периодизация

Историю древнегреческой астрономии можно условно разделить на четыре периода, ассоциируемых с различными этапами развития античного общества:

Донаучный период (до VI века до н. э.): становление полисной структуры в Элладе;

Классический период (VI--IV века до н. э.): рассвет древнегреческого полиса;

Эллинистический период (III--II века до н. э.): рассвет крупных монархических держав, возникших на обломках империи Александра Македонского; с точки зрения науки особую роль играет птолемеевский Египет со столицей в Александрии;

Период упадка (I век до н. э. -- I век н. э.), ассоциируемый с постепенным угасанием эллинистических держав и усилением влияния Рима;

Имперский период (II--V века н. э.): объединение всего Средиземноморья, включая Грецию и Египет, под властью Римской империи.

Эта периодизация является достаточно схематичной. В ряде случаев трудно установить принадлежность того или иного достижения к тому или иному периоду. Так, хотя общий характер астрономии и науки вообще в классический и эллинистический период выглядит достаточно различным, в целом развитие в VI--II веках до н. э. представляется более-менее непрерывным. С другой стороны, ряд достижений науки последнего, имперского периода (особенно в области астрономического приборостроения и, возможно, теории) являются ни чем иным, как повторением успехов, достигнутых астрономами эллинистической эпохи.

Донаучный период (до VI века до н. э.)

Атлант, держащий небо (Атлант Фарнезе -- древнейший из дошедших до нас звёздных глобусов)

Представление об астрономических познаниях греков этого периода дают поэмы Гомера и Гесиода: там упоминается ряд звёзд и созвездий, приводятся практические советы по использованию небесных светил для навигации и для определения сезонов года. Космологические представления этого периода целиком заимствовались из мифов: Земля считается плоской, а небосвод -- твёрдой чашей, опирающейся на Землю.

Вместе с тем, согласно мнению некоторых историков науки, членам одного из эллинских религиозно-философских союзов того времени (орфикам) были известны и некоторые специальные астрономические понятия (например, представления о некоторых небесных кругах)[15]. С этим мнением, однако, не согласно большинство исследователей.

Классический период (с VI -- по IV век до н. э.)

Главными действующими лицами этого периода являются философы, интуитивно нащупывающие то, что впоследствии будет названо научным методом познания. Одновременно проводятся первые специализированные астрономические наблюдения, развивается теория и практика календаря; в основу астрономии впервые полагается геометрия, вводится ряд абстрактных понятий математической астрономии; делаются попытки отыскать в движении светил физические закономерности. Получили научное объяснение ряд астрономических явлений, доказана шарообразность Земли. Вместе с тем, связь между астрономическим наблюдениями и теорией ещё недостаточно прочна, слишком велика доля спекуляций, основанных на сугубо эстетических соображениях.

Источники

До нас дошли только два специализированных астрономических труда этого периода, трактаты О вращающейся сфере и О восходе и заходе звёзд Автолика из Питаны -- учебники по сферической астрономии, написанные в самом конце этого периода, около 310 года до н. э. [16] К ним примыкает также поэма Феномены Арата из Сол (написанная, впрочем, в первой половине III века до н. э.), где содержится описание древнегреческих созвездий (поэтическое переложение не дошедших до нас трудов Евдокса Книдского (IV век до н. э.) [17].

Вопросы астрономического характера часто затрагиваются в трудах древнегреческих философов: некоторых диалогах Платона (особенно Тимей, а также Государство, Федон, Законы, Послезаконие), трактатах Аристотеля (особенно О Небе, а также Метеорологика, Физика, Метафизика). Труды философов более раннего времени (досократиков) до нас дошли только в очень отрывочном виде через вторые, а то и третьи руки.

Философский фундамент астрономии

В этот период выработались два принципиально различных философских подхода в науке вообще и астрономии в частности. Первый из них зародился в Ионии и поэтому может быть назван ионийским. Для него характерны попытки найти материальную первооснову бытия, изменением которой философы надеялись объяснить все многообразие природы. В движении небесных тел эти философы пытались увидеть проявления тех же сил, что действуют и на Земле. Первоначально ионийское направление было представлено философами города Милета Фалесом, Анаксимандром и Анаксименом. Этот подход нашёл своих сторонников и в других частях Эллады. К числу ионийцев относится Анаксагор из Клазомен, значительную часть жизни проведший в Афинах, в значительной мере уроженец Сицилии Эмпедокл из Акраганта. Своей вершины ионийский подход достиг в трудах античных атомистов: Левкиппа (родом, возможно, также из Милета) и Демокрита из Абдер, явившихся предтечами механистической философии.

Стремление дать причинное объяснение явлений природы было сильной стороной ионийцев. В настоящем состоянии мира они увидели результат эволюции под действием физических сил без привлечения мифических богов и чудовищ. Они были первыми, кого назвали физиками. Однако недостатком учений ионийских натурфилософов была попытка создать физику без математики. Ионийцы не увидели геометрическую основу Космоса.

Второе направление ранней греческой философии можно назвать италийским, поскольку оно получило первоначальное развитие в греческих колониях италийского полуострова. Его основоположник Пифагор основал знаменитый религиозно-философский союз, представители которого, в отличие от ионийцев, видели основу мира в математической гармонии, точнее, в гармонии чисел, стремясь при этом к единению науки и религии. Небесные светила они считали богами. Это обосновывалось следующим образом: боги -- это совершенный разум, для них характерен наиболее совершенный вид движения; таковым является движение по окружности, поскольку оно вечное, не имеет ни начала, ни конца и все время переходит само в себя. Как показывают астрономические наблюдения, небесные тела движутся по окружностям, следовательно, они являются богами. Наследником пифагорейцев был великий афинский философ Платон, который полагал весь Космос созданным идеальным божеством по своему образу и подобию. Хотя пифагорейцы и Платон верили в божественность небесных светил, для них не была характерна вера в астрологию: известен крайне скептический отзыв о ней Евдокса, ученика Платона и последователя философии пифагорейцев.

Стремление поисков математических закономерностей в природе было сильной стороной италийцев. Характерная для италийцев страсть к идеальным геометрическим фигурам позволила им первыми предположить, что Земля и небесные тела имеют форму шара и открыть дорогу к приложению математических методов к познанию природы. Однако полагая небесные тела божествами, они практически полностью изгнали с небес физические силы.

Структура Вселенной по Аристотелю. Цифрами обозначены сферы: земли (1), воды (2), воздуха (3), огня (4), эфира (5), Перводвигатель (6). Масштаб не соблюдён

Сильные стороны этих двух исследовательских программ, ионийской и пифагорейской, дополняли друг друга. Попытку их синтеза предпринял Аристотель из Стагира. Важнейшим принципом основанной им школы, Ликея, было наблюдение за природой. В значительной степени Аристотелю мы обязаны важнейшим требованием к научной теории: теория должна быть логичной, согласной сама с собой, и вместе с тем она должна соответствовать данным наблюдений. Однако аристотелев синтез ионийского и италийского оказался в значительной мере неудачным. Аристотель как бы рассёк Вселенную по вертикали. Верхняя часть, надлунный мир, в целом соответствовал пифагорейско-платоновскому идеалу совершенной гармонии. Хотя Аристотель не называл небесные светила богами, он полагал их имеющими божественную природу, будучи состоящими из совершенной материи -- эфира, для которого характерен наиболее совершенный вид движения -- вечное неизменное движение по кругу. В конечном итоге, источником движения небесных тел Аристотель считал Перводвигатель, находящийся на границе мира. Теория подлунного мира, наоборот, напоминает построения философов-ионийцев (доатомистического периода) с их отказом от применения математики к поискам природных закономерностей. Для подлунного мира было характерно движение по вертикальным прямым линиям; такое движение должно иметь начало и конец, что соответствует бренности всего земного.

Практическая астрономия

До нас дошла только фрагментарная информация о методах и результатах наблюдений астрономов классического периода. Исходя из доступных источников, можно предположить, что одним из основных объектов их внимания являлись восходы звёзд, поскольку результаты таких наблюдений можно было использовать для определения времени ночью. Трактат с данными таких наблюдений составил Евдокс Книдский (вторая половина IV века до н. э.); поэт Арат облёк трактат Евдокса в поэтическую форму.

Начиная с Фалеса Милетского интенсивно наблюдались также явления, связанные с Солнцем: солнцестояния и равноденствия. Согласно дошедшим до нас свидетельствам, астроном Клеострат Тенедосский (около 500 г. до н. э.) первым в Греции установил, что созвездия Овна, Стрельца и Скорпиона являются зодиакальными, то есть через них проходит Солнце в своём движении по небесной сфере. Самым ранним свидетельством знания греками всех зодиакальных созвездий является календарь, составленный афинским астрономом Эвктемоном в середине V века до н. э. Тот же Эвктемон впервые установил неравенство времён года, связанное с неравномерностью движения Солнца по эклиптике. По его измерениям, длина астрономической весны, лета, осени и зимы составляет, соответственно, 93, 90, 90 и 92 дней (на самом деле, соответственно, 94,1 день, 92,2 дня, 88,6 дней, 90,4 дня). Гораздо более высокая точность характеризует измерения Каллиппа из Кизика, жившего столетие спустя: по его данным, весна длится 94 дня, лето 92 дня, осень 89 дней, зима 90 дней.

Древнегреческие учёные фиксировали также появления комет, покрытия планет Луной

Об астрономических инструментах греков классического периода практически ничего неизвестно. Про Анаксимандра Милетского сообщали, что для распознавания равноденствий и солнцестояний он использовал гномон -- древнейший астрономический инструмент, представляющий собой вертикально расположенный стержень. Евдоксу приписывают и изобретение «паука» -- основного конструктивного элемента астролябии[18].

Для исчисления времени днём, по всей видимости, часто использовались солнечные часы. Сначала были изобретены сферические солнечные часы, как наиболее простые. Усовершенствований конструкции солнечных часов также приписывалось Евдоксу. Вероятно, это было изобретение одной из разновидностей плоских солнечных часов.

Календарь греков был лунно-солнечным. Среди авторов календарей (так называемых парапегм) были такие знаменитые учёные, как Демокрит, Метон, Эвктемон. Парепегмы часто выбивались на каменных стелах и колоннах, установленных в общественных местах. В Афинах был в ходу календарь, основанный на 8-летнем цикле (согласно некоторым сведениям, введённый знаменитым законодателем Солоном). Значительное усовершенствование лунно-солнечного календаря принадлежит афинскому астроному Метону, который открыл 19-летний календарный цикл:

19 лет = 235 синодических месяцев = 6940 дней.

В течение этого периода времени даты солнцестояний и равноденствий постепенно меняются и одна и та же лунная фаза каждый раз приходится на другую календарную дату, однако по окончании цикла солнцестояние и равноденствие приходятся на ту же дату, и в этот день имеет место та же фаза Луны, что и в начале цикла. Однако метонов цикл так и не был положен в основу афинского гражданского календаря (а его первооткрыватель удостоился насмешек в одной из комедий Аристофана).

Уточнение метонова цикла произвёл Каллипп, живший примерно через столетие после Метона: он объединил четыре цикла, опустив при этом 1 день. Таким образом, продолжительность каллиппова цикла составила

76 лет = 940 месяцев = 27759 дней.

Год в цикле Каллиппа равен 365,25 суток (такое же значение принято в юлианском календаре). Продолжительность месяца составляет 29,5309 суток, что всего на 22 секунды длиннее его истинного значения. На основе этих данных Каллипп составил собственный календарь.

Космология

В классическую эпоху возникла геоцентрическая система мира, согласно которой в центре сферической Вселенной находится неподвижная шарообразная Земля и видимое суточное движение небесных светил является отражением вращения Космоса вокруг мировой оси. Её предтечей является Анаксимандр Милетский. В его системе мира содержались три революционных момента: плоская Земля расположена без какой-либо опоры, пути небесных тел являются целыми кругами, небесные тела находятся на различных расстояниях от Земли. Ещё дальше пошёл Пифагор, предположивший, что Земля имеет форму шара. Эта гипотеза поначалу вызвала большое сопротивление; так, среди её противников были знаменитые философы ионийского направления Анаксагор, Эмпедокл, Левкипп, Демокрит. Однако после её поддержки Парменидом, Платоном, Евдоксом и Аристотелем она стала основой всей математической астрономии и географии.

Средневековое изображение геоцентрической системы

Если Анаксимандр считал звёзды расположенными ближе всего к Земле (далее следовали Луна и Солнце), то его ученик Анаксимен впервые предположил, что звёзды являются самыми далёкими от Земли объектами, закреплёнными на внешней оболочке Космоса. Возникло мнение (впервые, вероятно, у Анаксимена или пифагорейцев), что период обращения светила по небесной сфере растёт с увеличением его расстояния от Земли. Таким образом, порядок расположения светил оказывался таким: Луна, Солнце, Марс, Юпитер, Сатурн, звёзды. Сюда не включены Меркурий и Венера, потому что период их обращения по небесной сфере равен одному году, как и у Солнца. Аристотель и Платон помещали эти планеты сразу за Солнцем. Аристотель обосновывал это тем, что никакая из планет никогда не заслоняла собою Солнце и Луну, хотя обратное (покрытие планет Луной) наблюдалось неоднократно.

Начиная с Анаксимандра, предпринимались многочисленные попытки установить расстояния от Земли до небесных тел. Эти попытки были основаны на спекулятивных пифагорейских соображениях о гармонии мира. Они нашли отражение, в частности, у Платона[19].

Философы-ионийцы полагали, что движением небесных светил управляют силы, аналогичные тем, что действуют в земном масштабе. Так, Эмпедокл, Анаксагор, Демокрит полагали, что небесные тела не падают на Землю, поскольку их удерживает центробежная сила. Италийцы (пифагорейцы и Платон) считали, что светила, будучи богами, движутся сами по себе, как живые существа.

Аристотель полагал, что небесные тела переносятся в своём движении твёрдыми небесными сферам, к которым они прикреплены. По его мнению, всё, что движется, приводится в движение чем-нибудь внешним, которое, в свою очередь, также чем-то движется, и так далее, пока мы не дойдем до двигателя, который сам по себе неподвижен. Таким образом, сферы (несущие на себе небесные светила) приводятся в движение двигателями, которые сами по себе неподвижны. За каждое небесное тело ответственно несколько неподвижных двигателей, по числу сфер, которые его несут. Сфера неподвижных звезд должна иметь только один двигатель, поскольку она совершает лишь одно движение -- суточное вращение вокруг оси. Поскольку она охватывает весь мир, соответствующий двигатель и является в конечном итоге источником всех движений во Вселенной. Все неподвижные двигатели разделяют те же качества, что и Перводвигатель: они являются нематериальными бестелесными образованиями и представляют собой чистый разум (средневековые философы часто отождествляли их с ангелами).

Геоцентрическая система мира стала основной космологической моделью вплоть до XVII века н. э. Однако учёные классического периода развивали и другие взгляды. Так, среди пифагорейцев было довольно широко распространено мнение (обнародованное Филолаем Кротонским в конце V века до н. э.), что в середине мира располагается некий Центральный огонь, вокруг которого, наряду с планетами, вращается и Земля, делая полный оборот за сутки; Центральный огонь невидим, поскольку между ним и Землёй движется еще одно (тёмное) небесное тело -- Противоземля. Несмотря на искусственность этой системы мира, она имела важнейшее значение для развития науки, поскольку впервые в истории Земля была названа одной из планет. Пифагорейцы выдвинули также мнение, что суточное вращение небосвода объясняется вращением Земли вокруг оси. Это мнение было поддержано и обосновано Гераклидом Понтийским (2-я половина IV века до н. э.). Кроме того, на основании дошедших до нас скудных сведений можно предположить, что Гераклид считал Венеру и Меркурий обращающимися вокруг Солнца, которое, в свою очередь, обращается вокруг Земли. Существует и другая реконструкция система мира Гераклида: и Солнце, и Венера, и Земля вращаются по окружностям вокруг единого центра, причём период одного оборота Земли равен году[20]. В таком случае теория Гераклида являлась органическим развитием системы мира Филолая и непосредственным предшественником гелиоцентрической системы мира Аристарха.

Среди философов были значительные разногласия насчёт того, что находится вне Космоса. Некоторые философы считали, что там располагается бесконечное пустое пространство; по мнению Аристотеля, вне Космоса нет ничего, даже пространства; атомисты Левкипп, Демокрит и их сторонники полагали, что за нашим миром (ограниченным сферой неподвижных звёзд) находятся другие миры. Наиболее близкими к современным были взгляды Гераклида Понтийского, согласно которому неподвижные звёзды -- это и есть другие миры, располагающиеся в бесконечном пространстве.

Объяснение астрономических явлений и природы небесных тел

Классический период характеризуется широким распространением спекуляций о природе небесных тел. Анаксагор из Клазомен (V век до н. э.) первым предположил, что Луна светит отражённым светом Солнца и на этой основе впервые в истории дал правильное объяснение природы лунных фаз и солнечных и лунных затмений. Солнце Анаксагор считал гигантским камнем (величиной с Пелопонесс), раскалённым за счёт трения о воздух (за что философ чуть было не подвергся смертной казни, поскольку эта гипотеза была сочтена противоречащей государственной религии). Эмпедокл полагал Солнце не самостоятельным объектом, а отражением на небосводе Земли, освящённой небесным огнём. Пифагореец Филолай полагал, что Солнце является прозрачным сферическим телом, светящееся потому, что она преломляет свет небесного огня; то, что мы видим в качестве дневного светила, это изображение, получающееся в атмосфере Земли. Некоторые философы (Парменид, Эмпедокл) полагали, что яркость дневного неба обусловлена тем, что небосвод состоит из двух полусфер, светлой и тёмной, период обращений которых вокруг Земли составляет сутки, как и период обращения Солнца. Аристотель полагал, что принимаемое нами излучение небесных тел порождается не ими самими, а нагреваемым ими воздухом (частью подлунного мира)[21].

Большое внимание греческих учёных привлекали кометы. Пифагорейцы считали их разновидностью планет. Эти мнения были отвергнуты Аристотелем, который считал кометы (как и метеоры) воспламенением воздуха в верхней части подлунного мира. Причина этих воспламенений заключается в неоднородности окружающего Землю воздуха, наличия в нём легко воспламеняющихся включений, которые вспыхивают из-за передачи тепла от вращающегося над подлунным миром эфира. По мнению Аристотеля, ту же природу имеет и Млечный Путь; вся разница в том, что в случае комет и метеоров свечение возникает из-за нагрева воздуха одной конкретной звездой, в то время как Млечный Путь возникает из-за нагрева воздуха всей надлунной областью. Некоторые пифагорейцы вместе с Энопидом Хиосским считали Млечный Путь выжженной траекторией, по которому некогда обращалось Солнце. Анаксагор полагал Млечный Путь кажущимся скоплением звёзд, находящимся в том месте, где на небосвод падает земная тень. Совершенно правильную точку зрения высказал Демокрит, который полагал, что Млечный Путь -- это совместное свечение многих расположенных рядом звёзд.

Математическая астрономия

Главным достижением математической астрономии рассматриваемого периода является концепция небесной сферы. Вероятно, изначально это было чисто умозрительное представление, основанное на соображениях эстетики. Однако позднее было осознано, что явления восхода и захода светил, их кульминации действительно происходят таким образом, будто бы звезды были жёстко скреплены со сферическим небосводом, вращающимся вокруг наклонённой к земной поверхности оси. Таким образом естественно объяснялись основные особенности движений звёзд: каждая звезда всегда восходит в одной и той же точке горизонта, разные звезды за одно и то же время проходят по небу разные дуги, причём чем ближе звезда к полюсу мира, тем меньшую дугу она проходит за одно и то же время. Необходимым этапом работы по созданию этой теории должно было стать осознание того, что размер Земли неизмеримо мал по сравнению с размером небесной сферы, что давало возможность пренебрегать суточными параллаксами звёзд. До нас не дошли имена людей, совершивших эту важнейшую интеллектуальную революцию; скорее всего, они принадлежали к пифагорейской школе. Наиболее раннее дошедшие до нас руководство по сферической астрономии принадлежат Автолику из Питаны (около 310 г. до н. э.). Там доказано, в частности, что точки вращающейся сферы, не лежащие на её оси, при равномерном вращении описывают параллельные круги, перпендикулярные оси, причём за равное время все точки поверхности описывают подобные дуги.

Движение Солнца как суперпозиция годичного движения по эклиптике (внутренняя сфера) и суточного параллельно небесному экватору (внешняя сфера). T -- Земля.

Другим важнейшим достижением математической астрономии классической Греции является введение представления об эклиптике -- большом круге, наклонённым по отношению к небесному экватору, по которому совершает своё движение среди звёзд Солнце. Вероятно, это представление было введено знаменитым геометром Энопидом Хиосским, который также сделал и первую попытку измерения наклона эклиптики к экватору (24°).

В основу геометрических теорий движения небесных тел древнегреческие астрономы положили следующий принцип: движение каждой планеты, Солнца и Луны является комбинацией равномерных круговых движений. Этот принцип, предложенный Платоном или ещё пифагорейцами, исходит из представления о небесных телах как о божествах, которым может быть присущ только самый совершенный вид движения -- равномерное движение по окружности. Как считается, первую теорию движения небесных тел, основанной на этом принципе, предложил Евдокс Книдский. Это была теория гомоцентрических сфер -- разновидность геоцентрической системы мира, в которой небесные тела считаются жёстко прикреплёнными к комбинации скреплённых между собой жёстких сфер с общим центром. Усовершенствованием этой теории занимался Каллипп из Кизика, а Аристотель положил её в основу своей космологической системы. Теория гомоцентрических сфер была впоследствии оставлена, так предполагает неизменность расстояний от светил до Земли (каждое из светил движется по сфере, центр которой совпадает с центром Земли). Однако к концу классического периода уже было накоплено значительное количество свидетельств, что расстояния небесных тел от Земли на самом деле меняются: значительные изменения блеска некоторых планет, непостоянство углового диаметра Луны, наличие наряду с полными и кольцеобразных солнечных затмений.

Система из четырёх концентрических сфер, использовавшаяся для моделирования движения планет в теории Евдокса. Цифрами обозначены сферы, отвечавшие за суточное вращение небосвода (1), за движение вдоль эклиптики (2), за попятные движения планеты (3 и 4). T -- Земля, пунктирная линия изображает эклиптику (экватор второй сферы).

По мнению ван дер Вардена, пифагорейцы ещё доплатоновой эпохи разработали также теории движения планет, основанные на модели эпициклов[22]. Ему даже удалось восстановить некоторые параметры этой ранней теории эпициклов[23]. Достаточно успешными были теории движения внутренних планет и Солнца, причём последняя, по мнению исследователя, была положена в основу календаря Каллиппа. Мнение ван дер Вардена, однако, не разделяется большинством историков науки[24].

Эллинистический период (III--II века до н. э.)

Важнейшую организующую роль в науке этого периода играет Александрийская библиотека и Мусейон. Хотя в начале эллинистического периода возникли две новые философские школы, стоиков и эпикурейцев, научная астрономия уже достигла уровня, который позволил ей развиваться практически не испытывая влияния со стороны тех или иных философских доктрин (не исключено, однако, что религиозные предрассудки, увязанные с философией стоицизма, оказали негативное влияние на распространение гелиоцентрической системы: см. ниже пример Клеанфа).

Астрономия становится точной наукой. Важнейшими задачами астрономов становятся: (1) установление масштабов мира исходя из теорем геометрии и данных астрономических наблюдений, а также (2) построение обладающих предсказательной силой геометрических теорией движения небесных тел. Высокого уровня достигает методика астрономических наблюдений. Объединение античного мира Александром Македонским делает возможным обогащение астрономии Греции за счёт достижений вавилонских астрономов. Вместе с тем, углубляется разрыв между астрономией и физикой, не столь очевидный в предыдущем периоде, а к его концу большое распространение в эллинистическом мире получает пришедшая из Вавилона астрология.

Источники

До нас дошло шесть трудов астрономов этого периода:

Феномены Евклида (около 300 года до н. э.) -- ещё один учебный трактат по сферической астрономии[16];

О размерах и расстояниях Солнца и Луны, приписываемый Аристарху Самосскому (первая половина III века до н. э.)[25];

Критика Евдокса и Арата -- единственное дошедшее до нас сочинение Гиппарха Никейского (вторая половина II века до н. э.);

Исчисление песчинок Архимеда (III век до н. э.), посвящённое систематике необходимых в астрономии больших чисел и попутно затрагивающее также ряд других астрономических вопросов[26];

Превращения в созвездия, приписываемый Эратосфену из Кирены (III век до н. э.) -- пересказ мифов, связанных с созвездиями[27];

О восхождении созвездий по эклиптике Гипсикла из Александрии (II век н. э.), где решается задача об определении времени, которое требуется для восхода или захода каждого знака зодиака; здесь впервые появились заимствованные из Вавилона градусы[16].

Достижения этого периода положены в основу двух элементарных учебников астрономии, Гемина (I век до н. э.) и Клеомедa (время жизни неизвестно, скорее всего между I веком до н. э. и II веком н. э.), известных под названием Введение в явления. О работах Гиппарха рассказывает Клавдий Птолемей в своём фундаментальном труде -- Альмагесте (2-я половина II века н. э.). Кроме того, различные аспекты астрономии и космологии эллинистического периода освещаются в ряде комментаторских работ более поздних периодов.

Философский фундамент астрономии

Эллинистический период отмечен возникновенем новых философских школ, две из которых (эпикурейцев и стоиков ) сыграли заметную роль в развитии космологии.

Школа Эпикура возникла в IV веке до н.э. в Афинах. В основном эпикурейцы развивали идеи атомистов. Оригинальным было эпикурово объяснение причины неподвижности Земли: он предположил, что на самом деле Земля падает в некую «мировую бездну», но мы не замечаем этого падения, так как падаем вместе с Землей. Процесс космообразования выглядит следующим образом[28]: все атомы падают в «мировую бездну» по параллельным путям, с равными скоростями, независимо от их веса и размера. Однако атомам присущ и еще один вид движения -- случайные движения вбок, которые приводят к отклонениям от от прямолинейных траекторий, из-за чего атомы сталкиваются, что и ведет к формированию Земли и других тел. Активная деятельность богов при этом не предполагалась, благодаря чему эпикурейцы пользовались рпутацией атеистов. Эпикурейцы утверждали возможность существования бесконечного множества миров, аналогичных нашему. Одни и те же явления в разных мирах могут иметь разные причины. Так, римский поэт Тит Лукреций Кар (I в. до н.э.), выразивший взгляды Эпикура в поэме О природе вещей, пишет, что фазы Луны могут происходит и по причине того, что ее по разному освещает Солнце, и из-за того, что Луна по природе своей имеет одно светлое и одно темное полушарие; может быть, Солнце вращается вокруг Земли, но не исключено, что каждый день нам нами светит новое Солнце, и т.п. Параллельность траекторий атомов подразумевало плоскую форму Земли[29], что ставило эпикурейцев в оппозицию всем астрономам и географам того периода, полагавшим шаробразность Земли доказанной.

Наиболее популярной философской школой как в эллинистическую эпоху, так и в эпоху Римской империи, была школа стоиков, основанная в Афинах в конце IV века до н.э. Зеноном из Китиона. Стоики полагали, что Космос периодически рождается из огня и в огне гибнет. Огонь способен превращаться в три других элемента, воздух, воду и землю. При этом вся Вселенная пронизана особой тончайшей материей -- пневмой. Космос как целое является живым и разумным существом, душа которого состоит из пневмы. В центре мира находится шарообразная Земля, находящаяся в покое из-за того, что силы, действующие на неё с разных сторон Вселенной, уравновешиваются. За пределами Космоса -- бесконечное пустое пространство.

Несмотря на радикальные противоречия между стоиками и эпикурейцами, они имели близкие воззрения по некоторым физическим вопросам. Так, по мнению тех и других, нет таких понятий, как абсолютно легкие и абсолютно тяжелые тела; все вещество стремится к центру мира, просто одни частицы обладают большей тяжестью, чем другие. Вследствие этого в центре мира концентрируется наиболее тяжелая материя, образующая Землю, в то время как более легкая вытесняется к периферии. Того же мнения придерживался и выдающийся философ Стратон из Лампсака, возглавлявший школу перипатетиков после смерти Теофраста, ученика Аристотеля.

Практическая астрономия

Календарь. Каллиппово значение длины тропического года (365+(1/4) дней) было положено в основу так называемого зодиакального календаря, или календаря Дионисия (первый год начинался 28 июня 285 г. до н. э.) -- солнечного календаря, в котором календарный цикл состоял из трёх лет по 365 дней и одного в 366 дней (как и в юлианском календаре). В 238 году до н. э. базилевс Египта Птолемей III Эвергет сделал неудавшуюся попытку внедрения аналогичного календаря в гражданскую жизнь своей страны [30].

Древнегреческие солнечные часы

С целью усовершенствования календаря учёные эллинистической эпохи производили наблюдения солнцестояний и равноденствий: длина тропического года равна промежутку времени между двумя солнцестояниями или равноденствиями, делённому на полное число лет. Они понимали, что точность вычисления тем выше, чем больше промежуток между используемыми событиями. Наблюдениями такого рода занимались, в частности, Аристарх Самосский, Архимед Сиракузский, Гиппарх Никейский и ряд других астрономов, имена которых неизвестны.

В библиотеке Ватикана хранится рукопись, в которой приведены данные о величине года согласно измерениям некоторых древних астрономов. В частности, Аристарху приписано два разных значения. Записи сильно искажены, но анализ документа позволил выяснить, что одно из приписанных Аристарху значений близко к продолжительности тропического, другое -- звёздного года (соответственно, 365+(1/4)-(15/4868) дней и 365+(1/4)+(1/152) дней)[31]. Поскольку тропический год является промежутком времени между двумя последовательными прохождениями Солнца через точку весеннего равноденствия, из неравенства тропического и звёздного года автоматически следует движение точек равноденствий навстречу годичному движению Солнца, то есть предварение равноденствий, или прецессия.

Гиппарх непосредственно убедился в предварении равноденствий, сопоставляя координаты некоторых звёзд, измеренные Тимохарисом в Александрии, с определёнными им самим. По Гиппарху, угловая скорость движения точек равноденствия составляет 1° в столетие. Такое же значение следует из величин звёздного и тропического года по Аристарху, восстановленного из Ватиканских манускриптов (на самом деле, величина прецессии составляет 1° за 72 года).

По определению Гиппарха продолжительность тропического года составляет 365+(1/4)-(1/300) дней (на 6 минут длиннее правильного значения в ту эпоху). Исходя из этого значения Гиппарх внёс очередное усовершенствование в лунно-солнечный календарный цикл: 1 цикл Гиппарха составляет 4 цикла Каллиппа без одного дня:

304 года = 111035 дней = 3760 синодических месяцев.

Возможно, греческие астрономы эллинистической эпохи использовали в своих работах результаты астрономов Месопотамии, ставшие доступными после образования империи Александра Македонского. В пользу этого говорит то, что значение длины синодического месяца, использованное Гиппархом, также встречается в вавилонских глиняных таблицах. Возможно, однако, что поток информации был двусторонним: встречающаяся в вавилонских глиняных таблицах длина тропического года 365+(1/4)-(5/1188) дней почти наверняка получена исходя из промежутка времени между летними солнцестояниями Гиппарха (135 г. до н. э., о. Родос) и Метона (432 г. до н. э., Афины)[10]. Только что упомянутое значение длины синодического месяца также впервые могло быть получено греческими астрономами школы Аристарха [32]. О наличии потока информации с запада на восток говорит также поддержка вавилонянином Селевком греческой концепции движения Земли.

Угломерные наблюдения. Начиная с IV или даже V века до н. э. в качестве наклона эклиптики к экватору принималось значение 24°. Новое определение этой величины произвёл в конце III века до н. э. Эратосфен в Александрии. Он нашёл, что этот угол составляет 11/83 часть полукруга, или 23°51' (истинное значение этой величины в ту эпоху составляло 23°43'). Полученное Эратосфеном значение было использовано Птолемеем в Альмагесте. Однако в нескольких независимых исследованиях было показано, что ряд дошедших до нас образцов античных астрономических и географических работ основан на гораздо более точном значении величины наклона эклиптики к экватору: 23°40'.

Александрийские астрономы Тимохарис (~290 год до н. э.) и Аристилл (~260 год до н. э.) производили измерения координат неподвижных звёзд[33]. На протяжении этих десятилетий точность таких наблюдений существенно выросла: от 12' у Тимохариса до 5' у Аристилла[34]. Столь существенный прогресс говорит о наличии в Александрии мощной школы наблюдательной астрономии. Возможно, для записи результатов наблюдений использовалась эклиптическая или экваториальная система координат.

Работу по определению звёздных координат продолжил во второй половине II века до н. э. Гиппарх, составивший первый в Европе звёздный каталог, включивший точные значения координат около тысячи звёзд. Этот каталог до нас не дошёл, но не исключено, что каталог из птолемеева Альмагеста почти целиком является каталогом Гиппарха с пересчитанными за счёт прецессии координатами. При составлении своего каталога Гиппарх впервые ввёл понятие звёздных величин.

Во второй половине III века до н. э. александрийские астрономы также производили наблюдения положений планет. В их числе были Тимохарис а также астрономы, чьи имена нам неизвестны (все что мы об них знаем, это то, что для датировки своих наблюдений они использовали зодиакальный календарь Дионисия). Побудительные мотивы александрийских наблюдений не вполне ясны[35].

С целью определения географической широты в различных городах проводились наблюдения высоты Солнца во время солнцестояний. При этом достигалась точность порядка нескольких угловых минут, максимально достижимая невооружённым глазом[11]. Для определения долготы использовались наблюдения лунных затмений (разность долгот между двумя пунктами равна разности местного времени, когда произошло затмение).

Экваториальное кольцо

Какие инструменты использовались в ходе этих работ, с достоверностью неизвестно. Вероятно, для наблюдения ночных светил использовалась диоптра, а для наблюдения Солнца -- полуденный круг; весьма вероятно также использование астролябии и армиллярной сферы. По словам Птолемея, для определения моментов равноденствий Гиппарх использовал экваториальное кольцо.

Архимед в Исчислении песчинок приводит результаты измерения углового диаметра Солнца, произведённого им с помощью специального прибора: от 1/164 до 1/200 прямого угла (то есть от 32'55" до 27'). По более ранней оценке Аристарха, эта величина составляет 30'; её истинное значение колеблется от 31'28" до 32'37"[36].

Космология

Получив поддержку со стороны стоиков, геоцентрическая система мира продолжала оставаться основной космологической системой в эллинистический период. Сочинение по сферической астрономии, написанное Евклидом в начале III веке до н. э., также основано на геоцентрической точке зрения. Однако в первой половине этого столетия Аристарх Самосский предложил альтернативную, гелиоцентрическую систему мира, согласно которой

Солнце и звезды неподвижны,

Солнце расположено в центре мира,

Земля обращается вокруг Солнца за год и вокруг оси за сутки.

Исходя из гелиоцентрической системы и ненаблюдаемости годичных параллаксов звёзд, Аристарх сделал пионерский вывод, что расстояние от Земли до Солнца пренебрежимо мало по сравнению с расстоянием от Солнца до звёзд. Этот вывод с достаточной долей симпатии приводит Архимед в своём сочинении Исчисление песчинок (одном из основных источников нашей информации о гипотезе Аристарха), что можно считать косвенным признанием гелиоцентрической космологии сиракузским учёным[37]. Возможно, в других своих трудах Архимед развивал иную модель устройства Вселенной, в которой Меркурий и Венера, а также Марс обращаются вокруг Солнца, которое, в свою очередь, движется вокруг Земли (при этом путь Марса вокруг Солнца охватывает Землю)[38].

Большинство историков науки полагает, что гелиоцентрическая гипотеза не получила сколько-нибудь значительной поддержки со стороны современников Аристарха и астрономов более позднего времени. Некоторые исследователи, однако, приводят ряд косвенных свидетельств о широкой поддержке гелиоцентризма античными астрономами[39]. Тем не менее, известно имя только одного сторонника гелиоцентрической системы: вавилонянин Селевк, 1-я половина II века до н. э.

Стоик Клеанф полагал, что за высказывание идеи о движении Земли Аристарха следовало привлечь к суду. Привёл ли этот призыв к каким-либо последствиям, неизвестно.

Рассматриваемый период отмечен также появлением и других новаторских гипотез. Возникло мнение о возможности собственных движений «неподвижных» звёзд. Во всяком случае, согласно имеющимся свидетельствам, одним из побудительных мотивов Гиппарха при составлении своего звёздного каталога было желание обеспечить астрономов будущих поколений базой данных точных координат звёзд с целью проверки гипотезы о наличии собственных движений звёзд. С этой целью Гиппарх также записал несколько случаев, когда три или более звезды лежат примерно на одной линии.

В I веке до н. э. Гемин обнародовал мнение, что звезды только кажутся лежащими на одной сфере, а на самом деле они располагаются на разных расстояниях от Земли. Есть все основания полагать, что это мнение также зародилось ранее, в III или II веке до н. э., поскольку оно ассоциируется с возможностью существования собственных движений звёзд: наличие таких движений несовместимо с представлением о звёздах как о телах, закреплённых на одной сфере. Оба этих предположения также хорошо гармонирует с гелиоцентрической системой: характерное для геоцентризма представление о неподвижности Земли требует, чтобы звёзды были жёстко закреплены на небесной сфере, поскольку в этом случае суточное вращение неба считается реальным, а не кажущимся, как в случае вращающейся Земли.

Некоторые философы выражали и достаточно архаические взгляды, давно оставленные наукой. Так, последователи Эпикура считали Землю плоской, падающей в «мировую бездну».

Некоторые другие стороны учения эпикурейцев, впрочем, выглядят достаточно передовыми для своего времени. Например, они полагали возможным существование, помимо нашего, и других миров (каждый из которых конечен и ограничен сферой неподвижных звёзд). Их основные соперники, стоики, считали мир единым, конечным и погружённым в бескрайнее пустое пространство. Наибольший интерес представляет точка зрения гелиоцентриста Селевка, полагавшего мир бесконечным.

Попытки установления масштабов Вселенной

Характерные для предыдущего этапа попытки установления расстояний до светил исходя из спекулятивных пифагорейских соображений о гармонии мира не нашли своё продолжение в эллинистический период. В III--II веках до н. э. астрономы сделали ряд оценок расстояний до небесных тел исходя исключительно из теорем евклидовой геометрии и простых физических соображений. Первая из дошедших до нас таких попыток принадлежит Аристарху Самосскому и описана в его труде О размерах и расстояниях Солнца и Луны. Исходя из оценённого им углового расстояния Луны от Солнца в квадратурах (когда с Земли наблюдается половина лунного диска) и физического предположения о свечении Луны отражённым солнечным светом, он оценил отношение расстояний до Солнца и Луны в 19 раз; поскольку угловые размеры обоих светил на небе примерно одинаковы, Солнце оказывается во столько же раз больше Луны по радиусу, то есть в 19 раз. Анализируя далее лунное затмение (привлекая данные о соотношении углового размера лунной тени и видимого радиуса Луны), он вычислил отношение радиусов Солнца и Земли составляет 20:3. Эта оценка примерно в 20 раз меньше истинного значения, что связано с невозможностью точного определения моменты лунной квадратуры. Не исключено, однако, что дошедший до нас трактат О размерах и расстояниях Солнца и Луны написан не самим Аристархом, но является более поздней ученической переработкой оригинального труда самосского учёного под таким же названием, а сам Аристарх полагал, что 19 и 20/3 являются лишь нижними оценками, соответственно, отношения расстояний до Солнца и Луны и отношения радиусов Солнца и Земли[11]. Как бы то ни было, выдающимся результатом Аристарха было установление того факта, что объём Солнца во много раз превышает объём Земли. Возможно, это и привело его к гелиоцентрической гипотезе устройства мироздания.

Схема, поясняющая определение радиуса Луны по методу Аристарха (византийская копия X века)

Этими задачам занимался также Гиппарх (работы самого учёного до нас не дошли, мы знаем о них только по упоминаниям других авторов). Сначала для измерения расстояния до Луны он использовал наблюдения солнечного затмения, которое в дваух разных городах наблюдалось в разных фазах. Предполагая, что суточный параллакс Солнца пренебрежимо мал, Гиппарх получил, что расстояние до Луны лежит в пределах от 71 до 83 радиусов Земли. Далее Гиппарх использует, по видимому, метод определения расстояния до Луны, аналогичный использованному ранее Аристархом и предполагает, что суточный параллакс Солнца равен максимальной величине, при которой он неразличим невооружённым взглядом (по Гиппарху, 7', что соответствует расстоянию до Солнца в 490 радиусов Земли). В результате минимальное расстояние до Луны оказалось равным 67 1/3, максимальное 72 2/3 радиусов Земли[40].


Подобные документы

  • Описание жизни Сократа: обучение математике, астрономии и философии у Архелая. Представление античного философа-идеалиста и рационалиста о душе и добре, критика демократии. Изучение проблемы гражданского общества во времена Пелопоннесской войны.

    реферат [28,7 K], добавлен 11.09.2011

  • Борьба диалектиков и метафизиков в Древней Греции. Подготовка формальной логики как ведущего метода античной гносеологии. Учение Платона и Аристотеля. Перенос этического абсолюта на явления мира. Киники как последователи Сократа и предвестники эмпиризма.

    реферат [27,3 K], добавлен 17.08.2009

  • Основа и проблематика древнегреческой философии. Главные постулаты философии софистов. Космоцентризм как общая черта античной философии. Понимание первоосновы мира философами милетской и эфесской школы. Числа и атомистическое учение в пифагорействе.

    реферат [40,6 K], добавлен 29.10.2011

  • Понятие и основные этапы развития античной философии. Значение философских учений мыслителей древней Греции и древнего Рима. Особенности развития доклассического периода античной философии. Типологические особенности мышления философов этого периода.

    реферат [49,1 K], добавлен 19.09.2013

  • Практика умозаключения и формулирование аксиомы аналогии. Логическая основа переноса признаков в аналогиях. Научные открытия в результате уподобления отношений в физике, астрономии, биологии, математики. Условия состоятельности выводов по аналогии.

    реферат [28,1 K], добавлен 05.07.2015

  • История создания Пифагорейского союза. Краткая характеристика научного учения Пифагора и пифагорейцев, их религиозно-философские взглядов. Особенности научного мировоззрения. Влияние учения на развитие философии, математики, астрономии, этики, эстетики.

    реферат [40,7 K], добавлен 12.11.2014

  • История развития науки. Появление мировоззренческих задач, геометрии у древних египтян и шумерской астрономии. Формирование философии. Принцип всеобщей относительности Эйнштейна. Воздействие науки на мировосприятие и ее роль в современном обществе.

    эссе [9,4 K], добавлен 13.01.2014

  • Общий обзор сущности античной философии. Метафизическая значимость космоса. Взгляд А. Ф. Лосева на генезис античной философии. Основные понятия и категории физики и этики в философии Древней Стои. Этика. О статусе гаданий, мантики, прорицаний.

    курсовая работа [43,4 K], добавлен 27.12.2003

  • Религиозные представления и философские воззрения древних греков, их содержание и оценка роли в их общественной и личной жизни, влияние на формирование всей античной и последующей мировой культуры. Изучение сущности мировых религий, их типы и значение.

    реферат [34,9 K], добавлен 17.02.2015

  • Векторы исследования проблематики движения в античной философии, логические варианты решения вопроса о сущности движения. Трактовки движения милетской и элеатской школ. Классификация видов движения по Аристотелю. Количественное и качественное движение.

    реферат [18,9 K], добавлен 29.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.