Новые представления о механизмах действия доксорубицина и озона на злокачественные клетки печени

Экспериментальное подтверждение схожести пусковых механизмов действия озона и доксорубицина на культуре злокачественных клеток печени человека. Изучение влияния химиопрепарата доксорубицина, озона, их сочетаний на злокачественные клетки печени (SK-HEP-1).

Рубрика Медицина
Вид статья
Язык русский
Дата добавления 03.04.2018
Размер файла 610,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Новые представления о механизмах действия доксорубицина и озона на злокачественные клетки печени

А.В. Алясова,

И.Г. Терентьев,

С.Н. Цыбусов,

М.В. Ведунова,

Т.А. Мищенко,

К.А. Шахова,

К.Н. Конторщикова

В проведенных ранее экспериментах [1] на лабораторных животных (крысах), которым перевивался штамм рака молочной железы, исследовалось влияние на опухоль химиопрепарата доксорубицина, озона и их комбинированного введения. Полученные результаты продемонстрировали, что сочетанное воздействие низких терапевтических концентраций озона в составе озонированного физиологического раствора и доксорубицина оказывало наиболее выраженный деструктивный эффект на опухоль. Использование озонированного физиологического раствора потенцировало противоопухолевую активность доксорубицина, что проявлялось в выраженном угнетении митотической активности опухолевых клеток и снижении числа их жизнеспособных элементов. Исследование ИК-спектров тканей опухоли, печени, легких, мозга животных-опухоленосителей [2] также подтвердило более высокий терапевтический эффект сочетанного действия доксорубицина и озона.

Продолжением исследований явились эксперименты на культуре нормальных клеток печени Chang liver и злокачественных клеток печени SK-HEP-1 человека [3]. Установлено, что введение озона в культуральную среду оказывает сходный с доксорубицином выраженный цитостатический эффект на жизнеспособность клеток, что подтверждалось морфологическими данными о необратимых изменениях в структуре клеточных элементов некротического или апоптотического происхождения. Несмотря на доказательный материал по жизнеспособности и патоморфозу злокачественных клеток под действием анализируемых факторов, внутриклеточный механизм запуска гибели клеток остается неясным. Про доксорубицин известно, что это цитостатик антрациклинового ряда с антимитотическим и антипролиферативным действием. Механизм действия препарата объясняют его реакцией с ДНК, образованием свободных радикалов и прямым воздействием на мембраны клеток с подавлением синтеза нуклеиновых кислот. В плане активации свободнорадикальных реакций действие доксорубицина может быть сопоставимо с действием озона как сильного окислителя, регулирующего про- и антиоксидантный баланс [4-6].

Другим возможным механизмом, запускающим гибель клеток, является ферментативный путь с участием каспаз. Каспазы -- это семейство аспартатспецифических цистеиновых протеаз, они присутствуют во всех клетках, взаимодействие этих протеаз с олигомерными рецепторами ведет к их активации. Активные каспазы могут запускать протеолитический каскад, расщепляющий белки, необходимые для выживания. Конечным итогом сигнального пути является активация контролируемой гибели клеток -- апоптоз. Каспазы, вовлеченные в апоптоз, делятся на инициаторные и эффекторные. Одной из эффекторных каспаз является каспаза-3, расщепляющая субстрат на карбоксильном конце по остаткам аспартата. Ингибирование процесса апоптоза может приводить к развитию онкологических заболеваний [7].

Исходя из результатов собственных исследований и данных литературы можно предположить сопоставимость пусковых механизмов действия озона и доксорубицина внутри клеток.

Цель исследования -- экспериментально подтвердить схожесть пусковых механизмов действия озона и доксорубицина на культуре злокачественных клеток печени человека.

Материалы и методы. Эксперименты проводили на культивированных клетках аденокарциномы печени человека SK-HEP-1, морфология -- эпителиоподобная, культивирование осуществляли в среде «Игла МЕМ» с солями «Эрла» («ПанЭко», Россия) с добавлением 10% сыворотки эмбриональной телячьей («ПанЭко», Россия) и 1% заменимых аминокислот («ПанЭко», Россия), оптимальная плотность -- (2, 0-4, 0)·106 кл./см2. Поддержание жизнеспособности клеток осуществлялось в СО2-инкубаторе при 5% содержании СО2. После 3-5 пассажей клетки рассаживали на 48- или 6-луночные планшеты. При достижении 60% монослоя среду, в которой клетки выращивались, заменяли на испытуемые среды. Первая среда готовилась добавлением химиопрепарата доксорубицина в дозе 0, 004 мг; вторая -- введением 150 мл кислорода; третья -- введением 150 мл озоно-кислородной смеси с концентрацией озона 25 мг/л; четвертая -- введением 150 мл кислорода и 0, 004 мг доксорубицина; пятая -- введением 150 мл озоно-кислородной смеси и 0, 004 мг доксорубицина. Дозы доксорубицина и озона определены в эксперименте на животных при оценке патоморфоза злокачественной опухоли [1].

При озонировании культуральной среды озоно-кислородная газовая смесь поступала со скоростью 1 л/мин в течение 5 мин из генератора озона («Квазар», Россия). Через 48 ч культивирования клеточная среда убиралась, клетки промывались полифосфатным буфером PBS (pH=7, 4) и заливались 250 мл смеси Версен (0, 02%):трипсин (0, 25%) (3:1). Через 10 мин инкубации в СО2-инкубаторе клетки пипетировали и добавляли в каждую лунку по 250 мл 8% формальдегида. После этого подсчитывали количество клеток на автоматическом анализаторе Septer (Мillipore, Великобритания).

Для проведения анализа на активность свободнорадикального окисления клеточную суспензию трижды промывали забуференным физиологическим раствором и замораживали при -20°. Перед началом исследования проводили ее размораживание и гомогенизацию. Интенсивность свободнорадикального окисления оценивали по параметрам индуцированной железом и перекисью водорода хемилюминесценции на аппарате БХЛ-07 (Н. Новгород, Россия): Imax -- максимальная интенсивность свечения, S -- cветосумма хемилюминесценции за 30 с [8]. Содержание продуктов перекисного окисления липидов -- первичных диеновых конъюгатов (ДК), триеновых конъюгатов (ТК), конечных оснований Шиффа (ОШ) определяли в гептан-изопропанольных фракциях по методу И.А. Волчегорского [9]. Количество фермента каспазы-3 оценивали методом иммуноферментного анализа Human Caspase-3 Instant ELISA (ThermoFisher Scientific, США) и рассчитывали на количество клеток в мл (содержание клеток -- 5·106/мл).

Полученные результаты были обработаны с помощью пакета прикладных программ Biostat и представлены в виде М±у, где М -- среднее арифметическое, у -- среднеквадратичное отклонение. Достоверность различий средних определяли по t-критерию Стьюдента. Различия считали статистически значимыми при уровне значимости p<0, 05.

Результаты. Введение в культуральную среду для выращивания клеток аденокарциномы печени человека SK-HEP-1 доксорубицина (табл. 1) сопровождалось статистически значимым повышением уровней показателей Imax -- в 2, 7 раза и S -- в 2, 5 раза, что указывало на активацию свободнорадикальных реакций под действием цитостатика. Озонирование культуральной среды сходным с доксорубицином образом активировало свободнорадикальные реакции и проявлялось увеличением Imax в 2, 6 раза и S -- в 2, 5 раза. Сочетанное введение в культуральную среду доксорубицина и кислорода, а также доксорубицина и озона статистически значимо не снижало высокие уровни показателей Imax и S, характерные для среды с доксорубицином, и составляло для Imax 1, 8 и 2, 2 раза, а для S -- 2, 1 и 2, 5 раза соответственно.

озон доксорубицин злокачественный печень

Таким образом, предположение о том, что одним из механизмов, вызывающих снижение жизнеспособности злокачественных клеток печени и их морфологические изменения [3], являются свободнорадикальные реакции, запускаемые как окислителем, так и токсичным соединением доксорубицином, подтверждалось. Дополнительным доказательством этому явились данные по изучению уровней продуктов перекисного окисления липидов (табл. 2).

Самые выраженные изменения в показателях, характеризующих активность перекисного окисления липидов в культуре злокачественных клеток, наблюдались в клетках, находящихся в среде с доксорубицином. Уровни ДК в этих клетках увеличивались почти в 4 раза, ТК -- в 4, 5 раза, ОШ -- в 4 раза. Коэффициент ОШ/(ДК+ТК), представляющий собой количественное отношение конечных продуктов к первичным, повысился в 2 раза, что свидетельствовало о сдвиге реакций в сторону накопления жестких токсичных ОШ, вызывающих повреждение клеточных мембран. Озонирование культуральной среды статистически значимо увеличивало в клетках содержание ДК в 11, 8 раза, ТК -- в 13, 3 раза, ОШ -- в 4, 5 раза, коэффициент ОШ/(ДК+ТК) снижался по сравнению с исходным уровнем в 2 раза, что свидетельствовало о преобладании первичных продуктов перекисного окисления липидов и, следовательно, об активно продолжающемся процессе на этапах инициации. Сочетанное введение доксорубицина с кислородом и доксорубицина с озоном практически не вызывало различий по уровням ДК и ТК, в то время как для уровней ОШ и коэффициента ОШ/(ДК+ТК) (см. табл. 2) более значимые различия наблюдались при сочетании доксорубицина и озона. Высокие уровни ОШ и коэффициента ОШ/ДК+ТК свидетельствуют о накоплении конечных продуктов перекисного окисления, которые могут повреждать клетки, что может отражаться на показателях жизнеспособности и морфологии клеток.

Помимо повреждающего действия свободнорадикального окисления на внутриклеточные структуры нельзя исключать губительного действия ферментов, вызывающих апоптоз. Одним из таких ферментов является каспаза-3. В нашем исследовании оценивалось содержание данного фермента в гомогенате клеток, содержащихся на культуральных средах, в которые вводили доксорубицин, озон, кислород и их сочетания. Самая высокая концентрация каспазы-3 отмечалась при воздействии на злокачественные клетки доксорубицином (4, 76±0, 06 пг/мл), она в 30 раз превышала содержание фермента в клетках интактной серии (<0, 16 пг/мл). Данный факт явился подтверждением высокой апоптотической активности доксорубицина, выявляемой при морфологических исследованиях. Озонирование среды для культивирования клеток увеличивало количество каспазы в 11 раз (1, 82±0, 01 пг/мл). При смене среды для выращивания клеток на среду, содержащую доксорубицин и озон, количество каспазы увеличивалось в 13 раз (2, 04±0, 03 пг/мл), а на среду, содержащую доксорубицин и кислород, -- в 16, 6 раза (2, 67±0, 02 пг/мл).

Полученные результаты свидетельствуют о том, что основной причиной запуска апоптотического процесса в наших экспериментах со злокачественными клетками, которые содержатся в средах, подвергшихся воздействию доксорубицина или окислителей, служит повышение уровней каспазы-3. В свою очередь увеличение концентрации каспазы, скорее всего, является следствием активации свободнорадикального окисления под действием как доксорубицина, так и озона.

Введение в культуральную среду для выращивания клеток доксорубицина или озона активирует в злокачественных клетках печени процессы свободнорадикального окисления, что сопровождается увеличением продуктов липопероксидации. Их введение повышает концентрацию фермента каспазы-3 как при изолированном, так и при сочетанном действии, при этом в случае использования доксорубицина повышение количества каспазы-3 более существенно. Активация свободнорадикального окисления вызывает как некротические, так и апоптотические изменения в клетках культуры печени -- через увеличение количества каспаз.

озон доксорубицин злокачественный печень

Литература

1. Алясова А.В., Конторщикова К.Н., Терентьев И.Г., Иванова И.П., Кузнецов С.С., Сазанов А.И. Влияние низких терапевтических концентраций озонированного физиологического раствора на терапевтический патоморфоз опухоли в эксперименте. Современные технологии в медицине 2010; 4: 27-32.

2. Красникова О.В., Гордецов А.С., Конторщикова К.Н., Крылов В.Н., Сазанов А.И. Изменение параметров ИК-спектров биологических тканей животных-опухоленосителей на фоне совместного введения доксорубицина и озона. Современные технологии в медицине 2011; 3: 83-87.

3. Alyasova A.V., Vedunova M.V., Mishchenko T.A., Terentyev I.G., Tsybusov S.N., Kontorshchikova K.N. Effect of ozone and doxorubicin on the viability and morphology of malignant hepatic cells. Sovremennye tehnologii v medicine 2016; 8(2): 84-89, http://dx.doi.org/10.17691/stm2016.8.2.12.

4. Конторщикова К.Н. Перекисное окисление липидов при коррекции гипоксических нарушений физико-химическими факторами. Автореф. дис. … докт. биол. наук. Н. Новгород; 1992.

5. Масленников О.В., Конторщикова К.Н., Шахов Б.Е. Руководство по озонотерапии. Н. Новгород: Издательство “Исток”; 2015; 345 c.

6. Конторщикова К.Н., Перетягин С.П. Закономерность формирования адаптационных механизмов организмов млекопитающих при системном воздействии низкими терапевтическими дозами озона. Диплом на открытие 309. 2006.

7. Сарвилина И.В., Каркищенко В.Н., Горшкова Ю.В. Междисциплинарные исследования в медицине. М: Техносфера; 2007; c. 139-145.

8. Кузьмина Е.И., Нелюбин А.С., Щенникова М.К. Применение индуцированной хемилюминесценции для оценок свободнорадикальных реакций в биологических субстратах. В кн.: Межвузовский сборник биохимии и биофизики микроорганизмов. Горький; 1983; c. 179-183.

9. Волчегорский И.А., Налимов А.Г., Яровинский Б.Г., Лифшиц Р.И. Сопоставление различных подходов к определению продуктов ПОЛ в гептан-изопропанольных экстрактах крови. Вопросы медицинской химии 1989; 1: 127-131.

Размещено на Allbest.ru


Подобные документы

  • Характеристика и виды очагового образования печени. Совершенствование методов лабораторной и инструментальной диагностики. Радиоизотопное сканирование печени. Клиника, диагностика и лечение метастатического рака печени. Доброкачественные опухоли печени.

    реферат [16,6 K], добавлен 25.02.2009

  • Диагностика, формы и лечение первичного рака печени. Злокачественные опухоли печени. Факторы, способствующие возникновению холангиокарцины. Гилюсная холангиокарцинома (опухоль Клатскина). Классификация в зависимости от локализации опухоли (по Bismuth).

    презентация [42,0 M], добавлен 18.12.2013

  • Общая характеристика болезней печени. Токсическая дистрофия печени человека. Этиология и патогенез, патологическая анатомия по стадиям, осложнения, исходы. Роль пункционной биопсии печени в диагностике гепатитов. Медикаментозное поражение печени.

    реферат [34,4 K], добавлен 25.05.2014

  • Бактериальная этиология и патогенез абсцесса печени, клинические проявления заболевания и постановка диагноза. Эпидемиология и патоморфология эхинококкоза печени и методы его профилактики. Распространенность первичного рака печени и течение болезни.

    реферат [22,8 K], добавлен 11.09.2010

  • Роль печени в организме. Биохимические основы формирования алкогольной болезни печени. Экспериментальное моделирование патологии печени у крыс. Влияние карсила и эссенциале на состояние печени крыс при острой интоксикации CCl4 и этиловым спиртом.

    дипломная работа [10,2 M], добавлен 06.06.2016

  • Строение и назначение печени. Функциональные расстройства данного органа. Нарушение метаболической и антитоксической функций печени. Детоксикация организма от действия этилового спирта и нарушения функций печени, приводящие к жировой трансформации.

    курсовая работа [4,9 M], добавлен 18.01.2012

  • Затруднения при ультразвуковом исследовании печени. Четыре доли печени (правая, левая, квадратная и хвостатая), их анатомические границы. Описание локализации анатомических сегментов печени по Куино. Анатомические варианты развития печени и их эхограммы.

    реферат [2,9 M], добавлен 15.03.2011

  • Классификация опухолей печени: эпителиальные, неэпителиальные, смешанной тканевой структуры, первичные злокачественные новообразования. Диагностические задачи и физикальное обследование больного. Хирургическое лечение и послеоперационные осложнения.

    презентация [400,0 K], добавлен 02.04.2015

  • Фактор возникновения, патоморфология, клиника и диагностика первичного рака печени, аппаратные методы диагностики. Системная химиотерапия больных. Ограничение использования методов паллиативного лечения. Криохирургия злокачественных опухолей печени.

    реферат [15,2 K], добавлен 25.02.2009

  • Биосинтез гемоглобина. Обмен хромопротеидов. Биохимические процессы, протекающие в печени. Роль печени в углеводном обмене и обмене стеринов. Синтез гликогена в печени. Участие печени в распаде белка. Механизм обезвреживания токсических веществ в печени.

    реферат [26,6 K], добавлен 23.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.