Механизмы сенсомоторной координации движений и позы человека

Взаимодействие между звеньями тела при спокойном стоянии, системами поддержания вертикальной позы и глазодвигательной системой. Роль подсистем регуляции последовательностей движений правой и левой руки в условиях запоминания и воспроизведения движений.

Рубрика Медицина
Вид автореферат
Язык русский
Дата добавления 23.12.2017
Размер файла 203,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

РОССИЙСКАЯ АКАДЕМИЯ НАУК

ИНСТИТУТ ФИЗИОЛОГИИ ИМ.И.П.ПАВЛОВА

На правах рукописи

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

Механизмы сенсомоторной координации движений и позы человека

03.03.01 Физиология

доктора биологических наук

Боброва Елена Вадимовна

Санкт-Петербург

2010

Работа выполнена в лаборатории физиологии движений Учреждения Российской академии наук Институт физиологии им.И.П.Павлова РАН

Научный консультант: Доктор биологических наук, профессор

Герасименко Юрий Петрович

Официальные оппоненты: Доктор медицинских наук, член-корреспондент РАН, профессор Козловская Инесса Бенедиктовна Институт медико-биологических проблем РАН, Москва

Доктор биологических наук, профессор Фролов Александр Алексеевич Институт высшей нервной деятельности и нейрофизиологии РАН, Москва

Доктор биологических наук Дудкин Кирилл Николаевич Институт физиологии им. И.П.Павлова РАН

Ведущая организация: Государственное учреждение Санкт-Петербургский государственный университет.

Защита диссертации состоится «_____»________________ 2010 года в _______ часов на заседании Диссертационного совета по защите докторских и кандидатских диссертаций при Учреждении Российской академии наук Институте физиологии им. И.П. Павлова (Д 002.020.01). 199034, Санкт-Петербург, наб.Макарова, д.6.

С диссертацией можно будет ознакомиться в библиотеке Учреждения Российской академии наук Институте физиологии им. И.П. Павлова.

Автореферат разослан «___»_________________ 2010 года

Ученый секретарь

Диссертационного совета

доктор биологических наук Н.Э.Ордян

тело глазодвигательный регуляция движение

Общая характеристика работы

Актуальность проблемы. Проблема регуляции движений является ключевой для понимания механизмов взаимодействия человека с внешней средой и активного воздействия человека на среду. Исследования этой проблемы начаты в России И.М. Сеченовым и блестяще продолжены Н.А. Бернштейном, идеи которого о многоуровневости системы организации движений и рефлекторном кольце лежат в основе современных представлений о регуляции движений. Исследования механизмов работы мозга последних лет все чаще используют понятие «внутренних представлений» (репрезентаций), формируемых центральной нервной системой, активность которых кодирует процессы, происходящие внутри и вне организма. Применительно к физиологии движений этот подход развивается в работах В.С. Гурфинкеля, Ю.С. Левика, М.И. Липшица (внутренние представления о «схеме тела»). Он тесно связан с взглядами Ж. Пайара, А. Бертоза и многих других исследователей на роль систем координат (или систем отсчета, reference frames) при восприятии пространства, организации движений и поддержании позы, в которых центральная нервная система описывает пространственную информацию о положениях объектов, целей движения, частей тела. Идея о необходимости систем координат при функционировании центральной нервной системы высказывалась Н.А. Бернштейном применительно к уровню синергий и штампов (уровень В): «…тело в этом уровне построения и есть исходная система координат, к которой соотносятся рецепции и движения, и конечная цель этих рецепций и движений… Афферентациии позы, реактивной динамики, угловых скоростей звеньев и систем тела представляют собой синтезы первичных проприо- и тангорецептивных ощущений, … упорядоченные в какой-то единой для всего тела системе координат» [Бернштейн, 1995, с.95, 112].

Согласно современным представлениям система координат тела формируется с учетом информации от множественных систем координат. Это эгоцентрические системы координат, в которых формируются описания пространства и регулируются движения относительно частей тела (головы, корпуса, руки, глаза), и аллоцентрические системы координат, где формируются внутренние представления о пространстве относительно объектов внешнего мира. Эти два способа описания пространства могут быть сопоставлены с уровнями организации движений С (уровень пространственного поля) и D (уровень действий) [Бернштейн, 1997], для которых характерны, соответственно, метрические и топологические аспекты действия. С другой стороны, формирование метрических и топологических аспектов действия может быть также связано с проблемой межполушарной асимметрии, поскольку известно, что правое полушарие в большей степени обеспечивает анализ координатных пространственных отношений, левое - категориальных [Jager, Postma, 2003], и при организации движений имеет место межполушарная специфичность [Лурия, 2000; Bradshaw, 2003; Боброва, 2007].

Другой аспект новых взглядов на механизмы организации движений также связан с множественностью подсистем, обеспечивающих выполнение определенных функций. Выше уже говорилось о множественности систем координат, формирующих внутренние представления о пространстве. На уровне спинного мозга выделяют так называемые моторные примитивы или модули - нейронные сети, обеспечивающие выполнение элементарных движений, вызываемых афферентными воздействиями [Berkinblit e.a., 1986; Mussa-Ivaldi, Bizzi, 2000]. Исследователями рассматриваются моторные примитивы и более высоких уровней, вплоть до зеркальных нейронов, которые предлагается считать моторными примитивами высшего порядка [Rizzolatti, Arbib, 1998]. Эти элементы могут рассматриваться как компоненты функциональных систем [Анохин, 1973]. Можно предположить, что в качестве компонентов функциональных систем управления движениями, обеспечивающих регуляцию движений на различных уровнях системы, можно рассматривать и моторные примитивы, и системы координат, и фреймы [Минский, 1978], и, применительно к наиболее высоким уровням регуляции движений (уровень Е по Н.А.Бернштейну), «модули мышления» [Fodor, 1983]. Все эти термины отражают «мозаичность» функционального строения системы организации движений и принципы устройства этой «мозаики» различны на разных уровнях.

В рамках вышеизложенных взглядов представляет теоретический интерес рассмотрение представленных в диссертации экспериментальных данных по координации движений, управляемых различными уровнями системы и реализуемых разными физиологическими механизмами. В работе рассматриваются механизмы межсегментных координаций и сенсорно-моторных взаимодействий при различных типах организации сенсорных входов на основе исследований движений глаз, головы, руки, корпуса человека при поддержании вертикальной позы и осуществлении целенаправленных движений разной степени сложности.

Работа выполнена по тематическим планам Института физиологии им. И.П. Павлова РАН 1981-2010 годов и при поддержке грантов РФФИ.

Цель исследования. Провести комплексное изучение механизмов, обеспечивающих осуществление движений глаз, головы, руки, туловища, которые реализуют сенсомоторную координацию двигательного поведения: целенаправленных движений и поддержания вертикальной позы. Выявить структурно-функциональную организацию двигательных актов при координированных движениях глаз, головы, корпуса, руки на различных уровнях двигательной системы.

Задачи исследования

- исследовать взаимодействия между звеньями тела при спокойном стоянии;

- изучить взаимодействие между системами поддержания вертикальной позы и глазодвигательной системой;

- изучить взаимодействие между системами поддержания вертикальной позы и зрительной системой путем анализа характера поддержания равновесия при сенсорных воздействиях, адресованных преимущественно правому или левому полушарию головного мозга;

- исследовать взаимодействие между системами регуляции движений глаз и головы при сдвигах взора для фиксации зрительного стимула в условиях рассогласования положения глаз и головы;

- изучить взаимодействие между подсистемами, обеспечивающими формирование целостного представления о пространстве при определении субъективного положения «прямо перед собой» в условиях рассогласования положения головы и корпуса;

- исследовать роль подсистем регуляции последовательностей движений правой и левой руки, специфичных для правого и левого полушария головного мозга человека, в условиях запоминания и последующего воспроизведения случайных и упорядоченных последовательностей движений.

Научная новизна полученных результатов. Анализ параметров движений глаз, головы, руки, корпуса при осуществлении целенаправленных движений и поддержании вертикальной позы человеком позволил выявить компоненты функциональных систем, связанные с формированием внутренних представлений об интра- и экстраперсональном пространстве на различных уровнях системы регуляции движений.

В системе поддержания вертикальной позы впервые изучено взаимодействие между компонентами, регулирующими колебания верхнего и нижнего звеньев тела во фронтальной и сагиттальной плоскостях. Эти компоненты представляют собой нейронные сети, обеспечивающие активность мышечных синергий, взаимодействие между которыми как при спокойном стоянии, так и при дополнительной двигательной задаче характеризуется пластичностью. При спокойном стоянии задержки между колебаниями верхнего и нижнего сегментов тела в сагиттальной плоскости свидетельствуют о чередовании стратегий колебаний, описываемых моделями одно- и двухзвенного перевернутого маятника. Колебания верхнего звена в обеих плоскостях характеризуются большим сходством, чем колебания нижнего звена, что связано с процессами стабилизации головы пространстве при поддержании равновесия. Введение глазодвигательной задачи (прослеживание движения зрительного объекта) приводит к изменениям взаимодействия между компонентами системы поддержания вертикальной позы во фронтальной и сагиттальной плоскостях, обеспечивающими регуляцию колебаний верхнего и нижнего звеньев тела. Возникают колебания тела, коррелирующие с движениями глаз, и появляется связь между колебаниями центра давления во фронтальной и сагиттальной плоскостях. Данные свидетельствуют в пользу представлений А. Бертоза о преимущественной роли системы координат, связанной с головой, в общей иерархической структуре множественных систем координат, используемых при организации движений, и отражают характер взаимодействия между компонентами системы регуляции вертикальной позы.

Получены приоритетные данные, показывающие, что при поддержании вертикальной позы решение зрительной пространственной задачи, адресованной преимущественно правому или левому полушарию головного мозга, приводит к различным изменениям в характере поддержания равновесия. Добавление вибрации опорной поверхности стопы к зрительной задаче вызывает исчезновение зависимости реакций системы поддержания вертикальной позы от стороны зрительной стимуляции. Предполагается, что это связано с необходимостью независимости постуральных реакций от пространственных параметров афферентной информации не кинестетических сенсорных модальностей в условиях увеличенного потока сомато-сенсорной афферентации (например, при стоянии на неустойчивой опоре, ходьбе по неровной поверхности, а, возможно, и при организации целенаправленных движений).

В системе регуляции сдвигов взора к зрительным объектам впервые выявлены компоненты функциональной системы, обеспечивающие организацию программы движения в различных системах координат - неподвижных относительно головы или неподвижных относительно корпуса. Выбор компонента определяется пространственным положением объектов относительно головы и индивидуальными особенностями.

Получены приоритетные данные, показывающие, что в системе, обеспечивающей целостное восприятие своего тела, при определении человеком субъективного положения «прямо пред собой» у разных субъектов имеет место предпочтительное использование разных систем координат - фиксированной относительно головы или относительно корпуса. При этом распределения ответов о положении «прямо перед собой» при отклонении головы вправо и влево различны, что связано с разным вкладом левого и правого полушарий в конструирование эгоцентрической модели внутреннего представления пространства и с различиями способов кодирования ими информации.

В системе организации последовательности целенаправленных движений руки впервые выделены компоненты, обеспечивающие различные способы кодирования пространственной информации, свойственные правому и левому полушарию. Это - описания в позиционной и векторной системах координат, обеспечивающие воспроизведение последовательности положений руки или ее движений, соответственно. При работе правой руки преобладает кодирование в векторной системе координат, левой - используются оба компонента системы. Данные свидетельствуют в пользу гипотезы о связи между специфичными для правого и левого полушария способами описания сенсорной информации о пространстве (координатный и категориальный) и организации движений (позиционный и векторный).

При запоминании и последующем воспроизведении случайных и упорядоченных последовательностей движений руки информация об упорядоченности расположения элементов (реперов) последовательности используется при работе правой, но не левой руки. Это связано с преимущественной локализацией в левом полушарии компонента функциональной системы запоминания последовательностей, вычленяющего информацию об упорядоченности и связанного с системой категориального описания пространства.

Все полученные данные являются приоритетными.

Теоретическое и практическое значение работы. В работе рассматриваются результаты исследования сенсомоторных координаций у человека при решении широкого круга двигательных задач. Показано, что при решении этих задач играют роль, как правило, несколько компонентов функциональной системы управления движениями, веса связей между которыми варьируются в зависимости от экзогенных и эндогенных факторов. К экзогенным факторам в первую очередь относятся положение объектов в пространстве и времени при организации целенаправленных движений, к эндогенным - индивидуальные особенности, существенно определяющие характер реакции.

Показано, что тип компонентов меняется в зависимости от уровня регуляции движения. Это системы координат, описывающие положения объектов относительно различных звеньев тела при организации целенаправленных движений; это способы кодирования информации при организации движений, специфичные для правого и левого полушария; это подсистемы управления движениями звеньев тела во фронтальной и сагиттальной плоскости при поддержании вертикальной позы. Описанные компоненты могут быть отнесены к консервативным элементам функциональной системы организации движений, взаимодействие между которыми характеризуется пластичностью и определяется весами связей, установившимися между ними в процессе индивидуального развития, и параметрами, задаваемыми сенсорными входами.

Веса связей между компонентами определяют степень их вовлеченности в осуществление движения или поддержание позы, а также индивидуальные предпочтения при формировании целостных представлений о пространстве. Так, при поддержании вертикальной позы в условиях прослеживания зрительного стимула различаются веса связей между компонентами, обеспечивающими регуляцию во фронтальной и сагиттальной плоскостях (соотношения амплитуд кросскорреляционных функций между сигналами движений глаз и колебаний центра давления тела во фронтальной и сагиттальной плоскости различны у разных субъектов). При организации целенаправленных сдвигов взора к зрительному стимулу подключение компонента системы, обеспечивающего участие головы в этом процессе, у разных субъектов происходит при различных углах рассогласования между положением прямо перед головой и положением зрительного стимула. Вес связи этого компонента характеризуется индивидуальной вариабельностью, что определяет предпочтительность тем или иным субъектом системы координат, связанной с головой или с корпусом. При определении субъективного положения «прямо перед собой» - характеристики целостного представления субъекта об интра- и экстраперсональном пространстве - наблюдаются индивидуальные предпочтения системы координат, связанной с головой или с корпусом, причем вклад менее предпочитаемой системы также выражен, т.е. различаются веса связей между компонентами, формирующими описания в этих системах координат.

Компоненты функциональных систем организации движений являются проявлением принципа сегментации информации при работе центральной нервной системы. Преобразуясь на входах ЦНС - в рецепторах сенсорных систем - информация о внешней среде подвергается все большему «сжатию» и выделению специфических признаков входных сигналов множественными параллельными каналами обработки информации. Анализ пространственных характеристик входных сигналов обеспечивается формированием множественных пространственных описаний в различных системах координат. Системы координат определяют формирование координатного и категориального способов описания пространства, связанного с позиционным (абсолютным) и векторным (относительным) кодированием движений и специфичного для правого и левого полушария (уровень пространственного поля С и уровень действий D по Н.А. Бернштейну). В случае пространственной упорядоченности объектов, к которым осуществляются последовательности движений, структуры левого полушария обусловливают выявление и использование информации об упорядоченности для организации последовательностей движений на уровне, лежащем выше уровня действий D (на уровне Е). На основании анализа информации, обеспечиваемого системами координат для описания пространства, происходит формирование систем координат для организации действий. Эти системы координат используют компоненты более низкого уровня системы организации движений - уровня синергий и штампов В, определяя выбор тех или иных мышечных синергий для реализации двигательного акта.

Данные, полученные в работе, могут быть использованы при разработке методик двигательной реабилитации неврологических пациентов и курсов лекций по нейрофизиологии.

Основные положения, выносимые на защиту

1). Функциональные системы управления движениями сегментов тела человека на различных уровнях регуляции движений содержат компоненты, обеспечивающие формирование внутренних представлений об интра- и экстраперсональном пространстве в эго- и аллоцентрических системах координат. Взаимодействие между компонентами характеризуется динамичностью, пластичностью и определяется весами связей, установившимися между ними и сенсорными входами в процессе индивидуального развития.

2). При поддержании вертикальной позы компоненты представляют собой подсистемы управления устойчивостью тела на уровне верхнего и нижнего звеньев тела во фронтальной и сагиттальной плоскостях. Подсистема управления на уровне верхнего звена характеризуется большим сходством колебаний, опережением в сагиттальной плоскости колебаниями верхнего звена колебаний нижнего звена. Это обусловлено преимущественной ролью системы координат, связанной с головой, в общей иерархической структуре множественных эгоцентрических систем координат, используемых при организации движений.

3). При организации целенаправленных движений компоненты представляют собой подсистемы, формирующие программы движения в различных системах координат. Оптимизация управления целенаправленными движениями достигается путем выбора между минимизацией участвующих в движении сегментов тела и необходимостью вовлечения дополнительных сегментов за счет увеличения времени реакции. При осуществлении целенаправленных движений и решении задач, требующих целостного восприятия своего тела (определение субъективного положения «прямо перед собой»), наблюдается индивидуальная предпочтительность разных систем координат, причем выраженность предпочтений различается в зависимости от большей активации правого или левого полушария головного мозга.

4). При запоминании и последующем воспроизведении последовательностей движений рук выявлены компоненты, обеспечивающие организацию движений в абсолютной (позиционной) и относительной (векторной) системе координат (кодирование требуемых положений или векторов движений), специфичные для правого и левого полушария.

5). При воспроизведении запомненных последовательностей движений рук к упорядоченным в пространстве отметкам (реперам) выявлен компонент функциональной системы запоминания таких последовательностей, который использует информацию об упорядоченности элементов последовательности в пространстве посредством формирования представления о ней как о едином объекте в аллоцентрической системе координат (неподвижной относительно объекта). Этот компонент обусловлен преимущественной активностью левого полушария головного мозга.

Апробация диссертационного материала. Результаты работы докладывались на следующих научных конференциях и съездах: II, III, IV, V Всероссийской с международным участием Школе-конференции по физиологии мышц и мышечной деятельности (Москва, 2002, 2005, 2007, 2009); XII конференции по космической биологии и авиакосмической медицине (Москва, 2002); European Conference on Visual Perception (Israel, Zichron Jakov, 1989; France, Paris, 1990; Turkey, Kushadasi, 2001; Italy, Arezzo, 2007); Биомеханика (Санкт-Петербург, 2003); International Conference "Tools for Mathematical Modelling" (Санкт-Петербург, 2003); Gait and Posture (France, Marseille, 2005); I, II, III Российской конференции по управлению движением (Великие Луки, 2006, 2010; Петрозаводск, 2008); I, II, III Российской конференции по когнитивной науке (Казань, 2004; Санкт-Петербург, 2006; Москва, 2008); International Summer School for Semiotic and Structural Studies (Finland, Imatra, 2005); 4th International Posture Symposium “Human Balance Control: Physiology, Disorders, Modelling and Rehabilitation” (Slovakia, Smolenice, 2006); ХХ Съезде физиологического общества им.И.П.Павлова (Москва, 2007); European Cognitive Science Conference (Greece, Delfi, 2007); X международной конференции по мягким вычислениям и измерениям SCM-2007 (Санкт-Петербург, 2007); Всероссийской конференции с международным участием «Актуальные вопросы функциональной межполушарной асимметрии и нейроплаcтичности» (Москва, 2008); 5-м международном междисциплинарном конгрессе «Нейронаука для медицины и психологии» (Судак, 2009).

Публикации. По материалам диссертации опубликовано 39 научных работ, включая 14 статей в рецензируемых научных журналах, определенных ВАК РФ.

Структура диссертации. Диссертация состоит из введения, обзора литературы, методической главы, 7 глав собственных экспериментальных исследований и их обсуждения, общего обсуждения, выводов и списка цитированной литературы из 328 наименований. Диссертация изложена на 320 страницах, содержит 49 рисунков и 16 таблиц.

Материал и методы исследования

В работе использовано четыре основных методических приема, касающихся изучения поддержания вертикальной позы, целенаправленных движений глаз и головы к зрительным стимулам, последовательностей целенаправленных движений правой и левой руки и целостного восприятия своего тела человеком.

1. Исследования системы поддержания вертикальной позы

Регистрация:

- колебаний центра давления (ЦД) тела с помощью стабилоплатформы;

- колебаний верхнего и нижнего звеньев тела с помощью тензометрических датчиков (механограммы);

- горизонтальной составляющей прослеживающих движений глаз электро-окулографическим методом (при изучении взаимодействий системы поддержания вертикальной позы и глазодвигательной системы).

Во всех сериях экспериментов испытуемый стоял на платформе в позе «стопы вместе, руки сложены на груди», длительность одной регистрации составляла 120 с, частота квантования регистрируемых сигналов - 50 Гц. Усиленные сигналы поступали в компьютер через аналого-цифровой преобразователь и записывались в файлы данных.

Стимуляция:

- движения зрительного стимула на полукруглом экране на уровне глаз испытуемого в диапазоне ±35 угл.град. (при изучении взаимодействий системы поддержания вертикальной позы и глазодвигательной системы);

- вибрационная стимуляция опорной поверхности правой и левой стопы с помощью специально разработанной стельки с 12 вмонтированными в нее вибромоторами диаметром 5 мм (при анализе реакций системы поддержания вертикальной позы на латерализованные, т.е. адресованные преимущественно правому или левому полушарию, афферентные воздействия);

- зрительная стимуляция, адресованная преимущественно правому или левому полуполю зрения - определения направления сдвига вертикальной линии, находящейся в правом или левому полуполе зрения, т.е. справа или слева от точки фиксации (при анализе реакций системы поддержания вертикальной позы на латерализованные афферентные воздействия).

Анализ данных: При анализе данных использовали следующие математические методы оценки колебаний ЦД и звеньев тела человека во фронтальной и сагиттальной плоскости:

- расчет среднеквадратического отклонения (СКО) колебаний ЦД в каждой реализации и затем среднего по всем реализациям данного испытуемого СКО;

- расчет усредненной траектории колебаний ЦД и ее доверительного коридора. Доверительный коридор определяли путем подсчета доверительных интервалов для каждого среднего по 30 регистрациям значения положения ЦД в данный момент времени;

- расчет вариабельности колебаний ЦД как средней величины доверительных интервалов для каждого среднего значения ЦД в данный момент времени при данном условии регистрации (вибрация правой или левой стопы) для данного испытуемого;

- расчет коэффициентов корреляции и кросс-корреляционных функций;

- расчет индексов сходства между процессами колебаний ЦД и звеньев тела методами нелинейной динамики;

- оценка достоверности различий по критерию Стьюдента и ранговому парному критерию Вилкоксона.

В экспериментах принимало участие 24 испытуемых.

2. Исследование целенаправленных движений глаз и головы при фиксации зрительного стимула

Регистрация:

- движений глаз электроокулографическим методом;

- движений головы с помощью потенциометров.

Усиленные сигналы поступали в персональный компьютер через аналого-цифровой преобразователь и записывались в файлы данных.

Стимуляция:

- на полукруглом экране на уровне глаз испытуемого располагались горизонтально 11 светодиодов с шагом 10 угл.град., один из которых служил точкой фиксации в начальный момент стимуляции, при этом голова испытуемого была центрирована относительно туловища. В случайном порядке справа или слева от точки фиксации включался соседний светодиод, к которому осуществлялся сдвиг взора амплитудой 10 угл.град. Голова испытуемого была фиксирована или свободна, причем в последнем случае он осуществлял сдвиг взора наиболее удобным для него образом, сопровождая или не сопровождая движением головы фиксационное движение глаз.

- точка фиксации в начальный момент стимуляции располагается прямо перед испытуемым, голова центрирована относительно туловища. В случайном порядке справа или слева на расстоянии 20 угл.град. от точки фиксации включается светодиод, к которому осуществляется сдвиг взора: фиксационное движение глаз, сопровождаемое или не сопровождаемое движением головы.

После завершения сдвига взора испытуемый возвращал глаза и голову в исходное положение.

Анализ данных:

- определение латентного периода движений глаз и головы к зрительному стимулу;

- определение степени участия головы в сдвигах взора (процента сдвигов взора, сопровождаемых движениями головы);

- оценка достоверности различий по критерию Стьюдента и ранговому парному критерию Вилкоксона.

В экспериментах принимало участие 15 испытуемых.

3. Исследование последовательностей целенаправленных движений правой и левой руки

Регистрация:

- положений руки испытуемого на листе бумаги формата А4 при воспроизведении им запомненной последовательности движений правой или левой руки.

- ответов испытуемых при тестировании на определение лево- и праворукости по вопроснику Олдфилда (Оldfield, 1971).

Стимуляция: Активация проприоцептивных входов двигательной системы при пассивном перемещении руки испытуемого по 6 из 24 ячеек на листе бумаги А4. Испытуемый сидел с закрытыми глазами, экспериментатор ставил его руку в центр листа, затем переносил ее к ячейке с цифрой 1, которую испытуемый писал, далее к цифре 2 и т.?д. После этого экспериментатор возвращал руку испытуемого в центр и испытуемый должен был проставить все цифры самостоятельно. Элементы последовательности располагались на листе либо в случайном порядке, либо в соответствии с тремя условиями: 1) в случайном порядке; 2) по простому правилу (по диагонали, а при достижении граничной клетки листа траектория изменяется на 90 угл. град.); 3) в пределах той же траектории, что и в условии 2, но в случайном порядке. Последовательности движений испытуемые запоминали и воспроизводили, выполняя движения сначала правой, а затем левой рукой, причем о типах последовательностей испытуемым сообщалось до начала опытов.

Анализ данных:

- оценка ошибок положения по разности между положениями руки, когда экспериментатор перемещал руку испытуемого и когда испытуемый двигал рукой сам, и ошибки направления движения по углу между векторами движения руки, когда ее двигал экспериментатор, и когда испытуемый двигал ею сам.

- оценка ошибок направления движения руки по углу между направлениями движения руки при перемещении ее экспериментатором на этапе запоминания и при самостоятельном перемещении ее испытуемым на этапе воспроизведения.

- оценка достоверности различий непараметрических критериев: критерия знаков, парного критерия Вилкоксона и критерия Манна-Уитни.

В экспериментах принимало участие 63 испытуемых.

4. Исследование целостного восприятия тела - определение положения «прямо перед собой» в условиях рассогласования положения головы и корпуса

Регистрация:

- субъективного положения «прямо перед собой» при положении головы, повернутом на 45 угл. град. вправо или влево от центрального положения;

- ответов испытуемых при тестировании на определение лево- и праворукости по вопроснику Олдфилда [Оldfield, 1971].

Стимуляция: прослеживание движения зрительного стимула диаметром 2 угл. мин. по горизонтали на гомогенном зрительном фоне (цилиндрический экран диаметром 2 м). В случае поворота головы вправо луч двигался справа налево, влево - слева направо. При достижении стимулом положения, субъективно воспринимаемого испытуемым как положение «прямо перед собой», испытуемый должен был произнести «Стоп».

Анализ данных:

- определение среднего семи измерений при каждом из положений головы;

- построение распределений ответов испытуемых;

- оценка достоверности различий по непараметрическим критериям знаков и Манна-Уитни.

В экспериментах принимало участие 29 испытуемых.

Результаты исследования и их обсуждение

1. Механизмы координации при поддержании вертикальной позы: взаимодействия между звеньями тела при спокойном стоянии

Особенность системы поддержания вертикальной позы человеком с биомеханической точки зрения состоит в наличии двух опорных поверхностей, что является причиной различий в поддержании равновесия во фронтальной и сагиттальной плоскости [Winter e.a., 1993; Денискина и др., 2001]. Клинические данные дают основания предполагать, что управление этими двумя подсистемами осуществляется на различных уровнях центральной нервной системы [Mitchel e.a., 1995; Rode e.a., 1997, 1998; Horac e.a., 1992]. С другой стороны, тело человека при стоянии представляет собой многосуставную биомеханическую цепь из нескольких перевернутых маятников, поставленных друг на друга [см. обзор Фролов и др., 2003], и характер взаимодействия между звеньями этого маятника недостаточно изучен. Для описания процессов поддержания вертикальной позы при спокойном стоянии используют упрощенные модели однозвенного и двухзвенного перевернутого маятника [Aramaki e.a., 2001], в которых тело рассматривается, как состоящее либо из одного звена, колеблющегося относительно голеностопного сустава, либо двух звеньев, шарнирно соединенных между собой на уровне тазобедренного сустава. Для исследования механизмов поддержания вертикальной позы в рамках этих модельных представлений анализировали колебания верхнего (ВЗ) и нижнего (НЗ) звеньев тела. Движения во всех суставах, кроме голеностопных и тазобедренных, были ограничены: одна шина крепилась на уровне затылка, грудного и крестцового отделов позвоночника, две шины ограничивали колебания в коленных суставах.

Сагиттальная плоскость. Выявлены следующие отличия колебаний ВЗ и НЗ (рис.1). Коэффициенты корреляции и индексы сходства между колебаниями ВЗ и центра давления (ЦД) больше, чем между колебаниями НЗ и ЦД. Следовательно, ВЗ в большей степени, чем НЗ определяет колебания всего тела в сагиттальной плоскости. Колебания ВЗ и НЗ тесно связаны, причем степень связанности достоверно отличается у разных испытуемых (от 0,66 до 0,95). Сходство между процессами колебаний ВЗ и НЗ в среднем по испытуемым выше, чем между колебаниями ЦД и ВЗ, ЦД и НЗ. Анализ поведения во времени звеньев тела в разных записях показывает, что ВЗ колеблется более сходным образом, чем НЗ.

Анализ кросс-корреляционных функций между колебаниями ВЗ и НЗ выявил существование максимумов, сдвинутых относительно нуля в среднем на 16,2±9,0 мс, причем величина сдвига, т.е. задержка колебаний одного звена относительно другого,

Рис.1. Коэффициенты корреляции (А) и индексы сходства (Б) между колебаниями звеньев (верхнего ВЗ и нижнего НЗ) тела и центра давления (ЦД) в сагиттальной плоскости. Светлые столбцы: ВЗ-ЦД; серые столбцы: НЗ-ЦД; заштрихованные столбцы: ВЗ-НЗ. Размах - доверительный интервал (p=0,05). Данные получены на семерых испытуемых, справа - усредненные данные всех испытуемых.

может достигать (в некоторых регистрациях) 100 мс. Это означает, что в среднем по всем испытуемым колебания НЗ тела задержаны относительно колебаний ВЗ. Распределение величин задержек показывает, что максимальное количество случаев (n=20) наблюдается

при положении максимума кросс-корреляциионной функции на нуле. Эта ситуация соответствует колебаниям тела как однозвенного перевернутого маятника, колеблющегося относительно голеностопного сустава (ВЗ и НЗ колеблются синфазно). Вместе с тем, в подавляющем большинстве случаев (n=52) задержка не равна нулю, что соответствует двухзвенной модели перевернутого маятника.

Итак, колебания звеньев тела человека в сагиттальной плоскости при спокойном стоянии отличаются по своим пространственным и временным характеристикам и задержаны во времени друг относительно друга. При спокойном стоянии преобладает стратегия взаимоотношений между звеньями тела, когда ВЗ колеблется с большим сходством и большей амплитудой, чем НЗ, и колебания ВЗ опережают во времени колебания НЗ, причем величина опережения специфична для испытуемого.

Фронтальная плоскость. Как и в сагиттальной плоскости, коэффициенты корреляции и индексы сходства между колебаниями ВЗ и ЦД больше, чем между колебаниями НЗ и ЦД, т.е. ВЗ в большей степени определяет колебания всего тела. Корреляционные связи между траекториями перемещений ВЗ и НЗ высоки (0,99) и превышают таковые для звеньев тела и ЦД. Сходство между траекториями перемещений ВЗ и НЗ также выше, чем между звеньями тела и ЦД, однако для ВЗ это проявляется лишь в виде тенденции. Индексы сходства между колебаниями ВЗ в разных записях выше, чем между колебаниями НЗ, т.е. ВЗ во фронтальной плоскости, как и в сагиттальной, во времени колеблется более сходным образом. Анализ кросс-корреляционных функций между колебаниями звеньев тела выявил существование максимумов, однако, в отличие от сагиттальной плоскости, отличия от нуля их положений на оси абсцисс не достоверны. Следовательно, в случае сагиттальной плоскости нельзя говорить о наличии задержек между колебаниями ВЗ и НЗ.

Обсуждение. Выявленные отличия в поддержании равновесия во фронтальной и сагиттальной плоскостях расширяют представления о функционировании двух подсистем, обеспечивающих регуляцию в каждой из плоскостей [Winter e.a., 1993; Денискина и др., 2001]. Специфика управления процессами поддержания вертикальной позы на уровне звеньев тела во фронтальной и сагиттальной плоскостях связана с особенностями биомеханики тела человека. Особенности колебаний ВЗ и НЗ, по-видимому, связаны также с необходимостью обеспечить оптимальное положение головы в пространстве при поддержании равновесия. Особая роль головы в выстраивании отношений между эгоцентрическими системами координат, обеспечивающими регуляцию движений, подчеркивалась А. Бертозом [Berthoz, 1991]: согласно его представлениям голова является фундаментальным элементом в иерархии множественных систем координат.

Распределение величин задержек свидетельствует о том, что при поддержании равновесия чередуются стратегии колебаний тела в соответствии с моделью однозвенного и двухзвенного перевернутого маятника. По-видимому, веса связей между нейронными сетями, регулирующими активность мышечных синергий, обеспечивающих изменения углов в тазобедренном и голеностопном суставах, могут варьировать в процессе поддержания равновесия. Индивидуальные различия в величинах задержек колебаний ВЗ и НЗ свидетельствуют об индивидуальной специфичности весов связей между этими нейронными сетями. Стратегии временной координации между колебаниями звеньев тела отражают, по-видимому, взаимодействия между центральными программами, когда веса связей между программами, регулирующими активность синергий, могут изменяться в процессе поддержания равновесия. Приведенное соображение дополняет предположение о трансформации дискретных управляющих паттернов регуляции позы в континуум постуральных коррекций, выдвинутое на основании результатов исследований позных реакций на быстрые сдвиги опорной поверхности [Runge е.а., 1999]. Морфо-функциональные структуры, обеспечивающие формирование дискретных управляющих паттернов регуляции позы, могут рассматриваться как компоненты функциональной системы регуляции вертикальной позы на уровне синергий и штампов В [Бернштейн, 1966]. Эти компоненты обеспечивают регуляцию устойчивости тела во фронтальной и сагиттальной плоскостях на уровне верхнего и нижнего звеньев тела.

Таким образом, колебания верхнего звена тела характеризуются большим сходством, чем колебания нижнего звена; в сагиттальной плоскости преобладает стратегия взаимоотношений между звеньями тела, когда колебания верхнего звена опережают во времени колебания нижнего звена. Характер взаимодействия между звеньями тела отражает взаимодействия между компонентами системы регуляции вертикальной позы на уровне верхнего и нижнего звеньев тела во фронтальной и сагиттальной плоскости и свидетельствует о преимущественной роли системы координат, связанной с головой, в общей иерархической структуре множественных систем координат, используемых при организации движений.

2. Регуляция вертикальной позы при прослеживающих движениях глаз

Исследования взаимодействия позы и движения интенсивно исследуются вследствие их принципиальной важности для организации двигательного поведения [Фролов и др., 2003]. Один из аспектов этих взаимодействий - поддержание равновесия при движениях глаз (ДГ). ДГ представляют особый интерес, поскольку не вызывают изменений положения центра масс тела, но тесно связаны с механизмами пространственной ориентации. Показано [Tokumasu e.a., 1979], что при прослеживании зрительного стимула ДГ совместно с движениями головы на усредненных данных наблюдаются движения ЦД, “параллельные” движениям глаз, но с фазовой задержкой. В наших экспериментах прослеживание осуществлялось только ДГ, и поддержание равновесия изучалось в рамках двухзвенной модели перевернутого маятника: анализировались взаимодействия ДГ, колебаний звеньев тела (ВЗ, НЗ) и ЦД тела.

Корреляционные связи между звеньями тела и ЦД. Прослеживание не влияет на корреляционные связи между траекториями перемещений ВЗ и НЗ (рис.2), которые высоки при всех условиях регистрации (при фиксации зрительного стимула до и после прослеживания (Ф1, Ф2), при медленном (МП) и быстром (БП) прослеживании зрительного

Рис.2. Коэффициенты корреляции между перемещениями звеньев и центра давления тела во фронтальной плоскости: ВЗ и НЗ (серо-белая штриховка), ВЗ и ЦД (белые столбцы), НЗ и ЦД (серые столбцы) для каждого из четырех условий эксперимента. Разброс - доверительный интервал (р=0,05). Остальные объяснения в тексте.

стимула). Прослеживание уменьшает связи между траекториями перемещений обоих звеньев тела и ЦД, в особенности между НЗ и ЦД (между колебаниями ВЗ и ЦД при быстром прослеживании наблюдается лишь тенденция той же направленности) и увеличивает связь между колебаниями ЦД во фронтальной и сагиттальной плоскостях.

Корреляционные связи между ДГ и ЦД. При прослеживании (по сравнению с фиксацией) увеличивается связь между колебаниями ЦД во фронтальной плоскости и ДГ, однако величина коэффициентов корреляции весьма невелика (0,14 при медленном и 0,19 при быстром прослеживании). Это связано с тем, что задержки реакций на прослеживание у ДГ и движений тела различны: максимумы кросс-корреляционных функций между сигналами положений глаз и ЦД смещены относительно нуля. При быстром прослеживании имеет место периодическое чередование максимумов и минимумов кросс-корреляционных функций, что свидетельствует о появлении колебаний тела с той же периодичностью, что и периодичность прослеживающих ДГ. У большинства испытуемых колебания во фронтальной плоскости выражены больше, чем в сагиттальной, что естественно при прослеживании горизонтального движения стимула. Наблюдается не только сдвиг положения максимума кросс-корреляционных функций относительно нуля, но и сдвиг друг относительно друга кросс-корреляционных функций фронтальная стабилограмма - ДГ и сагиттальная стабилограмма - ДГ. У некоторых испытуемых этот сдвиг невелик, в одном случае - функции в противофазе. Эти случаи - примеры колебаний тела при прослеживании, когда при сдвиге ЦД влево (или вправо) одновременно происходит сдвиг вперед (или назад). У большинства рассматриваемые функции сдвинуты друг относительно друга на величину менее полпериода, что, по-видимому, свидетельствует о преобладании траекторий, в которых преобладают не чисто диагональное направление движений ЦД, а отклоненное ближе к направлению колебаний вправо-влево или вперед-назад. Соотношение амплитуд кросскорреляционных функций между сигналами ДГ и колебаний ЦД тела во фронтальной или сагиттальной плоскостях также различно у разных субъектов.

Обсуждение. Характер изменения колебаний тела и его звеньев при прослеживающих ДГ свидетельствует о возникновении торсионных, скручивающих движений тела, связанных с ДГ. Изменения колебаний более выражены для фронтальной плоскости, поскольку ДГ прослеживают горизонтальное движение зрительного стимула. Причиной появления торсионных движений тела может являться стремление избежать больших углов отклонения глаз от их центрального положения в орбитах [Bender e.a., 1955]. Прослеживание колебаний зрительного стимула в описанном эксперименте приводило глаза к границам глазодвигательной зоны, и при возможности осуществления движений головы осуществлялось бы координированными ДГ и головы. Однако голова была фиксирована, и прослеживание стало осуществляться координированными ДГ и тела.

Прослеживание быстро изменяющего свое положение во времени зрительного стимула приводит к уменьшению отличий между сходством колебаний тела во фронтальной и сагиттальной плоскостях. Это соответствует увеличению при прослеживании корреляционных связей между колебаниями ЦД в этих плоскостях и данным [Balasubramaniam, 2000] об изменении взаимодействия между колебаниями ЦД во фронтальной и сагиттальной плоскости при зрительной задаче точного удержания луча лазерной указки.

Наблюдающиеся изменения характера поддержания вертикальной позы при прослеживании могут быть рассмотрены также в рамках представлений о роли внимания при управлении равновесием тела: показано, что при стоянии дополнительная задача (зрительная, слуховая, когнитивная и др.) приводит к изменениям поддержания равновесия [Woollacott, Schumway-Cook, 2002].

Полученные данные выявляют характер взаимодействия двух систем (глазодвигательной и системы поддержания равновесия) при решении общей задачи прослеживания зрительного стимула при стоянии. Активация уровня пространственного поля С (по Н.А. Бернштейну) вследствие прослеживания движущегося в пространстве стимула приводит к увеличению взаимодействия между компонентами системы поддержания позы, регулирующими колебания во фронтальной и сагиттальной плоскостях, влияя на активность уровня синергий и штампов В. Поведение двух систем демонстрирует, что их взаимодействие носит, по определению П.К. Анохина, характер «взаимоСОдействия», которое определяет поведение компонентов системы поддержания равновесия. Веса связей между компонентами системы определяются в рамках вышеописанных принципов индивидуальными особенностями.

Таким образом, прослеживание зрительного стимула приводит к изменениям взаимодействий между колебаниями тела во фронтальной и сагиттальной плоскостях и между колебаниями звеньев тела. Возникают движения тела, коррелирующие с прослеживающими движениями глаз. Увеличивается связь между колебаниями тела во фронтальной и сагиттальной плоскостях, причем фазовые задержки между этими процессами индивидуальны. Активация уровня пространственного поля С вследствие задачи осуществления целенаправленного движения (прослеживания) сказывается на взаимодействии между компонентами системы поддержания равновесия.

3. Поддержание вертикальной позы при афферентных воздействиях, адресованных преимущественно правому или левому полушарию головного мозга

Сведения о специфике обработки афферентной информации и организации движений в правом и левом полушариях [Bradshaw, 2001; Toga, Tompson, 2003; Боброва, 2007] дают основания предполагать, что активация афферентных входов системы поддержания вертикальной позы, адресованных преимущественно одному из полушарий, может по-разному влиять на поддержание равновесия. В связи с этим был проведен анализ параметров, характеризующих систему поддержания вертикальной позы человека при латерализованных воздействиях двух модальностей - зрительной и сомато-сенсорной, а именно: 1) при решении зрительной задачи определения направления сдвига вертикальной линии преимущественно в правом или в левом полуполе зрения; 2) при вибрационной стимуляции опорной поверхности правой или левой стопы и 3) при одновременных воздействиях на эти оба входа системы поддержания равновесия.

Влияние зрительной задачи, решаемой преимущественно в правом или левом полуполе зрения

Фронтальная плоскость. Изменения размаха колебаний, оцененного по величине среднеквадратического отклонения ЦД тела, при решении зрительной задачи в левом полуполе зрения у всех испытуемых, за исключением одного, однонаправлены, и анализ парным критерием Вилкоксона доказывает достоверность его увеличения при решении зрительной задачи по сравнению со спокойным стоянием (рис.3). Аналогичный анализ не выявляет достоверного влияния решения зрительной задачи в правом полуполе зрения.

Вариабельность колебаний ЦД тела (средняя величина доверительных интервалов для каждого среднего значения ЦД в данный момент времени при данном условии регистрации для данного испытуемого) также отличается в зависимости от полуполя зрения, в котором решается зрительная задача. При решении зрительной задачи в левом полуполе зрения по сравнению со спокойным стоянием вариабельность изменяется достоверно меньше, чем в правом (рис.4). Раздельный анализ участков траектории колебаний ЦД показывает, что достоверные различия между вариабельностью при стимуляции правого и левого полуполей зрения у всех испытуемых имеют место именно во время, но не после окончания решения зрительной задачи. Величины вариабельности (как и размаха колебаний) при решении зрительной задачи в левом и правом полуполе зрения тесно связаны (коэффициенты корреляции составляют 0,897 и 0,951, соответственно). Тесная связь наблюдается и для величины изменения вариабельности при решении зрительной задачи в правом и левом полуполе зрения по сравнению со спокойным стоянием (табл.1). Следовательно, можно предполагать, что в реакциях системы поддержания позы на решение зрительной задачи могут быть выделены два фактора. С одной стороны, тесная связь между анализируемыми величинами, свидетельствующая об индивидуальном характере влияния зрительной задачи на колебания ЦД тела, с другой стороны, различия во влиянии на анализируемые параметры того, в каком полуполе зрения решается зрительная задача.

Табл. 1. Коэффициенты корреляции (r) между изменениями (по сравнению со спокойным стоянием) размаха (СКО) и вариабельности колебаний центра давления во фронтальной плоскости при решении зрительной задачи преимущественно в правом и левом полуполе зрения в отсутствие вибрации стопы (ЗЗ), при вибрационной стимуляции правой и левой стопы (ВС) и при одновременной стимуляции обеих модальностей (ЗЗ+ВС).

R

СКО

Вариабельность

ЗЗ

0,477

0,868

ЗЗ+ВС левой стопы

0,972

0,506

ЗЗ+ВС правой стопы

0,846

0,803

ВС

0,163

0,320

Таким образом, при решении зрительной задачи в левом полуполе зрения размах колебаний тела во фронтальной плоскости увеличивается по сравнению со спокойным стоянием. Решение зрительной задачи в правом полуполе зрения не приводит к такому эффекту, но увеличивает вариабельность колебаний тела в разных записях более существенно, чем при решении задачи в левом полуполе зрения. Вариабельность и размах

А Б

Рис.3. Средние величины изменения размаха колебаний центра давления тела человека во фронтальной (А) и сагиттальной (Б) плоскости при афферентной стимуляции, адресованной преимущественно правому или левому полушарию, по сравнению со спокойным стоянием в отсутствии стимуляции.


Подобные документы

  • Пирамидная система как регулирующая система целенаправленных движений человека. Экстрапирамидная система как система "тонкой" регуляции двигательной активности человека. Методы исследования движений человека. Аномалии двигательной координации человека.

    реферат [43,1 K], добавлен 10.03.2012

  • Разновидности движений человека и рецепторы, участвующие в регуляции моторики: проприорецепторы, вестибулярные, зрительные. Рефлексы спинного мозга: сгибательный, перекрестный разгибательный, чесательный и шагательный. Моторные рефлексы ствола мозга.

    презентация [1,4 M], добавлен 29.08.2013

  • Жалобы на постоянную боль в области перелома; жжение и боль в стопе; отсутствие чувствительности в области II межпальцевого промежутка, разгибательных движений пальцев левой стопы. Закрытый перелом левой большеберцовой кости. Хронический стеатогепатоз.

    история болезни [20,3 K], добавлен 23.03.2009

  • Нарушение опороспособности правой нижней конечности. Измерение амплитуды движений ног. Рентгенография тазобедренного сустава в условиях стационара. Рекомендации по клиническому лечению чрезвертельного перелома бедренной кости со смещением отломков.

    история болезни [31,2 K], добавлен 16.05.2019

  • Резкая боль в правой голени и правом бедре, ограничение движений правой нижней конечности и невозможность ступить на ногу. Проведение рентгенологического исследования. Остеосинтез варусного перелома шейки бедренной кости трехлопастным стержнем.

    история болезни [24,7 K], добавлен 20.03.2012

  • Анатомическое строение сустава, его составные части и функции. Биомеханика суставов. Виды движений внутри них. Классификация по числу суставных поверхностей, по форме и по функции. Формы сочленения в суставе. Объем направления движения внутри него.

    презентация [1,8 M], добавлен 27.10.2016

  • Нормальная температура тела человека, определение ее постоянства балансом между теплопродукцией и теплоотдачей. Особенности лихорадочного состояния, причины его возникновения. Характеристика основных механизмов регулирования температуры тела человека.

    презентация [713,4 K], добавлен 28.12.2013

  • Двусторонние связи клеток коры мозжечка. Участие мозжечка в выполнении осознанных (произвольных) движений. Двойной тип влияний клеток Пуркинье. Дифференцировка влияний отдельных структур мозжечка. Зоны коры, участвующие в осуществлении сложных движений.

    презентация [652,3 K], добавлен 29.08.2013

  • Положение проекции экранных изображений в сетчаточных координатах и осложнение психофизиологических процессов, направленных на константность пространственного восприятия. Особенности проявления иллюзии куба Неккера в зависимости от позы сидения.

    курсовая работа [820,5 K], добавлен 23.01.2018

  • Общая характеристика сколиотической болезни, этиопатогенез и клинические проявления, общая характеристика лечебных мероприятий и комплексная физическая реабилитация. Физиологические предпосылки искусственной коррекции движений при патологической ходьбе.

    дипломная работа [363,1 K], добавлен 25.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.