Иммунобиотехнологический процесс

Пример иммунобиотехнологического генного процесса. Вакцины - препараты, приготовленные из убитых (ослабленных) болезнетворных микроорганизмов или токсинов. Классификация вакцин по виду лекарственной формы. Иммуноферментный анализ в медицинской практике.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 13.10.2013
Размер файла 25,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Иммунобиотехнология основана на реакции антиген (АГ)- антитело (AT). В качестве примера иммунобиотехнологического генного процесса может служить получение вируса полиомиелита из культуры ткани живого человека для получения вакцины. Биопродукты (вакцины) должны проходить тщательную проверку на безопасность и эффективность. На эту стадию проверки вакцины уходит обычно около двух третей (2/3) стоимости вакцины.

Рассмотрим более подробно вакцины.

Вакцины - это препараты, приготовленные из убитых или ослабленных болезнетворных микроорганизмов или их токсинов. Как известно, вакцины применяются с целью профилактики или лечения. Введение вакцин вызывает иммунную реакцию, за которой следует приобретение устойчивости организма человека или животного к патогенным микроорганизмам. Если рассмотреть состав вакцины, то в них входят: - действующий компонент, представляющие специфические антигены, - консервант, который определяет стабильность вакцины при ее хранении, - стабилизатор, который продлевает срок годности вакцины, - полимерный носитель, который повышает иммуногенность антигена (АГ). Под иммуногенностъю понимают свойство антигена вызывать иммунный ответ.

В роли антигена можно использовать:

1. живые ослабевшие микроорганизмы

2. неживые, убитые микробные клетки или вирусные частицы

3. антигенные структуры, извлеченные из микроорганизма

4. продукты жизнедеятельности микроорганизмов, в качестве которых используют токсины, как вторичные метаболиты.

Классификация вакцин в соответствии с природой специфического антигена: * живые * неживые * комбинированные.

Рассмотрим более подробно каждую из них.

1. Живые вакцины получают а) из естественных штаммов микроорганизмов с ослабленной вирулентностью для человека, но содержащий полный набор антигенов (в качестве примера можно привести вирус оспы). б) из искусственных ослабленных штаммов. в) часть вакцин получают генноинженерным способом. Для получения таких вакцин используют штамм, несущий ген чужеродного антигена, например, вирус оспы со встроенным антигеном гепатита В.

2. Неживые вакцины - это: а) молекулярные и химические вакцины. При этом молекулярные вакцины конструируют на основе специфического антигена, который находится в молекулярном виде. Эти вакцины могут быть получены и путем химического синтеза или биосинтеза. Примерами молекулярных вакцин являются анатоксины.

Анатоксины - это бактериальный экзотоксин, потерявший токсичность в результате длительного воздействия формалина, но сохранивший антигенные свойства. Это дифтерийный токсин, столбнячный токсин, бутулинический токсин. б) корпускулярные вакцины, которые получают из целой микробной клетки, которая инактивизирована температурой, ультрафиолетовым облучением или химическими методами, например, спиртом. 3. Комбинированные вакцины. Они комбинируются из отдельных вакцин, превращаясь при этом в поливакцины, которые способны иммунизировать сразу от нескольких инфекций. В качестве примера можно назвать поливакцину АКДС, содержащую дифтерийный и столбнячный анатоксины и коклюшные корпускулярные антигены. Эта вакцина, как известно, широко применяется в детской практике.

Рассмотрим подробнее токсины с точки зрения их, как продуктов жизнедеятельности микроорганизмов. 1 группа токсинов - это экзотоксины: экзотоксины - это белковые вещества, выделяемые клетками бактерий во внешнюю среду. Они в значительной степени определяют болезнетворность микроорганизмов. Экзотоксины в своем строении имеют два центра. Один из них фиксирует молекулу токсина на соответствующем клеточном рецепторе, второй - токсический фрагмент - проникает внутрь клетки, где блокирует жизненно важные метаболические реакции. Экзотоксины могут быть термолабильны или термостабильны. Известно, что под действием формалина они теряют токсичность, но сохраняют при этом иммуногенные свойства -такие токсины называются анатоксинами. 2 группа токсинов - это эндотоксины.

Эндотоксины являются структурными компонентами бактерий, представляя липополисахариды клеточной стенки грамотрицательных бактерий. Эндотоксины менее токсичны, разрушаются при нагревании до 60-80° С в течении 20 минут. Эндотоксины выходят из клетки бактерий при ее разложении. При введении в организм эндотоксины вызывают иммунный ответ. Получают сыворотку путем иммунизации животных чистым эндотоксином. Однако эндотоксины относительно слабый иммуноген и сыворотка не может обладать высокой антитоксической активностью.

Иммунобиотехнологические препараты: Вакцины вводятся в организм для профилактики. При такой прививке активизируется иммунная система, вырабатываются антитела лимфоцитными клетками, которые сохраняют в памяти эту способность и при повторном попадании этого же антигена образуют комплекс антиген-антитело, который в свою очередь узнается организмом и утилизируется.

Вакцина для профилактики полиомиелита представляет поливалентный препарат из трех ослабленных штаммов вируса полиомиелита. В тоже время половина из всех применяемых в настоящее время вакцин относится к живым вакцинам разного происхождения.

Это живые вакцины бактерийного происхождения, применяемые для профилактики сибирской язвы, чумы, туберкулеза и др. Это живые вакцины вирусного происхождения, применяемые для профилактики оспы, кори, гриппа, краснухи, полиомиелита и др. Неживые вакцины используются для профилактики бактерийных инфекций, таких как: коклюш, дизентерия, холера, брюшной тиф, сыпной тиф. б. вирусных инфекций: герпес. Примеры анатоксинов: дифтерийный, столбнячный, газовой гангрены, бутулимический.

Классификация вакцин может быть представлена и по виду лекарственной формы: - иньекционные (жидкие) -пероральные (таблетки, капсулы, драже) - ингаляционные (аэрозоли).

Получение вакцин 1. вакцины живые 1.1.живые бактерийные вакцины. Этот тип вакцин получается наиболее просто. В ферментере выращиваются чистые ослабленные культуры. Существует 4 основных стадии получения живых бактерийных вакцин: - выращивание - стабилизация - стандартизация - лиофильное высушивание. В этих случаях штаммы продуцентов выращиваются на жидкой питательной среде в ферментере вместимостью до 1-2 м3. 1.2. живые вирусные вакцины. В этом случае вакцины получают путем культивирования штамма в курином эмбрионе или в культурах животных клеток. 2. молекулярные вакцины. Чтобы иметь представление об этом типе вакцин, надо знать, что в этом случае из микробной массы выделяют специфический антиген или экзотоксины. Их очищают, концентрируют. Затем токсины обезвреживают и получают анатоксины. Очень важно, что специфический антиген может быть также получен путем химического или биохимического синтеза. 3. корпускулярные вакцины. Их можно получить из микробных клеток, которые предварительно культивируют в ферментере. Затем микробные клетки инактивируют температурой, или ультрафиолетовым облучением (УФ), или химическими веществами (фенолами или спиртом).

Сыворотки

Применение сывороток. Сыворотки широко используются в случаях профилактики и лечения инфекционных заболеваний. 2. Сыворотки также используются при отравлении ядами микробов или животных - при столбняке, ботулизме дифтерии (для инактивации экзотоксинов), применяются сыворотки и от яда кобры, гадюки и др. 3. Сыворотки могут быть использованы и для диагностических целей, для создания различных диагностических наборов ( например в тестах на определение беременности). В этом случае антитела используются в реакциях образования комплексов с антигенами (антиген (АГ) - антитело (AT), когда происходит подтверждение наличия соответствующих антигенов, что может быть использовано в различных реакциях. Профилактическое или лечебное действие сывороток основано на содержащихся в сыворотке антителах (AT). Для массового получения сыворотки вакцинируют ослов, лошадей. Введение такой сыворотки дает образование пассивного иммунитета, то есть организм получает готовые антитела. Сыворотки, которые получают путем иммунизации животных должны быть на контроле по такому показателю, как титр антител у животных, чтобы брать у них кровь в период максимального содержания антител. Из крови животных выделяют плазму крови, затем из плазмы удаляют фибрин и получают сыворотку. Это один способ получения сыворотки. Другой способ получения сыворотки - это из культивируемых животных клеток. Однако главной проблемой в этом случае является обеспечение стабильного роста животных клеток. Дело в том, что клетки животных, изолированные из среды организма, часто не делятся in vitro. Для получения положительного результата в этом случае при переносе клеток из организма надо иметь в виду следующие условия этого переноса и его последствия:

1. Нужные нам клетки должны

* преобладать в культуре,

* быстро адаптироваться к новым условиям,

* быстро расти.

Кроме того:

* должна быть полная стерильность при культивировании,

* питательные среды должны быть стерильными и при их изготовлении должна быть использована только стерильная вода

2. При росте клеток in vitro, с ними происходят перемены, то есть они:

* теряют способность к дифференциации,

* дегенерируют (перерождаются)

* трансформируются Все эти перемены происходят с клетками животных вследствие их старения, старения самой архитектуры клеток. Если клеточная популяция сможет поддерживаться в гистологической дифференцированной форме, то они сохраняют свою специализацию. Нормальные живые клетки растут только на поверхности - это так называемые субстрат зависимые клетки, монослойная культура. Клетки могут расти только до полного закрытия поверхности и если поверхности нет, то клетки не растут. В этом случае появляется проблема создания достаточной поверхности для роста клеток. Клетки могут выдерживать не более 50 удвоений, затем они умирают от старости. Задача роста клеток - этот процесс еще называют пролиферацией - связан с увеличением биомассы за счет того, что число клеток умножается на среднюю массу клеток.

Рост клеток может быть достигнут двумя путями:

* за счет увеличения средней массы - это называется гипертрофия

* за счет увеличения числа клеток - это называется гиперплазия. Клетки животных обычно в своей массе не увеличиваются, так как их масса удерживается в определенных пределах за счет регуляторных процессов, поэтому, когда говорят о росте животных клеток, то при этом подразумевают только увеличение их числа. В организме взрослого человека имеется 1014 клеток и в организме человека ежесекундно происходит 20 делений клеток. В организме человека имеется система регуляции деления клеток, представляющая собой комбинированный импульс, поступающий, как сигнал, от гормонов желез внутренней секреции и продуктов метаболизма. Если эта система контроля над ростом клеток будет нарушена, то развивается опухоль. Одной из особенностью многоклеточных животных является степень специализации функций различных клеток тканей и органов, что определяется понятием дифференциации. Таким образом, клетки животных по мере роста зародыша становятся все более специализированными. Это ведет к образованию индивидуальных тканей с вполне конкретными функциями. иммунобиотехнологический генный вакцина лекарственный

Существуют три проблемы роста животных клеток:

1. генетическая нестабильность

2. непостоянство генетических экспрессии

3. старение. При выращивании животных клеток приходится постоянно отбирать клетки для консервирования. В процессе развития клеток можно проводить трансформацию - это изменение ростовых свойств культивируемых клеток, что является процессом необратимым и включает генетические изменения этих клеток. Изменение ростовых свойств клеток является одним из адаптационных процессов, который позволяет размножаться им в неблагоприятных условиях. Благодаря трансформации клетки получают возможность расти in vitro в виде суспензии до высокой плотности популяции этих клеток, что связано с понижением потребности в факторах роста. Трансформация позволяет расти клеткам в условиях, где отношение площади и объема менее благоприятно, чем у нормальных клеток, потому что у трансформированных клеток уже нет субстратной зависимости и геометрический фактор роста не имеет значения. Что касается старения клетки, то этот показатель является ограничением потенциала деления (всего 50 делений). Если добиться повышенной способности к росту клетки, то это значит, что трансформация преобладает над старением.

Причины старения сводятся к двум моментам:

1. постепенное накопление трансформационных ошибок в следствии вредных влияний мутаций, когда происходит старение и гибель клетки,

2. генетическая запрограммированность смерти. В самом процессе биотехнологического культивирования используют, получая после неоднократных пересевов, клеточную линию диплоидных клеток, соблюдая определенную плотность популяции (часть клеток консервируют). В качестве материала для культивирования можно использовать почки обезьян, почки собак, почки кроликов, куриный эмбрион (возраст -14 дней), клетки легких эмбриона человека (возраст -16 недель). Понятно, что чем моложе материал, тем дольше культивируется клетка. Весьма важным является и процесс консервирования, как средство сохранения нужного генома и посевного материала клеток с определенным временем роста (сохраняют молодые клетки, являющиеся резервным фондом популяции). Особенностью животных клеток является то, что они не способны выдерживать лиофилизации и их консервируют только в жидком азоте при температуре минус 196° С. При такой температуре клетки полностью стабильны. Для замораживания используют стеклянные ампулы определенных размеров, например, на 1 миллилитр (мл). Однако в процессе замораживания могут происходить вредные процессы. Это: 1. образование кристаллического льда в клетке 2. обезвоживание 3. повышение концентрации растворенных веществ. Возникновение этих вредных процессов во многом зависит от скорости замораживания. Существуют определенные правила замораживания, которые сводятся к следующему: - нужно использовать ампулы только небольших размеров (на 1 мл), - необходимо внесение криопротекторов (такие, как полиэтиленгликоль (ПЭГ), поливинилпропил (ПВП), диметилсульфацил). - скорость замораживания должна быть одинаковой внутри ампулы и около ее стенки, например, лейкоциты охлаждают со скоростью 0,5 -2° в минуту, фибробласты - 1 -3° в минуту, клетки эпителия - 2 -10° в минуту. Восстановление жизненных функций также проводится с определенной скоростью. Очень важным является и представление о составе питательной среды для культивирования животных клеток. Прежде всего, это 13 незаменимых L- аминокислот с определенной концентрацией их содержания в среде, например, аргинин 0,6 ммоль/л, цистеин 0,1 ммоль/л, изолейцин 0,4 ммоль/л, глутамин 2,0 ммоль/л и так далее. Затем обязательным является и присутствие белков, липидов (из сыворотки), углеводов, витаминов (всего 8), источников углерода (глюкоза 5,5 ммоль/л), сыворотки крови - 5-10% по объему, незаменимых жирных кислоты (линолевая, арахидоновая, линоленовая), предшественников простагландинов, неорганических ионов (натрия хлорид (NaCl), калия хлорид (KCI), кальция хлорид (СаС12) и т. д., микроэлементов (железо, медь, кобальт, цинк, селен и т д. (всего 15). И, наконец, проблемы стерилизации.

* стерилизация среды осуществляется мембранным фильтрованием, среду готовят на дистиллированной, стерилизованной воде,

* стерилизация оборудования происходит острым паром или химическим способом (если это пластмассовые детали). Режим культивирования осуществляется при определенной температуре, обычно при 37°С.

Иммуноферментный анализ (ИФА) в медицинской практике

Проблема биохимического анализа заключается в способности надежно определять нужное вещество в сложных многокомпонентных системах (средах). В решении этой проблемы применяется ИФА как наиболее специфичные, основанные на реакции связывания антител с антигеном в прочные комплексы. Высокая специфичность антител к широкому кругу различных веществ в сочетании с чувствительными методами регистрации, образующихся комплексов, обуславливает интенсивное развитие ИФА в различных областях медицины, ветеринарии, экологии. Известно, что главным компонентом иммунохимической реакции являются антитела (или иммуноглобулины), представляющие белки сыворотки крови, которые синтезируются в организме человека как проявление защитной реакции- иммунитета при попадании в него чужеродного вещества (ксенобиотика) - антигена. Что касается структуры антител, то основным элементом ее является четырехцепочечная молекула из двух пар идентичных полипептидных цепей: легких (L) и тяжелых (Н) с молекулярной массой 22000 и 50000-70000 грамм моль соответственно. Все цепи соединены дисульфидными связями. К обеим тяжелым цепям ковалентно присоединены олигосахаридные фрагменты (см. рис.) Схематическая структура молекул иммуноглобулина представлена на рисунке. Различают 5 классов иммуноглобулина человека это IgG, IgM, IgA, IgE, IgD, полипептидные цепи которых образуют глобулярные домены из 110 - 115 остатков. Концевые домены и определяют биологические свойства иммуноглобулинов. Вариабельные домены легких и тяжелых цепей образуют активный центр антител соответствующей специфичности. Во взаимодействии с антигеном принимает участие большое количество аминокислотных остатков молекулы антигена. Антитела образуются не против всей молекулы белка или бактериальной клетки, а только к небольшим участкам на их поверхности, которые получили название антигенных детерминант. Антигенные детерминанты представляют собой выпуклые части молекулы, которые могут входить внутрь активного центра антител. В случае бактериальных клеток в качестве антигенных детерминант выступают короткие цепочки из 3-5 остатков Сахаров, образующие стенку бактерий. Низкомолекулярные соединения, например, некоторые лекарственные средства, сами не могут вызывать образование антител. Их называют гаптенами. Однако, после присоединения гаптенов к поверхности макромолекулы, организм начинает вырабатывать на них антитела. Получение антител. Отвечая на этот вопрос, надо знать что такое иммунный ответ. Иммунный ответ это сложный процесс межклеточного взаимодействия различных типов лимфоидных клеток с участием специальных гормонов, в результате чего так называемые В-клетки активно синтезируют специфические антитела против данного антигена. Для получения антител берут животных - это могут быть мыши, морские свинки, кролики, куры, овцы, козы, куры, лошади и делают им инъекции антигена. В присутствии стимуляторов иммунного ответа, в сыворотке крови накапливаются специфические антитела. Обычно антитела выделяют из сыворотки в виде гаммаглобулиновой фракции, осаждая сыворотку крови сульфатом аммония, спиртом или полиэтиленгликолем. Эти антитела имеют иного примесей белков. Высокоочищенные антитела выделяют с помощью ионообменной хроматографии, аффинной хроматографии на иммуносорбентах. Антитела, однородные по структуре и специфичности, производимые в неограниченных количествах называются моноклональными антителами. Способ получения моноклональных антител. Такой способ был предложен в 1975 году учеными Г.Келером и К. Милыптейном. Они вводили антиген в организм мыши и получали активно продуцирующие антитела 0- клетки. Эти клетки могут жить только в организме хозяина, но если соединить иммунную клетку с клеткой опухолевой (эти клетки называют миеломные лимфоциты), то образуются гибридные клетки со свойствами своих предшественников, так как они способны долго жить в искусственных условиях и одновременно синтезировать антитела. Такие клетки называются гибридомами. Существуют методы отбора отдельных клеток, синтезирующих только один тип антител. Такие клетки помещают в культуральную жидкость, где они растут, образуя много родственных «клонов», синтезирующих большое количество антител под названием моноклональных. Отсюда возникает название монаклональные антитела.

Проведение иммунохимического анализа

Примером проведения такого анализа может служить хорошо Вам известная реакция гемагглютинации, когда взаимодействие белковых антигенов с антителами вызывает их осаждение, то есть преципитацию. Это только качественный или полуколичественный метод. Проблема установления концентрации антигена решается на основе конкурентного связывания антителами меченного и немеченого антигена, что обусловило, (определило) широкое практическое применение этого принципа.

Итак, иммуноферментный анализ применяется в том случае, если можно:

1. получать специфические антитела,

2. получить высокоочищенные антигены,

3. ввести метку, «маркер» в исследуемое вещество,

4. разделить связанные и свободные компоненты реакции,

5. выбрать метод определения концентрации «маркера»,

6. оптимизировать и стандартизовать условия проведения анализа.

В качестве «маркеров» применяются

1. радиоактивные метки (это радиоиммунный анализ (РИА, с использованием радиоактивных атомов - тритий, радиоактивный иод и другие).

2. ферментные метки (если ферменты стабильны, активны и действуют в минимальных концентрациях). Суть: субстрат превращается в продукт и далее обнаруживается фотометрическим методом.

3. Субстратные метки (АТФ и НАД), которые «пришиваются» к молекуле антигена через адениновый остаток и сохраняют способность взаимодействия с ферментом. Для введения ферментативной метки применяются химические, биохимические, иммунологические способы.

Основные методы иммуноферментного анализа. - конкурентные на твердой фазе, суть которых заключается в том, что заданное количество антител конкурентно взаимодействует со смесью неизвестного количества измеряемого вещества и постоянного количества этого же вещества, связанного с какой-либо меткой. После завершения иммунохимической реакции измеряют количество метки, связанной с антителами, используя калибровочные графики. иммунометрические по принципу «сэндвич»-анализ, когда на твердой фазе иммобилизуют избыток антител, с которыми проводят инкубацию антигена. После удаления несвязавшихся компонентов (антигена) в систему добавляют избыток меченых антител, которые взаимодействуют с антигеном. Чувствительность и точность этого метода выше, чем конкурентных методом. Для сокращения времени анализа и повышения избирательности детекции антигена используют моноклональные антитела, так как они весьма специфичны. кинетические, принципы те же, но делают измерения в кинетическом режиме для ускорения анализа с использованием программного управления. Это позволяет повысить чувствительность и точность анализа.

Применение ИФА.

1. В диагностике микробных и вирусных возбудителей.

2. В диагностике неинфекционных болезней (диабет, рак, сердечно¬ сосудистые заболевания.

3. Для контроля (мониторинга) лекарственной терапии (различных психотропных лекарственных препаратов, препаратов, влияющих на сердечно-сосудистую систему и других)

4. Для выявления отравления наркотиками, для выявления допинговых препаратов в организме человека

5. В контроле технологических процессов, в определении качества биотехнологической продукции в микробиологических производствах:

5.1 Для быстрого выявления высокоэффективных микроорганизмов - продуцентов ферментов, антибиотиков и других веществ

5.2 Для контроля наличия посторонних микроорганизмов и бактериофагов в ферментерах

5.3 Для определения степени загрязненности воздуха

5.4 Для обнаружения в донорской крови вируса гепатита В

5.5 Для определения белковых примесей в препарате инсулина. Помимо медицинской практики методы иммуноферментного анализа применяются в ветеринарии и сельском хозяйстве, особенно в растениеводстве.

Размещено на Allbest.ru


Подобные документы

  • Антигенные препараты, используемые как вакцины, эффективность вакцин. Вакцины, применяемые для массовой иммунизации, их различие по эффективности, адьюванты и их воздействие. Применение вакцин в противораковой терапии, противозачаточные вакцины.

    реферат [23,2 K], добавлен 27.09.2009

  • История появления вакцин. Определение, классификация, войства вакцин и их изготовление. Инструкция по применению адсорбированной коклюшно-дифтерийно-столбнячной вакцины (АКДС-вакцины). Сыворотки в биотехнологии, их общая характеристика и получение.

    реферат [11,7 M], добавлен 01.02.2011

  • Классификация вакцин в зависимости от природы иммуногена. Протективные антигены, являющиеся белками, гликопротеидами, липополисахаридобелковыми комплексами. Конструирование вакцин на базе знаний об антигенной структуре патогена, биосинтетические вакцины.

    реферат [27,8 K], добавлен 31.05.2010

  • Классификация различных категорий стратегий противоопухолевой вакцины. Особенности и свойства клеточных вакцин. Характеристика антигенных и антигенсодержащих вакцин. Сущность неспецифичной и цитокиновой терапии. Первая вакцина для профилактики рака.

    презентация [439,4 K], добавлен 29.03.2016

  • Создание протективного иммунитета. Побочные реакции и осложнения, возникающие при вакцинации. Пути создания вакцин. Адъюванты как их составная часть. Живые ослабленные вакцины, антитоксические, синтетические, рекомбинантные, ДНК-вакцины, идиотипические.

    презентация [469,0 K], добавлен 02.11.2016

  • Понятие вакцины и их классификация. Рассмотрение принципа действия препаратов, предназначенных для создания иммунитета к инфекционным болезням. Метод получения генно-инженерных вакцин с помощью биотехнологии, которая сводится к генетической рекомбинации.

    презентация [2,8 M], добавлен 09.10.2014

  • Живые вакцины. Убитые корпускулярные вакцины. Химические вакцины. Анатоксины. Ассоциированные вакцины. Для создания пассивного иммунитета используются: сыворотки, гамма-глобулины. Методы снижения вирулентности.

    реферат [3,3 K], добавлен 25.02.2002

  • Биотехнологии и их использование в практической деятельности человека, влияние на них генетической инженерии. Сущность и история разработок вакцин, их использование в современной медицине. Определение коэффициента профилактической эффективности вакцины.

    лекция [21,9 K], добавлен 30.08.2009

  • Понятие инфектологии и инфекционного процесса. Основные признаки, формы и источники инфекционных болезней. Виды болезнетворных микроорганизмов. Периоды инфекционной болезни у человека. Методы микробиологических исследований. Методы окраски мазков.

    презентация [3,2 M], добавлен 25.12.2011

  • Правовые и этические аспекты вакцинопрофилактики. Три группы вопросов, наиболее важных с точки зрения соблюдения прав человека и медицинской этики. Факторы, способствующие возникновению побочных реакций от вакцин, их применение в медицинской практике.

    реферат [22,0 K], добавлен 03.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.