Стоматологические материалы

Легкоплавкие сплавы в изделиях стоматологического назначения. Основные свойства формовочных материалов. Материалы для химической обработки сплавов металлов и соединения металлических деталей протезов. Материалы для отделки стоматологических изделий.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 03.05.2012
Размер файла 35,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оглавление

  • Введение
  • 1. Легкоплавкие металлы
  • 2.Формовочные материалы
  • 3. Материалы для химической обработки сплавов металлов и соединения металлических деталей протезов
  • 4. Материалы для отделки стоматологических изделий (Абразивные материалы)
  • 5. Шлифовочные средства.

Заключение

Введение

Основными называют материалы, из которых изготавливают зубные протезы, аппараты, пломбы. В литературе можно встретить термин «конструкционные» материалы, являющийся синонимом определения «основные». Мы отдаем предпочтение последнему как более понятному и простому.

К основным материалам следует отнести:

-- металлы и их сплавы;

-- керамику (стоматологический фарфор и ситаллы);

-- полимеры (базисные, облицовочные, эластичные, быстротвердеющие пластмассы);

-- композиционные материалы;

-- пломбировочные материалы.

Вспомогательными называют материалы, используемые на различных стадиях технологии протезов:

· оттискные;

· моделировочные;

· формовочные;

· абразивные;

· Полировочные;

· изоляционные;

· легкоплавкие сплавы;

· припои;

· флюсы;

· отбелы.

линическими именуются материалы, используемые врачами на клиническом стоматологическом приеме. Ими являются:

-- оттискные материалы;

-- пломбировочные материалы;

-- воски и восковые композиции.

Такая классификация является условной хотя бы потому, что группа клинических материалов создана искусственно. В ее состав входят и вспомогательные (оттискные массы), и основные (пломбировочные) материалы. Кроме того, такие материалы, как полимеры, моделировочные воски, металлы, керамика, по сути дела, являются клиническими, так как с ними работает ортопед-стоматолог в клинике и они предназначены для долгосрочного пребывания в полости рта. Однако рождена эта группа ввиду чрезвычайной важности и распространенности указанных веществ, в стоматологической клинической практике.

Фактически же в ортопедической стоматологии следует говорить об основных, вспомогательных и оттискных материалах.

К стоматологическим материалам предъявляются высокие требования.

Они весьма разнообразны:

-- токсикологические -- отсутствие раздражающего, бластомогенного (т. е. способствующего образованию опухоли), токсико-аллергического действий;

-- гигиенические -- отсутствие условий, ухудшающих гигиену полости рта, в частности -- ретенционных пунктов для пищи и образования налета;

-- физико-механические -- высокие прочностные качества, износоустойчивость, линейно-объемное постоянство;

-- химические -- постоянство химического состава, антикоррозийные свойства;

-- эстетические -- возможность полной имитации тканей полости рта и лица, эффект естественности;

-- технологические -- простота и легкость обработки, приготовления, придания нужной формы и объема.

1. Легкоплавкие металлы

Легкоплавкие сплавы в изделиях стоматологического назначения занимают важное место, хотя и относятся к вспомогательным материалам. Наибольшее значение имеют легкоплавкие сплавы, служащие материалом для штампов и моделей, применяемых в технологии коронок и некоторых других протезов.

Такой материал должен обладать рядом свойств, из которых важнейшими являются:

-- легкоплавкость, облегчающая отливку индивидуальных штампов и моделей, отделение штампов от изделий;

-- относительная твердость, обеспечивающая устойчивость штампа в процессе штамповки;

-- минимальная усадка при охлаждении, гарантирующая точность штампованных изделий.

Основными компонентами, применяемыми для составления подобных сплавов, являются висмут, свинец, олово и кадмий. Наименьшей усадкой и наибольшей твердостью обладают легкоплавкие сплав, содержащие около 50% висмута.

Температура плавления наиболее распространенных рецептур ограни-чена в пределах 63--115° С. Все эти сплавы имеют серый цвет. Они пред-ставляют собой механические смеси и выпускаются в виде блоков. Состав наиболее распространенных сплавов приведен в следующей таблице[1. 43c.].

2.Формовочные материалы

Технологической стадией, предваряющей литье металлических сплавов, является формовка.

* Формовка -- это процесс изготовления формы для литья металлов, а формовочная масса служит материалом для этой формы. Основными компонентами формовочных масс являются огнеупорный мелкодисперсный порошок и связующие вещества.

Формовочные материалы должны обладать следующими свойствами:

-- обеспечивать точность литья, в том числе четкую поверхность отлитого изделия;

-- легко отделяться от отливки, не “пригорая” к ней;

-- затвердевать в пределах 7--10 мин.;

-- создавать газопроницаемую оболочку для поглощения газов, образу-ющихся при литье сплава металлов;

-- достаточным для компенсации усадки затвердевающего металла коэффициентом термического расширения.

В современном литейном производстве используют гипсовые, фосфатные и силикатные формовочные материалы.

Гипсовый формовочный материал состоит из гипса (20--40 %) и окиси кремния. Гипс в этом случае является связующим. Окись кремния, выступающая в качестве наполнителя, придает массе необходимую величину усадочной деформации и теплостойкость. Приготовление формовочной массы сопровождается увеличением объема, что используется для компенсации усадки отливки. Так, например, усадка золотых сплавов, которая составляет 1,25--1,3% объема, полностью компенсируется расширением формовочного материала.

В качестве регуляторов скорости затвердевания и коэффициента температурного расширения в смесь добавляется 2--3% хлорида натрия или борной кислоты. Замешивается масса на воде при температуре 18 - 200 С. Номинальная температура разогревания формы подобного состава до заливки металла составляет 700--750° С. Эти формы непригодны для получения отливок из нержавеющей стали, температура плавления которой 1200 - 1600°С, из-за разрушения гипса, а потому их применяют для литья изделий из сплава золота.

Типичным представителем материалов данной группы является Силаур, который предназначен для изготовления форм при литье мелких золотых конструкций (вкладок, искусственных зубов, кламмеров, дуг и пр.). Выпускается в виде тонко измельченного порошка из гипса и динасового порошка (кремнезема) в соотношении 3:1. Замешивание производят на воде, время схватывания составляет 10 - 30 мин. Для отливки деталей повышенной точности применяют массу Силаур-ЗБ, для получения более крупных деталей

* Глория специаль -- формовочная масса на основе кварца и твердого гипса предназначена для литья сплавов металлов, точка плавления которых не превышает 1000" С. Материал имеет очень тонкую зернистость. В качестве жидкости затворения используется вода. Продолжительность затвердевания составляет 20 мин. Кювету следует нагревать до температуры 700° С. При длительных температурах свыше 800° С возникает опасность изменения микрокристаллической структуры формовочной массы, а тем самым искажения формы.

* Экспадента -- формовочная масса с высокими техническими параметрами для сплавов на основе благородных металлов. Смешанная с водой, затвердевает в течение 15 мин. в твердую массу, которую можно уже спустя 1 ч постепенно нагревать. Состав предусмотрен с таким расчетом, чтобы в критическом температурном интервале между 200--300" С не произошло внезапное изменение объема, что гарантирует компактность формы. Литье отличается высокой точностью.

Фосфатные формовочные материалы состоят из порошка (цинк-фосфатный цемент, кварц молотый, кристобалит, окись магния, гидрат окиси алюминия и др.) и жидкости (фосфорная кислота, окись магния, вода, гидрат окиси алюминия).

Эти материалы компенсируют усадку при охлаждении нержавеющих сталей, которые имеют температурный коэффициент объемного расширения примерно 0,027 °С -1 . Усадка золотых сплавов составляет примерно 1,25%, и эту усадку компенсирует гипсовая форма. Схватывание фосфатных форм в зависимости от состава продолжается 10--15 мин.

Силикан -- универсальная формовочная масса на основе фосфатного вяжущего материала, кварца и кристобалита производства фирмы “Спофа Дентал” (Чехия) применяется для литья высокоплавких (хромокобальтовых) сплавов. Для улучшения качества приготовления массы целесообразно ис-пользование вибратора.

Силикан-F-- фосфатная формовочная масса, содержит самые чистые сорта кварца и жаростойкого вяжущего материала. Зернистость формовочной массы выбрана с таким расчетом, чтобы продолжительность затвердевания, прочность формы после обжига и изменения объема были оптимальными для применяемого лабораторного изготовления протезов из высокоплавких сплавов.

Для размешивания Силикана можно использовать воду (соотношение 1:1), но для предотвращения возможной деформации формы в этом случае необходимо применить бумажную манжету. Наиболее целесообразным для замешивания является использование золь-кремниевой кислоты (жидкость Силисан),, т. к. литейная форма в этом случае компенсирует температурные изменения сплава.

Применение золя способствует также повышению прочности формы, что сказывается в повышенной устойчивости формы при нагревании. За 6--8 мин. смесь застывает в твердую массу прочностью до 20 МПа.

Пауэр Кэст -- это тонкозернистый, свободный от углерода формовочный материал, обеспечивающий быстрое выгорание и создающий безопочным методом литьевую форму, не имеющую трещин. Он выдерживает быстрый подъем температуры, легко разбивается, позволяет получить точные отливки с высокой чистотой поверхности, очистка и обработка которой требует минимальных затрат времени.

Жидкость для замешивания придает форме высокий коэффициент расширения, необходимый для литья неблагородных сплавов. При использовании других сплавов жидкость может быть разбавлена. Оптимальная концентрация жидкости для безопочного метода должна составлять не более 80%.

При использовании металлической опоки, внутри нее помещают керамическую или бумажную прокладку (манжету), не доходящую до краев па 6 мм. Прокладку закрепляют мягкой восковой проволокой. Опоку с прокладкой устанавливают в воду на 1 мин., а затем ее хорошо встряхивают (для получения дополнительного расширения опоку можно погрузить в Смутекс -- специальную жидкость, которая обеспечивает дополнительное расширение материала). Для замешивания требуется использование следующих инструментов и оборудования: смеситель Вакумиксер, шпадель, мерный стакан, пластиковая опока и литниковая чаша, формовочный материал и жидкость для его замешивания.

Керамикор -- масса (порошок и жидкость) на основе фосфата производства фирмы “С & М” может быть использована для литья любых сплавов металлов.

Силикатные формовочные материалы почти повсеместно вытеснены фосфатными материалами. Они отличаются высокой термостойкостью и прочностью. Их внедрение вызвано применением КХС и нержавеющих сталей. Кроме гипса и фосфатов, в качестве связующих здесь используют кремниевые гели. Из органических соединений кремния чаще применяются тетраэтилортосиликат [Si (OC2 H 5)4], который легко гидролизуется с образованием при прокаливании конечных продуктов в виде двуокиси кремния.

Вяжущая жидкость силикатной формовочной массы состоит из смеси этилового спирта, воды и концентрированной соляной кислоты, куда постепенно (по каплям) введен этилсиликат. В качестве огнеупорной составляющей (порошка) чаще применяются кварц, маршаллит, корунд, кристобалит и другие вещества.

Силикатные формовочные массы отличаются большим коэффициентом термического расширения. Для обеспечения точности литья необходимо соблюдать правильное соотношение между порошком и жидкостью (вяжущим раствором). Оптимальное соотношение, обеспечивающее компенсацию усадки формы, составляет 30 г жидкости и 70 г порошка. Время схватывания материала равняется 10--30 мин.

Формолит служит для отливки зубов и деталей протезов из нержавеющей стали. Представляет собой набор материалов -- молотого пылевидного кварца, предназначенного для получения огнеупорных покрытий (оболочек) на восковых моделях; песка формовочного и борной кислоты, используемых как наполнитель.

Аурит -- масса формовочная огнеупорная для литья из сплавов золота обладает необходимой прочностью и чистотой поверхности. Представляет собой смесь кристобалита с техническим гипсом. Термическое расширение при 700° С составляет не менее 0,8%. Массу замешивают на воде в соотношении 100 г порошка и 35--40 мл воды. Для более качественного смешения рекомендуется проводить эту операцию на вибростолике. Время схватывания обмазки равно 10--15 мин.

Смесь формовочная Сиолит предназначена для получения огне-упорной литейной формы для литья каркасов съемных и несъемных протезов из высокотемпературных сплавов. Сиолит состоит из порошка и жидкости. Порошок представляет собой смесь кварцевого песка, фосфатов и периклаза. Жидкость -- силиказоль. Характеризуется высокими компенсационными и прочностными свойствами.

Порошок замешивается с жидкостью в соотношении 100: 18 - 20. Размешивание смеси производится в резиновой чашке на вибростолике в течение 30--40 с. Затем на вибростолике устанавливают металлическую опоку с восковой заготовкой и производят заполнение опоки формовочной смесью [13. 54-68].

3. Материалы для химической обработки сплавов металлов и соединения металлических деталей протезов

Термической обработке, которая неизбежна при использовании различных металлов и сплавов, сопутствует образование под воздействием кислорода воздуха окалины (окисной пленки) на поверхности металла. Удаление окалины с поверхности металла производят химическим путем. Для этого применяют растворы минеральных кислот (соляной, азотной, серной) различной концентрации или их смеси.

* Вещества, служащие для растворения окалины, называют отбелами, а сам процесс удаления окалины -- отбеливанием.

Отбелы подбирают с таким расчетом, чтобы они, растворяя окалину, как можно меньше действовали на металл.

В технологии отбеливания используются два варианта:

1) ручное (с помощью инструментов) погружение отбеливаемого металла в емкость с отбелом;

2) электролитическое отбеливание.

Растворы, применяемые для снятия окалины, имеют различный состав.

Отбел оказывает химическое воздействие не только на слой окалины, растворяя его, но и на металл. Поэтому процедура снятия окалины предполагает следующее: в подогретый до кипения отбел зубной техник помещает на 0,5--1 мин. протез и сразу же промывает его водой для удаления остатков отбела. Следует помнить, что при приготовлении раствора отбела в воду наливают кислоту, а не наоборот.

Электроотбеливание предполагает очистку поверхности металлического каркаса от окалины и остатков огнеупорной массы электролитическим способом. Этому процессу предшествует грубая механическая и химическая очистка каркаса протеза с помощью вращающейся металлической щетки или в пескоструйном аппарате.

После этого отливку помещают в специальный ковш и очищают от окалины кипячением в расплаве гидроксида натрия, имеющего низкую температуру плавления. Кипячение можно проводить на газовой или электрической плите, установленной в вентиляционном шкафу.

К каркасу протеза фиксируется анод. Катод помещается в ванну с раствором электролита. Процесс отбеливания продолжается 1--3 мин. при силе тока в 7--9 ампер и при температуре отбела, равной 20--22" С.

При проведении электроотбеливания нужно строго соблюдать правила электробезопасности.

Основными компонентами электролитов являются кислоты (ортофосфорная и серная), которые под действием постоянного тока в несколько раз увеличивают свою активность.

Используя специальные составы и увеличивая плотность тока при прохождении через электролит проводится:

-- электрошлифование, т. е. сглаживание поверхности металлического каркаса путем равномерного истончения металла, при котором вес отливки может уменьшиться на 20% [Соснин Г. П., 1981];

-- электрополирование, т.е. получение зеркальной поверхности металлического каркаса при нахождении в этиленгликолевых электролитах в течение 5--7 мин. при плотности тока 5--6 А/дм2.

Для очистки и электрополирования металлических зубных протезов используется отечественная установка Катунь, имеющая ванночку для заливки 18% раствором соляной кислоты. В кислоту погружают протез, фиксированный пластмассовым зажимом на вертикальной штанге, служащей анодом. Время травления составляет 10 мин., при плотности тока 0,4 А/см2. Следует помнить, что работа установки Катунь должна проводиться при условии достаточной вентиляции. При отсутствии условий для вентиляции предлагается [Петрикас О.А., 1998] использование специальных растворов с пониженной токсичностью:

-- соляная кислота 260 мл/л + поваренная соль 104 г/л + щавелевая кислота 42 г/л (при плотности тока 0,5 А/см2 и экспозиции 6,4 мин.);

-- соляная кислота 276 мл/л + поваренная соль 92 г/л (при плотности тока 0,6 А/см2 и экспозиции 10 мин.).

Для проведения полировки необходима сила тока 3,5--4,5 А, а электролит должен быть подогрет до температуры 35--45° С.

Для соединения элементов протезов в единую конструкцию используется, в частности, паяние.

* Паяние -- процесс получения неразъемного соединения путем нагрева места паяния и заполнения зазора между соединяемыми деталями расплавленным припоем с его последующей кристаллизацией.

* Припой-- металл или сплав, заполняющий зазор между соединяемыми деталями при паянии.

Существует различная техника паяния: в пламени, печи. При работе с каркасами до нанесения и обжига керамической массы предпочтительнее использовать паяние в пламени. Паяние в печи применяется на объектах, уже облицованных керамикой. Прочность пайки можно проверить различными методами с помощью растяжения и изгиба.

Физико-механические свойства припоя (цвет, узкий температурный интервал плавления, стойкость против коррозии) должны максимально соответствовать таковым у сплава, из которого изготовлены требующие соединения элементы каркаса протеза.

Во время паяния соединяемые места принимают температуру расплав-ленного припоя. Поэтому температура плавления припоя должна быть ниже температуры плавления спаиваемых частей на 50--100° С, т. к. в противном случае паяние привело бы к частичному расплавлению спаиваемых деталей протеза.

Расплавленный припой обладает текучестью, которая увеличивается с повышением температуры, т. е. припой течет в направлении от холодных частей к горячим. Фактически на этом свойстве и основано использование пламени горелки в процессе паяния. В месте соприкосновения деталей и припоя происходит диффузия одного металла в другой. Скорость диффузии зависит, главным образом, от материала протеза и припоя, а также от температуры. Все это вместе взятое и определяет структуру полученного шва, которая может быть в виде твердого раствора, химического соединения или механической смеси.

Твердый раствор является наиболее благоприятной структурой и считается лучшим видом паяния. Шов хорошо противостоит коррозии и получается прочным. При этом максимальная прочность шва будет при использовании минимального количества припоя. Следует помнить, что прочность большинства припоев ниже прочности соединяемых металлов, хотя прочность шва за счет диффузии выше.

Расплавлять припой в процессе паяния необходимо как можно быстрее, а после получения шва источник нагрева (горелку) необходимо немедленно удалить.

Так как паяние чаще происходит при нагревании открытым пламенем, то на поверхности спаиваемых металлов может образоваться пленка окислов, которая препятствует диффузии припоя. Особенно усиленно образуется эта пленка у сплавов, содержащих хром, отличающихся высокой способностью пассивироваться, т.е. покрываться окисной пленкой. Поэтому в процессе паяния необходимо не только расплавить припой и заставить его разлиться по спаиваемым поверхностям, но и не допустить образования окисной пленки к моменту достижения рабочей температуры в спаиваемых деталях. Это достигается применением различных паяльных веществ или флюсов.

* Флюс -- химическое вещество (бура, борная кислота, хлористые и фто-ристые соли), служащее для растворения окислов, образующихся на спаиваемых поверхностях металлов при паянии.

Наибольшее распространение в качестве флюса получила бура,белое кристаллическое вещество (Na2B4О7 * 10H2О). Ее добывают из природных месторождений или получают из борной кислоты взаимодействием с кристаллической содой. При нагревании она постепенно теряет воду, и температура ее плавления достигает 741° С. Кроме того, бура поглощает кислород, препятствуя тем самым образованию на поверхности металла окислов, и способствует лучшему растеканию припоя.

Флюсы, как и окалину, удаляют с поверхности металлов отбелами.

Кроме паяния используется другой вид соединения элементов протеза в единую конструкцию -- сварка, при которой расплавленные элементы (детали) протеза сливаются и образуют однородное монолитное соединение.

* Сварка -- процесс получения неразъемного соединения деталей кон-струкции при их местном или общем нагреве, пластическом деформировании или при совместном действии того и другого в результате установления межатомных связей в месте их соединения.

В промышленности существуют способы сварки, при которых материал расплавляется (дуговая, электрошлаковая, электроннолучевая, плазменная, лазерная, газовая и др.), нагревается и пластически деформируется (контактная, высокочастотная, газопрессовая и др.) или деформируется без нагрева (холодная, взрывом и др.); способ диффузионного соединения в.вакууме.

В отличие от паяных соединений сварные швы отличаются совершенно однородной структурой, т. к. используемый присадочный материал имеет такое же химическое строение и свойства, что и свариваемые детали. Другими словами, в этой технологической операции используется тот же самый сплав, который был использован при получении соединяемых элементов протеза.

Кроме того, сварные швы обладают более высокой прочностью и устойчивостью к коррозии. В отличие от них в области паяния возникает коррозия. Это объясняется разницей напряжения между сплавом и припоем.

К преимуществам плазменной микросварки, применяемой в ортопедической стоматологии, например с помощью установки типа Микро - PW10, следует отнести следующие:

-- плазменная микроструя, в которой в качестве плазмообразующего газа применяется аргон, соединяет самые твердые металлы, например, сплавы на основе СгСоМо, в узких пределах зоны плавления (даже вблизи пластмассовых частей) путем слияния расплавленной заготовки, без применения дорогостоящих припоя и флюса;

-- значительно большая прочность по сравнению с паянием;

-- отсутствие остатков флюсов на сварном шве.

Между электропроводящей заготовкой и плазменной струей образуется электрическая дуга большой плотности энергии и высокой температуры. Прибор является настольным, достаточно удобным в использовании. Диапазон настройки сварочного тока (0,3--10 А) можно регулировать в процессе работы с помощью ножного управления.

Место сварки защищается от окисления с помощью среды защитного газа (аргон/водород, 5--8% H2). Показаниями к применению микроплазменной сварки является соединение литых элементов протеза в единую конструкцию как при его изготовлении, так и при реставрации.[3.с. 16-23].

Сварочный столик фирмы “Брандерс” в настоящее время отвечает требованиям зубных техников, пользующихся микроплазменной сваркой. На столике имеются регулятор потока газа и подвижный рукав (крепление) для точечной сварки. Столик снабжен двумя-тремя сочленениями, которые дают возможность безупречного достижения контактов [15. 39-46].

4. Материалы для отделки стоматологических изделий (Абразивные материалы)

Различные ортопедические аппараты, в том числе зубные, челюстные и лицевые протезы требуют тщательной отделки для придания им гладкой, полированной, блестящей поверхности. Помимо удобства и эстетики это повышает гигиенические качества аппарата, облегчая удаление остатков пищи и зубного налета.

Гладкая поверхность пластмассовых или комбинированных протезов лучше противостоит процессам набухания, старения и разрушения в результате перепада температур и воздействия продуктов жизнедеятельности.

Наконец, проведенные исследования показывают, что должным образом отполированная поверхность способствует коррозийной устойчивости металлов (сплавов) и повышению физико-механических свойств пластмасс различной структуры. Последнее относится и к пломбам, т. к. установлено, что полированная поверхность содействует правильному формированию свойств полимеров, цементов и даже амальгам.

* Абразивные материалы (от лат. abrasio -- соскабливание) -- мелко-зернистые вещества высокой твердости (корунд, электрокорунд, карборунд, наждак, алмаз и др.), употребляемые для обработки (шлифования, полирования, заточки, доводки и пр.) поверхностей изделий из металлов, полимеров, дерева, камня и т. д. [ 1. С. 133-136].

Абразивные материалы подразделяются:

1) но назначению -- на шлифовочные и полировочные;

2) но связующему веществу -- на керамические, бакелитовые, вулканитовые и пасты;

3) по форме инструмента (материала) -- на круги различных размеров, тарельчатые, чашечные, чечевичные фрезы, фасонные головки (грушевидные, конусовидные и др.), а также наждачное полотно и бумага.

Абразивные материалы для шлифования делят на:

а) естественные (алмаз, корунд, наждак, кварц, минутник, пемза и др.);

б) искусственные (электрокорунд, карборунд/карбид кремния/, карбид бора, карбид вольфрама).

Как отделочный материал, абразивы, применяемые для шлифования, должны отвечать определенным требованиям:

-- твердость применяемых материалов должна быть не ниже твердости шлифуемого материала; шлифовальный инструмент “засаливается”, если его твердость излишне велика для обработки данного материала, или преждевременно изнашивается, если эта твердость мала;

-- форма зерен абразива должна быть многогранной для обеспечения острия резания;

-- материалы должны быть технологичны в применении; обладать способностью склеиваться (скрепляться) и хорошо удерживаться в связующем веществе. [ 13. Т. 31. - № 5. - С. 117-124.]

Самым твердым минералом является алмаз, представляющий собой кристаллическую форму углерода. В виде пыли, наклеенной на металлические диски и круги, он служит для препарирования зубов перед покрытием их коронками.

При обработке керамики наиболее ценными качествами в алмазном диске для зубного техника являются гибкость, небольшая толщина и эффективное резание.

Такой инструмент необходим для создания эстетически тонких промежутков между передними искусственными зубами. По данным фирмы “Ренферт” (Германия), инструмент Турбо-Флекс позволяет получить желаемый результат. Существенную роль при этом играет V-образная выемка в диске. Последний имеет толщину 0,15 мм, покрыт с двух сторон алмазной крошкой. Уже при легком давлении достигается эффективное резание керамики.

Полирующий гель имеет предельно высокую концентрацию частиц алмаза микронного размера, что сокращает время полировки до двух минут. Гель наносят с помощью войлочного аппликатора, который не повышает температуру и обеспечивает легкий доступ к любой поверхности зуба.

Корунд -- занимает второе место по твердости, он представляет собой кристаллическую форму окиси алюминия (Аl 2O3). В чистом виде (рубин, сапфир) он встречается редко, чаще с различного рода примесями (соединениями железа и кремния). В такой форме он представляет собой непрозрачный кристалл синевато-серого, грязно-желтого или серо-коричневого цвета, обладающий очень большой твердостью и содержащий до 90% и более глинозема.

Корунд изготавливается также искусственным путем из минерала боксита, в котором глинозем содержится не в кристаллическом, а в аморфном виде. Для получения кристаллического глинозема (корунда), производится плавка боксита в смеси с коксом. Твердость искусственного корунда с увеличением содержания окиси алюминия повышается. Особотвердые высшие сорта корунда применяются для шлифовки прочных сталей. [10. С. 18-21].

Наждак -- шлифовальный материал, добывается из горной породы. В его состав входят корунд, соединения окиси железа и другие материалы. Твердость наждака близка к твердости корунда. Наждачный порошок применяют для шлифования и изготовления наждачного полотна и наждачной бумаги. Шлифовальные качества зависят от процентного содержания корунда. Наждачную бумагу и диски применяют для шлифования протезов и пломб.

Карборунд получают искусственным путем, для чего смесь, состоящую из кокса, чистого кварцевого песка, древесных опилок и поваренной соли, плавят в электропечи. Он состоит из кристаллов карбида кремния. Зерна карборунда отличаются остротой своих граней и высокой твердостью. Существенным недостатком карборунда является значительная хрупкость. Его зерна легко раскалываются при нагрузке. Карборунд применяется главным образом в виде шлифовальных кругов и дисков.

Пемза -- горная порода, образованная при вулканических извержениях, имеет пористое строение. Края пор очень острые. Цвет пемзы в зависимости от содержания окислов железа бывает разным: от белого и голубого до желтого, красного и даже черного.

Для изготовления абразивных инструментов применяются связующие материалы. Назначение их сводится к скреплению (цементированию) абразивных зерен после их измельчения и просеивания через сита с определенным количеством отверстий.

Связующие материалы делят на:

-- керамические;

-- бакелитовые;

-- вулканитовые.

Керамические связующие материалы основаны на применении смеси глины с полевым шпатом, тальком и другими веществами, например кварцем. Эта связка огнеупорна и обладает высокой механической прочностью.

Применяется для изготовления различного рода шлифовальных кругов.

Недостатками изделий на этой основе являются хрупкость и высокая чувствительность к ударам. Поэтому изделия на керамическом связующем материале применяются в установках с малыми оборотами. Достоинствами подобной связки являются влагостойкость и равномерная твердость.

Бакелитовые связующие материалы готовятся на основе бакелита, реже -- каучука и различных клеевых композиций.

Бакелит -- искусственная смола, образующаяся при взаимодействии фенолов или крезолов с формальдегидом. После наполнения абразивом и горячего прессования получается достаточно прочный инструмент.

Он нашел широкое применение в зубопротезной технике. Круги либо иные формы абразивов на этой основе отличаются упругостью, ударостойкостью, гладкой поверхностью. Этот вид связки применяется также для изготовления наждачной или стеклянной бумаги, наждачного полотна.

Недостатком данной связки является меньшая прочность сцепления с абразивными зернами по сравнению с керамическими материалами.

Вулканитовые связующие материалы основаны на применении смеси каучука с серой, которая после введения абразивного порошка подвергается вулканизации. Указанные связки обладают еще большей упругостью и плотностью, чем бакелитовые, но отличаются эластичностью.

Круги на вулканитовой связке являются незаменимыми при шлифованиии, когда от круга требуется не только шлифующее, но и полирующее но действие. Последнее объясняется размягчением связки при температуре около 150° С и выдавливанием абразивных зерен в эту размягченную связку.

Абразивный инструмент на бакелитовой и вулканитовой связке очень прочен и даст хорошие результаты.

Некоторые шлифовальные материалы (пемза, наждак) применяются в виде водной суспензии, которая наносится на обрабатываемую поверхность с применением щеток, войлочных кругов (конусов) и других приспособлений.

Процесс шлифования и качество обрабатываемой поверхности зависят от многих факторов. Основными из них являются:

-- качество абразива и соблюдение технологии шлифования;

-- выбор размера зерен (зернистости);

-- скорость движения абразива;

-- величина давления абразива на поверхность;

-- учет тепловых явлении при шлифовании и др.

Зерна для шлифования сортируются по величине при помощи фракционного просеивания.

По зернистости абразивные материалы делят, как правило, на 3 группы:

-- шлифзерно;

-- шлифпорошки;

-- микропорошки.

Скорость движения абразива в процессе шлифования также имеет большое значение. Чем медленнее движется абразив, тем большую стружку снимает зерно абразива и, следовательно, тем больше разрушающее усилие испытывает абразивное зерно. При быстром движении по поверхности обрабатываемого изделия абразив снимает меньшую стружку и поэтому испытывает меньшее сопротивление, а следовательно, меньше изнашивается.

При одинаковой скорости грубые абразивные частицы снимают больше материала с обрабатываемого изделия, оставляя более глубокие трассы. Оптимальная скорость абразива с сохранением его эффективной абразивной способности зависят от вида абразивного материала. Для большинства из них оптимальная скорость равна 25--30 м/с.

Использование абразивов неотъемлемо связано с применением давления на поверхность. Приложенное давление должно быть умеренным, чтобы не привести к поломке протеза или инструмента. Кроме того, излишнее давление приводит к разогреву инструмента и поверхности объекта, подвергающегося шлифовке. [17. С. с.46 - 48.]

Причиной образования тепла при шлифовании является трение абразивных зерен о поверхность. Так как абразивный круг (либо иная форма) не является теплопроводным, и толщина снимаемого слоя весьма незначительна, возникающее тепло передается массе изделия.

Высокие температуры, хотя их воздействие и кратковременно, способны привести к изменению структуры металла (сплава) или деформациям пластмасс. Все это приводит к снижению прочности и износоустойчивости шлифуемого изделия.

Эффект перегрева особенно опасен при отделке пластиночного протеза (аппарата). Перегрева нужно и можно избежать, соблюдая правильный режим шлифования. Сказанное в еще большей степени относится к препарированию зуба. Пренебрежение этим правилом приводит к ожогу пульпы и ее гибели.

5. Шлифовочные средства

Поверхность зубного протеза обрабатывают сначала напильниками, шаберами, штихелями, точильными камнями. За этой грубой обработкой следует шлифовка, т. е. заглаживание оставшихся трасс (следов) наждачными бумагой или полотном. После окончательной отделки (полировки) изделие приобретает блестящую поверхность.

Зерна высокой твердости с острыми кромками могут быть в свободном (порошки), в связанном (наждачная бумага, полотно) и цементированном виде (круги, головки, сегменты, конусы, бруски и т. п.). В большинстве случаев шлифование является отделочно-доводочной операцией, обеспечивающей высокую точность (иногда до 0,002 мм) и чистоту поверхности (6--10-го классов). [Под ред. Копейкина В. Н. Руководство по ортопедической стоматологии М., Медицина, 1993г].

Обработка материалов при помощи абразивов характеризуется участием в процессе резания одновременно очень большого числа случайно рас-положенных режущих граней зерен абразива. Несмотря на то что форма маленьких “резцов” -- зерен абразива -- несовершенна, абразивная обработка весьма производительна, так как высокая твердость зерен позволяет применять большие скорости резания, что в соединении с большим числом одно-временно работающих “резцов”, снимающих тонкие стружки, дает большой объем снятого материала. Важным свойством абразивного инструмента является его способность к частичному или полному самозатачиванию. Восстановление режущей способности объясняется тем, что при затуплении абразивных зерен возрастает усилие резания и зерна разрушаются или выкрашиваются, обнажая другие, расположенные ниже.

Заключение

Исследовав эту тему можно сделать вывод, легкоплавкие сплавы в изделиях стоматологического назначения занимают важное место, хотя и относятся к вспомогательным материалам. Наибольшее значение имеют легкоплавкие сплавы, служащие материалом для штампов и моделей, применяемых в технологии коронок и некоторых других протезов.

Технологической стадией, предваряющей литье металлических сплавов, является формовка. Типичным представителем материалов данной группы является Силаур, который предназначен для изготовления форм при литье мелких золотых конструкций (вкладок, искусственных зубов, кламмеров, дуг и пр.).

Силикатные формовочные материалы почти повсеместно вытеснены фосфатными материалами. Они отличаются высокой термостойкостью и прочностью. Их внедрение вызвано применением КХС и нержавеющих сталей.

Из выше сказанного можно сделать следующий вывод: в наше современное время стоматология развивается и целеустремлённо совершенствуется, появляются лекарства, изобретается новая техника, усовершенствуются методы лечения, что несомненно не может радовать.

легкоплавкий сплав стоматологический протез

Список использованной литературы

1. Батырь В. И. Роль металлических зубных протезов в изменении содержания микроэлементов в слюне, желудочном соке и моче: Автореф. дис. ... канд мед наук -- М., 1972.

2. Дойников А. И., Бабенко Г. А., Беляева Л. Г. // Стоматология.-- 1988

3. Курляндский В. Ю., Калонтаров Д. Е., Лавочник М. И. Справочник по ортопедической стоматологии.-- Ташкент, 1977.

4. Манеев В. Г. Электрохимические и аллергические свойства некоторых металлов, применяемых в ортопедической стоматологии: Автореф. дис. ... канд. мед. наук.-- М., 1972.

5. Рузуддиков С. Влияние протезных материалов на активность ферментов смешанной слюны: Автореф. дис. ... канд. мед. наук.-- М., 1974.

6. Явления гальванизма в полости рта и их лечение:Метод, пособие.-- Л., 1972.

7. «Проблемы нейростоматологии» №4 1998

8. «Квинтэссенция» №1 1997

9. «Стоматология» №6 1999 г

10. «Квинтессенция» №3 1999 г

11. Гарамов Л. Литейное дело. Практические примеры // Зубной техник. - 2004. - №6. - с.32 - 34.

12. Минаев С.С., Стрюк Р.И., Малый А.Ю. и др. Аллергические реакции к стоматологическим протезам из сплавов на основе золота как фактор стимулирования аутоиммунных процессов (клиническое наблюдение) // Стоматология. - 2006. - № 8. - С. 18-21.

13. Понякина И.Д., Саган Л.Г., Лебедев К А. Рост аллергенепереносимости протезных материалов и местных анестетиков: иммунофизиология возникновения непереносимости и лабораторная диагностика // Физиология человека. - 2005 - Т. 31. - № 5. - С. 117-124.

14. Цимбалистов А.В., Михайлова Ё.С. Проблемы адаптации у пациентов с непереносимостью стоматологических конструкционных материалов и протезных конструкций. Пародонтология. - 2006. - Т. 38. - №1. - С. 48-49.

15. Гарамов Л. Литейное дело. Практические примеры // Зубной техник. - 2004. - №6. - с.32 - 34.

16. К.А.Лебедев, А.В.Митронин, И.Д.Понякина Непереносимость стоматологических материалов. Москва, 2009. - 204с.

17. Свирин В.В., Косилин А.В., Попов Д.Н. Особенности точного стоматологического литья // Зубной техник. - 2004. - №3. - с.46 - 48.

18. Копейкин В. Н. Демнер Л. М. Зубопротезная техника М., Медицина, 1985г.

19. Щербаков А. С. Гаврилов Е. И. Трезубов В. Н. Жулев Е. Н Ортопедическая стоматология С. Петербург, ИКФ “Фолиант”, 1997 год,

20. Под ред. Копейкина В. Н. Руководство по ортопедической стоматологии М., Медицина, 1993г.

Размещено на Allbest.ru


Подобные документы

  • Применение золота и серебра, как основного металла для изготовления зубных протезов. Современные золотые, серебрянные и палладиевые сплавы. Температура плавления титанового и кобальто-хромовый сплавов, нержавеющей стали. Сплав на основе свинца и олова.

    презентация [10,8 M], добавлен 06.09.2016

  • Современные пломбировочные материалы, их разделение на группы. Классификация материалов для лечебных подкладок. Материалы для повязок и временных пломб. Состав полимерных цементов. Свойства пломбировочного (реставрационного) материала, его классификация.

    презентация [7,0 M], добавлен 14.09.2016

  • Синтетические материалы как высокомолекулярные органические соединения — полимеры. Характерные свойства и положительные качества синтетических материалов. Классификация современных шовных материалов. Синтетические суставы, кости, сосуды и клапаны сердца.

    презентация [1,1 M], добавлен 03.05.2014

  • Свойства шовных стоматологических материалов и их классификация. Виды и техника завязывания узлов, основные требования при завязывании узлов. Виды хирургических швов, характеристика узловых швов и непрерывных швов. Материалы, используемые в стоматологии.

    курсовая работа [1,8 M], добавлен 28.04.2014

  • Характеристика свойств моделировочных материалов, применяемых в ортопедической стоматологии. Особенности их классификации, правила и техника использования. Восковые моделировочные стоматологические материалы, воспроизводящие анатомическую форму зуба.

    курсовая работа [48,1 K], добавлен 28.04.2014

  • Классификация зубных протезов. Обзор применяющихся в ортопедической стоматологии сплавов. Основные требования, предъявляемые к ним. Литье сплавов металлов. Гальванический синдром, аллергия к ним. Характеристика методов изготовления зубных протезов.

    презентация [2,5 M], добавлен 19.01.2015

  • Слепочные материалы, применяемые в ортопедической стоматологии. Цинкоксидэвгеноловые пасты Репин. Тиоколовые слепочные массы. Обработка и обеззараживание слепков при изготовлении зубных протезов. Эластические оттискные материалы, их особенности.

    реферат [19,6 K], добавлен 27.02.2012

  • Рассмотрение стоматологических материалов: восстановительных, адгезивных, для профилактики. Требования к восстановительным пластическим материалам. Препараты для облегчения сцепления пломбировочного материала с тканями зуба. Герметики для профилактики.

    презентация [2,7 M], добавлен 30.11.2016

  • Особенности и режимы паровой, воздушной, химической, газовой, радиационной, плазменной стерилизации. Необходимые материалы и оборудование для проведения стерилизации хирургических и стоматологических инструментов, методы контроля ее эффективности.

    презентация [4,9 M], добавлен 29.01.2013

  • Адгезия композита с поверхностью дентина. Самопротравливающий адгезив КСЕНО. Особенности механической и химической адгезии пломбировочных материалов. Праймеры - особые композиции, созданные для глубокого проникновения гидрофильных мономеров в дентин.

    презентация [2,3 M], добавлен 25.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.