Туберкулез органов дыхания

Возбудитель, патогенез и патологическая анатомия туберкулеза. Иммунитет и аллергия при заболевании. Изучение влияния наследственных факторов на течение и развитие болезни. Методы диагностики туберкулеза. Эффективность вакцинации и ревакцинации БЦЖ.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 07.02.2011
Размер файла 44,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Реферат

на тему: «Туберкулез органов дыхания»

Содержание

Введение

1. Основная часть

1.1 Возбудитель туберкулёза и его свойства

1.1.1 Химический состав микобактерий туберкулёза

1.1.2 Питательные среды

1.1.3 Ферментативная активность

1.1.4 Дыхание

1.1.5 Размножение

1.1.6 Виды микобактерий и их дифференциация

1.1.7 Лекарственная устойчивость микобактерий туберкулеза

1.1.8 Устойчивость микобактерий туберкулеза к внешним воздействиям

1.2 Патогенез туберкулёза

1.3 Патологическая анатомия туберкулёза

1.3.1 Воспаление

1.3.2 Первичный туберкулёз

1.3.3 Диссеминированный туберкулёз

1.3.4 Очаговый туберкулёз

1.3.5 Инфильтративный туберкулёз

1.3.6 Туберкулёма лёгких

1.3.7 Деструктивный туберкулёз

1.3.8 Фиброзно-каверозный туберкулёз

1.3.9 Цирротический туберкулёз

2. Иммунитет и аллергия при туберкулёзе

2.1 Гуморальный противотуберкулёзный иммунитет

2.2 Клеточный иммунитет

2.3 Иммунологическая толерантность

2.4 Иммунологическая память

2.5 Аллергия

2.6 Иммуногенетика туберкулёза

3.Туберкулёз и наследственность

4.Диагностика туберкулёза

4.1 Применение иммунологических методов для решения клинических задач диагностики туберкулёза

4.2 Выявление скрытой активности

4.3 Исследование функционального состояния лёгких

4.3.1 Спирометрия и спирография

4.3.2 Исследование скоростных показателей форсированного выдоха

4.3.3 Исследование общей ёмкости лёгких и её компонентов, недоступных прямой спирометрии и спирографии

4.3.4 Исследование общего сопротивления дыхательных путей

4.3.5 Исследование эластичности и механической гомогенности лёгких и работы дыхания

4.3.6 Исследование диффузной способности лёгких

4.3.7 Исследование газов и кислотно-щёлочного состояния артериальной крови

5. Профилактика туберкулёза

5.1 Вакцинация и ревакцинация БЦЖ

5.2 Эффективность противотуберкулезных прививок БЦЖ

Заключение

Список литературы

Введение

Научные исследования в области туберкулёза открывают новые возможности профилактики, диагностики и лечения этой болезни. За время, прошедшее после первого издания настоящего руководства в 1981 г., получены новые данные, касающиеся диагностики и дифференциальной диагностики туберкулёза и других заболеваний лёгких. Значительно изменилась на этот период методика химиотерапии больных туберкулёзом. Накоплен опыт противотуберкулёзной работы в новых организационных формах.

Изменились представления о значении туберкулёза как международной проблемы в развивающихся странах Африки, Азии, Латинской Америки, где заболеваемость туберкулёзом и смертность от него не уменьшаются. Вопреки мнению ряда зарубежных учёных, существовавшему более 20 лет, туберкулёз вовсе не «исчезающая» болезнь: она требует энергичных, действенных противотуберкулёзных мероприятий; если же их не проводить в должной мере, то заболеваемость увеличивается, появляются более тяжёлые формы туберкулёза.

Совершенствование новых форм диагностики туберкулёза и нетуберкулёзных заболеваний органов дыхания вызвало необходимость осветить вопросы радионуклидных исследований при лёгочной патологии, при клиническом проявлении пороков развития бронхолёгочной системы.

Научные исследования в области фтизиатрии ежегодно пополняют наши представления о патогенезе туберкулёза, постоянно совершенствуются методы диагностики и лечения. Особенно интенсивные исследования проводятся в области иммунологии и иммуногенетики.

Значительно меньше научных разработок по профилактике туберкулёза, в том числе по вакцинации и химопрофилактике, особенно в плане создания и внедрения в практику новых вариантов вакцин, в частности, на основе гибридомной технологии, химиопрепаратов с замедленным выведением из организма человека, пригодных для применения один раз в 10-14 дней и реже при химопрофилактике.

1. Основная часть

1.1 Возбудитель туберкулеза и его свойства

Типичным представителем рода микобактерий являются микобактерии тонких, слегка изогнутых, гомогенных или зернистых палочек длинной от 0,8 до 3-5 мкм и шириной от 0,3 до 0,5 мкм. Форма и зернистость микобактерий хорошо видны в окрашенных препаратах. Особенности клеточной структуры микобактерий туберкулёза удаётся обнаружить при помощи таких методов цитологического исследования, как электронография, люминесцентная, фазово-контрастная микроскопия и др.

Совершенствование способов фиксации, техники ультратонких срезов и увеличение разрешающей способности электронного микроскопа позволили установить ультраструктуру микобактерий и определить локализацию в ней отдельных органоидов. В бактериальной клетке дифференцируется клеточная мембрана, цитоплазма с отдельными органоидами и ядерная субстанция.

1.1.1 Химический состав микобактерий туберкулёза

В состав клетки входят вода (85,9%), белки, углеводы, липиды и минеральные соли. Липиды составляют от 10 до 40% сухого вещества. Они растворимы в спирту, эфире и хлороформе. Белковый компонент - различные Туберкулопротеины - составляют 56% сухого вещества клетки. Туберкулопротеины разделяются по своим физико-химическим свойствам на 3 типа: с высокой молекулярной массой (32000-44000) - хорошо растворимые, биологически активные; со средней молекулярной массой (16000) - менее растворимые, менее биологически активные; с низкой молекулярной массой (9000) - нерастворимые, наиболее тесно связанные с нуклеиновой кислотой, образующие комплексы - нуклеопротеиды. В состав туберкулопротеинов входят почти все известные аминокислоты.

В микобактериях туберкулёза содержится до 15,3% углеводов большей частью в виде полисахаридов, свободных и в соединениях с фосфатидами и белками.

Минеральные вещества микобактерий туберкулёза составляют около 6% массы клетки. Это кальций, фосфор, магний, калий, железо, цинк и марганец в основном в виде соединений.

1.1.2 Питательные среды

Для нормального развития микобактерии требуются специальные питательные среды, содержащие углерод, азот, водород, кислород, фосфор, магний, калий, а также железо, хлор, натрий, серу. Кроме того, для полноценного развития микобактерий туберкулёза, как и других микроорганизмов, необходимо наличие факторов роста, которые в минимальных количествах улучшает рост бактерий на средах, содержащие основные питательные вещества. Факторы роста не входят в состав ферментных систем клетки, но используются для их построения. Известны факторы роста, родственные по своей природе витаминам группы В, ряд аминокислот, органических кислот и липидов. Все эти факторы содержаться в полноценных средах - яичных, кровяных, картофельных.

Первичные культуры микобактерий, выделенные из патологического материала, особенно чувствительны к отсутствию факторов роста. По-видимому, при вегетировании в тканях организма они теряют способность самостоятельно синтезировать такие вещества. Следовательно, для таких культур необходимы полноценные питательные средства.

Для культивирования и дифференциации микобактерий туберкулёза используется большое количество разнообразных по составу и консистенции питательных сред. По составу их можно разделить на три группы: среды, содержащие глицерин; белковые средства среды (сывороточные, яичные, желтковые); синтетические (безбелковые) среды. Более полноценными являются смешанные среды, которые применяют для выделения культур из патологического материала. По консистенции среды делят на твёрдые, полужидкие и жидкие.

При культивировании микобактерий на питательных средах большое значение имеет концентрация в среде водородных ионов (pH). Наилучший рост культур отмечается при pH 6,8-702. Микобактерии могут расти при более кислой реакции (pH 5.5) и при более щелочной (pH 8.0), однако менее интенсивно

1.1.3 Ферментативная активность

Микобактерии туберкулёза для синтеза белков клеточной мембраны, цитоплазмы и органоидов и для биоэнергетических процессов используют различные органические соединения, что указывает на их значительную и разнообразную ферментативную активность.

Как известно, внутриклеточное дыхание микобактерий осуществляется оксидоредуктазами. К этой большой группе окислительно-восстановительных ферментов относятся дегидрогеназы, оксидазы, а также каталаза и пероксидаза.

Особый интерес представляют каталаза и пероксидаза, поскольку с ними интимно связанны такие биологические свойства микобактерий туберкулёза, как вирулентность и лекарственная устойчивость к препаратам группы гидразидов изоникотиновой кислоты. У всех аэробных микроорганизмов завершающим продуктом окислительно-восстановительных процессов является перекись водорода. Каталаза расщепляет перекись водорода на воду и кислород. Пероксидаза катализирует окисление перекисью водорода ряда фенолов и ароматических аминов.

1.1.4 Дыхание

Для нормального развития микобактерии туберкулёза нуждаются в кислороде, поэтому их относят к аэробам. Большинство исследователей считали возбудителя туберкулёза абсолютным аэробом. Работы Л.М. Моделя (1952) и др. показали возможность роста микобактерий туберкулеза при недостатке или отсутствии кислорода. Это обстоятельство позволяет рассматривать микобактерии туберкулёза как факультативные аэробы. Однако вопрос о факультативной аэробности возбудителя остаётся до сих пор не решённым. Исследователи при конструировании новых питательных сред придерживается принципа максимальной аэрации растущей популяции.

1.1.5 Размножение

Рост культуры микобактерий туберкулёза в обычных условиях в тканях организма и на питательных средах происходит в основном путём простого деления клетки. При электронно-микроскопическом исследовании установлено, что деление начинается с двустороннего вдавления цитоплазматической мембраны в цитоплазму. При соединении этих перегородок образуются дочерние особи. Известен и более сложный цикл деления микробной особи - почкование. На определённом этапе крупное гранулярное образование на полюсе клетки, окружённое небольшой частью цитоплазмы, спускается к периферии клетки, образуя выпуклость на поверхности клеточной мембраны. В дальнейшем бугорок увеличивается и отпочковывается от материнской клетки в виде образования корковидной формы.

Одним из возможных, но ещё не доказанных способов размножения микобактерий считается спорообразование. При этом в цитоплазме клетки, по мнению некоторых авторов, происходит увеличение нескольких шаровидных структур, имеющих вид зерен, и медленное исчезновение цитоплазмы. Зерна освобождаются из клетки и могут в дальнейшем прорастать в новые особи. Такой способ размножения роднит микобактерий с актиномицентами. Размножение микобактерий туберкулёза происходит медленно. Цикл простого деления материнской клетки на две дочерние занимает от 20 до 24 ч. микроскопический видимый рост микроколоний на жидких средах можно обнаружить на 5-7 день, видимый рост колоний на поверхности твёрдой среды - на 12-20 день.

Одним из характерных свойств возбудителя туберкулёза является его способность изменяться под воздействием внешних факторов. Помимо уже описанных морфологических, тинкториальных и физиологических особенностей, у микобактерий туберкулёза отмечаются более глубокие изменения, касающие5ся биологических свойств при сохранении ими в некоторых случаях морфологической общности. Последние являются следствием длительного процесса адаптации и селекции в специфических условиях, которые привели к стойкому изменению метаболизма клеток микроорганизма. В части эти изменения закреплены генетически в таксономически обособленных видах микобактерий: человеческих, бычьих, птичьих, нетуберкулёзных (атипичных).

1.1.6 Виды микобактерий и их дифференциация

Основным признаком, по которому микобактерии были отнесены к тому или другому виду, является различная патогенность их для разных видов животных и для человека. Среди патогенных микобактерий различают четыре вида: M. tuberculosis - возбудитель туберкулёза человека, M. Avium - возбудитель туберкулёза птиц, M. Bovis - возбудитель туберкулёза рогатого скота, M. microti (OVS, или Oxford vole strain) - возбудитель туберкулёза полевых мышей. Последние вид некоторые исследователи (Нахимсон Л.И., 1946; Каграманов А.И, 1955, и др.) рассматривают как вариант бычьего, адаптировавшийся в организме полевой мыши.

Между отдельными видами микобактерий наблюдается переходные формы.

Микобактерии различных видов имеют ряд морфологических, культурных, биохимических и биологических особенностей, которые позволяют дифференцировать их друг от друга. Существует мнение, что микобактерии бычьего вида имеют морфологические отличия от человеческих - меньшую длину тела микроба, меньшую его фрагментацию.

Предположен ряд питательных сред, на которых дифференциация микобактерий проводится в зависимости от изменения окраски среды, характера роста. Однако морфологические и культурные различия не позволяют с полной достоверностью дифференцировать эти виды. Более чёткая их дифференциация возможна с помощью биологических методов, основанных на неодинаковой чувствительности лабораторных животных к человеческим и бычьим микобактериям туберкулёза.

Важным тестом для идентификации микобактерий человеческого и бычьего видов является ниациновый тест (проба Конно), основанный на свойстве человеческих микобактерий продуцировать значительно больше ниацина, чем микобактерия бычьего вида.

По мнению Я.А. Благодарного (1972), достоверные данные о принадлежности микобактерий к тому или иному виду можно получить только при помощи комплексного исследования. Микобактерии человеческого и бычьего видов могут вызвать заболевание туберкулёза не только у человека, но и крупного рогатого скота, овец, коз, свиней, верблюдов, реже у лошадей, собак и кошек.

Среди известных в настоящее время антропозоонозов самым распространённым является туберкулёз. Заболевают им практически все позвоночные животные. Известно 54 вида млекопитающих, у которых установлен туберкулёз. В последнее время в литературе всё чаще появляются сообщения о заболеваниях (микобактериозах), вызванные атипичными (нетуберкулезными) микобактериями, представители которых выделены в отдельную категорию, весьма неоднородную как по происхождению, так и по свойствам. Объединяющим фактором является кислотоустойчивость. В связи с этим вопрос о происхождении и характере атипичных микобактерий остаётся нерешённым.

По мнению многих авторов, атипичные микобактерии, во всяком случае, некоторые из них, имеют связь с туберкулёзной инфекцией.

Изучение патогинической роли атипичных микобактерий в клинике легочных и внелегочных заболеваний показало, что наиболее частые этиологическим фактором микобактериозов является микобактерии III группы, реже I группы и еще реже II и IV групп.

Основной видовой признак микобактерий туберкулеза - патогенность, т.е. способность жить и размножаться в тканях живого организма и вызывать специфические ответные реакции, приводящие к определенной нозологической форме патологии - туберкулезу. Как уже было сказано выше, микобактерии туберкулеза патогенны для многих видов животных и человека. Наиболее восприимчивыми к заражению считаются морские свинки, которые применяют в качестве модели для биологической пробы при диагностике туберкулеза. Однако в настоящее время имеется большое количество штаммов микобактерий туберкулеза, различающихся по степени своей патогенности, т.е. по вирулентности. Следовательно, вирулентность является индивидуальным признаком отдельного штамма микроба и характеризуется интенсивностью размножения микроорганизма в тканях.

Высоковирулентные микобактерии туберкулеза у чувствительных к ним животных быстро размножаются в организме, не разрушаются фагоцитами, вызывают прогрессирующее образование туберкулезных очагов, приводящее в дальнейшем к неизбежной гибели животных. Слабовирулентные микобактерии также могут размножаться в организме, но они захватываются фагоцитами и разрушаются ими. Образующиеся специфические очаги подвергаются обратному развитию, животное не погибает. Вирулентность не является постоянным свойством. Она может изменяться у отдельных штаммов. Так, свежевыделенные из патологического материала микобактерии туберкулеза, как правило, более вирулентны, чем лабораторные штаммы, длительно содержащиеся на искусственных питательных средах. Для оценки вирулентности были предложены биологический метод (классический) и биохимические тесты. Последние установлены на установленном факте взаимосвязи корд-фактора микобактерий и их вирулентности, то есть цитохимических реакциях.

1.1.7 Лекарственная устойчивость микобактерий туберкулеза

Возникновение устойчивых к антибактериальным препаратам вариантов - закономерное явление, основной биологический закон, выражение приспособления видов к окружающей среде. В литературе сформировались две теории сущности лекарственной устойчивости микобактерий туберкулеза. Теория адаптации предполагает изменение свойств микроорганизма, адекватные изменению окружающей среды. Соответственно развитие лекарственной устойчивости микобактерий расценивается как проявление одной из форм изменчивости бактериальной клетки под влиянием химиопрепаратов.

Лекарственная устойчивость микобактерий туберкулеза возникает ко всем химиотерапевтическим средствам и антибиотикам. Сложность многообразия химической структуры существующих противотуберкулезных препаратов ни в коем случае не дают основания думать об одинаковом механизме их биологического действия. Изучение биологических особенностей, ферментативной активности, химического состава лекарственно - устойчивых вариантов в сравнении с чувствительными, генетически однородными микобактериями позволило выделить несколько основных механизмов, обусловливающих резистентность бактериальной клетки к данному антибактериальному агенту:

Появление нового пути обменных процессов, обходящего блокированное обменное звено;

Увеличение продукции метаболита - антагониста данного ингибитора;

Увеличение продукции фермента, который блокируется данным препаратом;

Снижение необходимости в продуктах ингибирующей метаболитной системы;

Увеличение расщепления ингибитора;

Образование измененного фермента, который слабее ингибируется данным препаратом;

Уменьшение проницаемости бактериальной клетки в отношении данного вещества.

Все эти процессы могут происходить за пределами бактериальной клетки, на уровне клеточной мембраны и внутри бактериальной клетки.

Установлены характерные особенности вариантов микобактерий туберкулеза, устойчивых к различным противотуберкулезным препаратам. Варианты устойчивые к стрептомицину по своему морфологическому виду, строению колоний почти не отличаются от чувствительных к нему. Иногда появляется пигментация колоний. Микобактерии полностью сохраняют вирулентность и антигенную структуру. Однако они изменяют ферментативную активность и обладают пониженной способностью синтезировать инозит.

Довольно скудные данные имеются в литературе о штаммах микобактерий, устойчивых к другим противотуберкулезным средствам: ПАСК, виомицину, канамицину, капреомицину, рифампицину, этамбутолу, тиоамидам и циклосерину. Известно, что вирулентность канамицино- или карпеомициноустойчивых вариантов полностью сохраняется, а виомициноустойчивых микобактерий - может снижаться в зависимости от штамма. Данные о вирулентности микобактерий туберкулеза, устойчивых к ПАСК, противоречивы.

Кроме устойчивости микобактерий к противотуберкулезному препарату, возможно проявление зависимости от него. Зависимость выражается в необходимости этого препарата для роста и развития культуры. Чаше этот феномен наблюдается в отношении стрептомицина. Установленная зависимость строго специфична и довольно стойка. Механизм ее возникновения точно не выяснен.

Предполагают стимулирующий эффект стрептомицина или использование антибиотика клеткой микроорганизма в качестве метаболита.

1.1.8 Устойчивость микобактерий туберкулеза к внешним воздействиям

Микобактерии туберкулеза обладают значительной устойчивостью к различным физическим и химическим агентам, холоду, теплу, влаге и свету. В естественных условиях при отсутствии солнечного света они могут сохранять свою жизненную способность в течение нескольких месяцев. Высохшие микобактерии остаются патогенными для морской свинки в течение одного - полутора года. В уличной пыли микобактерия сохраняется в течение 10 дней. На страницах книг они могут оставаться живыми в течение 3 месяцев, при рассеянном свете погибают через 1-1.5 месяца. В воде микобактерии сохраняются очень долго (в течение 150 дней). Микобактерии туберкулеза выдерживают процессы гниения и могут несколько месяцев сохранятся в погребенных трупах.

Исследования устойчивости микобактерий, находящихся в культурах и различных выделениях больных туберкулезом, к различным физическим и химическим тесно связала с практическими задачами дезинфекции патологического материала, жилищ и предметов. Культура микобактерий, облученная солнечным светом погибает в течение полутора часов. Ультрафиолетовые лучи убивают микобактерии через 2-3 минуты. Во влажной мокроте микобактерии погибают при кипячении в течение 5 минут, в высушенной мокроте - только через 45 минут.

Микобактерии туберкулеза довольно устойчивы к действию ионизирующей реакции. Так, облучение рентгеновскими лучами в течение 36 часов культуры H37RV слабо действует на ее жизнеспособность. Однако ультразвуковые волны разрушают клетки микобактерий. Микобактерии туберкулеза теряют способность размножаться под действием электромагнитных волн с частотой колебаний 2000 кГц. Обычные дезинфекционные агенты слабоэффективны в отношении микобактерий туберкулеза. Надежной дезинфекции мокроты больных туберкулезом можно добиться при применении препаратов, выделяющих свободный активный хлор (3-5% растворы хлорамина в течение 5 часов, 1-2% растворы хлорамина, активированные сульфатом аммония, в течение 3 часов, 10 20% хлорная известь в течение 2.5 часов и др.).

1.2 Патогенез туберкулёза

Патогенез туберкулеза как инфекционное заболевание изучается более 100 лет со времени открытия Р. Кохом в 1882 г. специфического возбудителя болезни - микобактерий туберкулеза.

Наиболее частый путь заражения туберкулезом - аэрогенный, но возможен и алиментарный и весьма редко - контактный через поврежденную кожу или слизистые оболочки. После проникновения микобактерий в организм человека, не зараженного ранее туберкулезом, в качестве первой защитной реакции развивается фагоцитоз. Эффективность этой защитной реакции зависит от многих факторов - возраста, пола, различных индивидуальных факторов риска, наследственной резистентности, или, наоборот, предрасположенности к туберкулезу. Определенную роль при аэрогенном заражении имеет система мукоцилиарного клиренса, позволяющая частично вывести попавшие в бронхи частицы пыли, капельки слизи, слюны, мокроты, содержащие микроорганизмы. При энтеральном заражении может иметь значение всасывающая функция кишечника. Главную же роль и основное влияние на течение туберкулезной инфекции имеет состояние иммунитета, как врожденного, так и приобретенного. Локальные изменения в месте внедрения микобактерий, прежде всего, связаны с реакцией полинуклеарных клеток, которая сменяется более совершенной формой защитной реакции с участием макрофагов, осуществляющих фагоцитоз и разрушение микобактерий.

Процесс взаимодействия макрофагов с различными микроорганизмами, в том числе микобактериями туберкулеза, является очень сложным и до конца не изученным.

Процесс фагоцитоза и лизиса микобактерий регулируется Т-лимфоцитами и выделяющимися ими медиаторами (лимфокинами). Количество Т-лимфоцитов, а также их функциональная активность в настоящее время хорошо изучены у больных туберкулезом, в том числе на субпопуляционном уровне.

Кроме того, в инфекционном процессе активное участие принадлежит веществам, освобождающимся при разрушении микобактерий. Эти вещества (фракции) были подробно изучены F. Seibert (1949), M. Goren (1982). Наиболее активное влияние на макроорганизм оказывают протеины и нуклеопротеиды, полисахариды и особенно липиды. При интенсивном размножении микобактерий в организме человека вследствие малоэффективного фагоцитоза выделяется большое количество токсических веществ, индицируется резко выраженная ПЧЗТ, которая способствует появлению экссудативного компонента воспаления с развитием казеозного некроза и его разжижения. В процессе разжижения казеозных масс микобактерии получают возможность для бурного внеклеточного размножения. В этот период из-за очень большой бактериальной популяции происходит процесс увеличения супрессорных клеток (Тс), что приводит к угнетению ПЧЗТ, иммунологической активности Т-хелперов, лимфопении и анергии, обусловливающей прогрессирование туберкулезного процесса.

Клинико-морфологические проявления в результате первичного заражения микобактериями туберкулеза принято называть первичным туберкулезом.

В настоящее время хорошо известно, что первичный туберкулез может проявляться не только в виде первичного туберкулезного комплекса, как это было принято считать ранее, но и туберкулеза внутригрудных лимфатических узлов, плеврита, различных изменений в легких - туберкулемы, очагов и др.

Первичный туберкулез в результате свежего заражения развивается лишь у 7-10% заразившихся, остальные переносят первичную туберкулезную инфекцию без клинических признаков; наступившее заражение проявляется виражом туберкулиновых реакций.

Сохранение в остальных очагах персистирующих микобактерий поддерживает приобретенный иммунитет, но одновременно таит в себе риск эндогенной реактивации туберкулезного процесса вследствие реверсии измененных форм возбудителя туберкулеза в бактериальную форму и размножение бактериальной популяции

Механизмы эндогенной реактивации, а также развитие туберкулезного процесса на современном уровне изучены еще не достаточно.

В основе реактивации лежит быстро прогрессирующее размножение бактериальной популяции и увеличение количества микобактерий.

К факторам, способствующим реактивации, относятся также различные заболевания: сахарный диабет, лимфогранулематоз, силикоз, язвенная болезнь желудка и двенадцатиперстной кишки, состояние после резекции желудка, хронические заболевания легких, психические заболевания, протекающие с депрессивным синдромом, алкоголизм, стрессовые ситуации, синдром приобретенного иммунодефицита и др.

В последние годы получены достаточно достоверные материалы о важной роли наследственности в течение туберкулезной инфекции. Изучение системы HLA человека выявило наличие предрасположенных и резистентных к туберкулезу генотипов. Генетические факторы влияют на ответ иммунной системы при размножении микобактерий туберкулеза в организме человека.

Возможен и другой путь развития вторичного туберкулеза - экзогенный, связанный с новым повторным заражением микобактериями туберкулеза (суперинфекция). Но при экзогенном пути развития вторичного туберкулеза недостаточно проникновения микобактерий в уже инфицированный организм, даже при массивной повторной суперинфекции. Необходима совокупность ряда условий и факторов риска, снижающих иммунитет.

Исход болезни зависит от ее течения - прогрессирующего или регрессирующего, эффективности лечения и обратимости явлений, сформировавшихся в процессе болезни.

1.3 Патологическая анатомия туберкулёза

1.3.1 Воспаление

Туберкулезное воспаление развивается в ответ на попадание в организм микобактерий туберкулеза. В зависимости от вирулентности возбудителя и его количества, а особенно от реактивности организма туберкулезное воспаление может иметь различный характер и сопровождаться различной морфологической картиной. В развитии туберкулезного воспаления большая роль принадлежит иммунологическим процессам, в связи, с чем туберкулез является классическим примером воспаления на иммунной основе, или иммунного воспаления.

Типичное туберкулезное воспаление может проявляться формированием очага различного размера и образованием бугорка - гранулемы. При формировании туберкулезного очага в начальный период воспаления оно не имеет типичных морфологических признаков. На первое место выступают нарушения микроциркуляции с повышением проницаемости сосудистых стенок и выходом в ткани форменных элементов крови. На месте внедрения туберкулезных микобактерий наблюдаются явления альтерации (повреждение ткани) и экссудации.

На ранних стадиях воспаления сдвиги в ультраструктуре клеток межальвеолярных перегородок связаны с нарушением сосудистой проницаемости. Прежде всего, в цитоплазме эндотелиальных клеток кровеносных капилляров увеличивается количество мелких, микропиноцитозных пузырьков и вакуолей различной величины.

В дальнейшем эндотелий набухает, внутриклеточные структуры подвергаются дистрофическим изменениям. Основное вещество соединительной ткани базального слоя становится отечным с признаками деполимеризации. Базальная мембрана кровеносных капилляров теряет четкость своих контуров, разрыхляется. Нарастают инфильтративные и пролиферативные процессы, активность фибробластов проявляется усилением фибриллообразования, что ведет к значительному увеличению толщины аэрогематического барьера. Это затрудняет поступление питательных веществ из крови к клеткам и отток от отработанных метаболических продуктов, а также нарушает газообмен.

Туберкулезное воспаление, затрагивая ультраструктуру всех составных компонентов аэрогематического барьера, изменяет и условия их окружения, что ведет к сдвигам метаболических процессов, нарушению целостности альвеолярной архитектуры и недостаточному газообмену. Гипоксия усиливает фибробластические и пролиферативные процессы в альвеолярной стенке, еще более ухудшая условия жизнедеятельности клеток, тем самым, усугубляя тяжесть поражения всего органа.

Специфические для туберкулеза элементы появляются в следующую фазу воспалительной реакции - пролиферативную. В этот период в очаге воспаления можно обнаружить эпителиоидные и гигантские клетки, а в центральной части формирующего очага образуется гомогенный творожистый некроз - казеоз. Эпителиоидные клетки образуются из гистиоцитов, макрофагов, эндотелиальных клеток, скапливающихся в очаге в первую фазу воспалительной реакции. Они характеризуются крупным светлым ядром овальной формы с хорошо выраженным ядрышком и равномерным распределением хроматина.

Гигантские клетки Пирогова-Лангханса в очаге туберкулёзного воспаления отличается крупными размерами, содержат в цитоплазме большое количество ядер, обычно располагающихся по периферии в виде кольца. Ядра имеют овальную форму, в них хорошо выражен хроматин.

Цитоплазма гигантских клеток содержит РНК и богата дыхательными и гидролитическими ферментами, что свидетельствуют об их высокой биологической активности. Они способны к фагоцитозу и синтетической деятельности, в их цитоплазме обнаруживаются различные включения.

Туберкулёзная грануляционная ткань обычно содержит значительное количество лимфоидных клеток разной зрелости и ядерные лейкоциты. Все указанные клеточные элементы, составляя туберкулёзную грануляционную ткань, обычно располагаются вокруг казеоза, образовавшего в центре очага.

При заживлении туберкулёзного очага обычно наблюдается сочетание процессов рассасывания и рубцевания, фиброзирования. При наличии свежего туберкулёзного очага, в котором казеоз отсутствует или выражен незначительно, может произойти полное рассасывание воспалительных изменений с восстановлением структуры поражённого органа. При наличии казеоза рассасывание обычно происходит в зоне перифокального воспаления, а вокруг казеоза формируется фиброзная капсула.

Типичной для туберкулёза формой воспалительной реакции является образование туберкулёзного бугорка, или гранулемы. В настоящее время туберкулёзная гранулёмы рассматривается как реакция антиген - антитело и является выражением иммуноморфологической реакции организма. При превалировании антигена в бугорке развивается некроз, а при увеличении - антител продуктивная реакция. Типичный туберкулёзный бугорок имеет округлую форму, размеры его достигают размеров зерен проса, но могут быть и несколько крупнее. Типичные продуктивные туберкулезные бугорки состоят из эпителиолидных и гигантских клеток Пирогова-Лангханса с лимфоидными по периферии. Иногда в центре бугорка формируется казеоз. При заживлении происходит фиброзирование бугорка наряду с частичным рассасыванием казеоза и трансформацией клеточных элементов. В результате на месте бугорка остаётся небольшой рубчик неправильной паукообразной формы.

1.3.2 Первичный туберкулёз

В условиях снижения заболеваемости туберкулёзом, особенно отчётливо выявляемого в детском возрасте, в настоящее время констатируется несомненное изменение патоморфологической картины первичного туберкулёза. Наиболее частой формой заболевания у детей следует признать туберкулёзный бронхоаденит, нередко выраженный в так называемой малой форме, т.е. без тотального казеоза лимфатических узлов.

При снижении резистентности организма и более массивной дозе инфицирования в лимфатических узлах развивается туберкулёзное воспаление с формированием очагов творожистского некроза, в то время как в лёгких воспалительный очаг может не возникать и лишь утолщение в соединительных перегородок свидетельствует об ограниченном лимфогенном распространении инфекции из поражённых лимфатических узлов корня лёгких. Воспалительные изменения иногда переходят на стенки бронхов, слизистые железы, что может вызывать выделение микобактерий туберкулёза в просвет бронхиального дерева. Могут образоваться и фистулы в стенке бронхов, через которые расплавляющиеся казеозные массы проникают в просвет бронхов, вызывая прогрессирование туберкулёза по бронхиальному дереву и явления острой бронхогенной диссеминации.

При заживлении туберкулёзного процесса в лимфатических узлах происходит рассасывание перифокального воспаления, уплотнение казеоза, отложения в нём солей извести, обеднение специфических грануляций клеточными элементами, нарастание фиброзных изменений в капсуле и окружающей прикорневой зоне, которое, продолжаясь на стенки бронхов, вызывает их деформацию вплоть до развития в поздние периоды бронхоэктазов.

При снижении сопротивляемости организма ребёнка, высокой вирулентности микобактерий туберкулёза и значительной дозе инфицирующего материала возможно возникновение аэрогенного первичного поражения с формированием первичного туберкулёзного очага в лёгком.

Вслед за формированием очага в лёгком развивается поражение регионарного лимфатического узла. Между лёгочным очагом и регионарными лимфатическими узлами образуется «дорожка» из измененных лимфатических путей, по которым осуществляется отток патологического материала из очага в лёгком к лимфатическим узлам. По ходу лимфатических путей развивается лимфангит, возникают воспалительные изменения в прилежащей альвеолярной ткани с превалированием отёка, специфических очагов. Описанная картина соответствует первичному комплексу со всеми тремя его компонентами.

Первичный туберкулёз, как было подчеркнуто выше, нередко сопровождается прорывом инфекции в кровеносное русло. В связи с этим гематогенное рассеивание инфекции нередко имеет место именно при первичном туберкулёзе.

1.3.3 Диссеминированный туберкулёз

В существующей классификации диссеминированный туберкулёз лёгких объединяет диссеминации туберкулёза различного генеза: лимфогенные, гематогенные и бронхогенные.

Гематогенный и лимфогематогенный туберкулёз по-своему генезу занимает промежуточное место между первичным и вторичным туберкулезом, возникая часто из различных очагов первичного комплекса.

Хронические формы диссеминированного туберкулёза чаще встречаются у взрослых, и диссеминация в этих случаях имеет обычно лимфогематогенный характер. Эти формы обычно ограничиваются поражением лёгочной ткани, хотя возможны и гематогенные отсевы в другие органы - кости, почки и т.д.

Очаги, как правило, носят продуктивный характер, локализуются преимущественно в верхушечных сегментах лёгкого со значительным уменьшением диссеминации в нижних его отделах. Очаги диссеминации обычно полиморфны: один из них хорошо инкапсулированы, другие имеют богатую клеточными элементами капсулу, третьи отличаются отсутствием хорошо выраженной капсулы. Всё это свидетельствует о волнообразном течении процесса, свойственно данной форме.

Хронический гематогенно-диссеминированный туберкулёз лёгких может осложняться формированием своеобразных каверн округлой формы, располагающихся в симметрических отделах лёгких. При возникновении гематогенных каверн в патологический процесс вовлекаются бронхи, и туберкулёз может осложняться бронхогенной диссеминацией.

Бронхи могут изменяться и в начальные фазы диссеминированного туберкулёза при лимфогенном распространении процесса и образовании туберкулёзных очагов по ходу лимфатических сосудов перибронхиальной ткани.

Бронхиальный диссеминированный туберкулёз редко развивается как самостоятельная форма туберкулёза. Однако могут наблюдаться случаи сенсибилизации бронхиальной стенки, в результате чего происходит прорыв инфекции в бронхи и развитие бронхогенного туберкулёза, локализующего преимущественно в нижних отделах лёгких.

1.3.4 Очаговый туберкулёз

Очаговый туберкулёз - одна из наиболее распространенных форм туберкулёза. Эта форма связанна с образованием очагов-отсевов, или очагов реинфекта, возникающих чаще всего эндогенно при лимфогенном рассеивании туберкулёзной инфекции из очагов первичного туберкулёза. Очаговый туберкулёз характеризуется наличием целой группы очагов казеоза, локализующихся преимущественно односторонне, чаще справа, в верхушечном или заднем сегменте верхней доли. Одни очаги характеризуются хорошо выраженной капсулой, бедными клеточными элементами, уплотнённым казеозом.

Другие очаги, расположенные рядом, выглядят более свежими, казеоз в них окружён зоной из эпителиолидных и лимфоидных клеток с гигантскими клетками между ними. Рядом могут располагаться совсем свежие казеозные очаги, окружённые широкой клеточной зоной. Заживление очагов происходит обычно путём их инкапсуляции, уплотнения казеоза и частичного его замещения соединительной тканью, врастающей в казеоз со стороны капсулы. Исходом очагового туберкулёза при благоприятном течении процесса будет развитие фиброза как в очагах, так и вокруг них.

1.3.5 Инфильтративный туберкулёз

Инфильтративный туберкулёз обычно развивается при обострении очагового туберкулёза. При этом чаще всего в I или II бронхолёгочном сегменте появляется уплотнение диаметром 2-3 см.

При прогрессировании инфильтративного туберкулёза очаги казеоза в его центральных отделах увеличиваются, так же как и зона перифокального воспаления, которая может занять всю долю лёгкого по типу лобита.

Наряду с патоморфологическим изучением инфильтрата должна быть рассмотрена казеозная пневмония, которая не выделена по классификации в отдельную форму. Для казеозной пневмонии характерно преобладание воспалительной реакции по типу острого казеозного распада. Различают ацинозную форму казеозной пневмонии, при которой поражение ограничивается пределами ацинуса; лобулярную казеозную пневмонию, когда процесс захватывает дольки лёгкого, и лобарную форму, когда в процесс вовлекается целая доля лёгкого. Лобарная казеозная пневмония является наиболее тяжёлой формой туберкулёза; большая часть поражённой доли в этих случаях оказывается занятой казеозом, в котором может наблюдаться расплавление казеоза и образование острых полостей распада.

1.3.6 Туберкулёма лёгких

К этой форме туберкулёза относятся разнообразные по генезу инкапсулированные казеозные очаги округлой формы диаметром более 1 см.

Туберкулёмы делят на солитарные, слоистые, конгломератные и инфильтративно-пневмонческие. Солитарная гомогенная туберкулёма и инфильтративно-пневмонические представляют собой очаг казеозной пневмонии округлой формы, чётко ограниченный окружающей легочной ткани тонкой фиброзной капсулой, на границе которой с казеозом имеется узкий слой специфических грануляций.

На границе туберкулемы с окружающей лёгочной тканью обычно выявляются лимфоцитарные скопления, свидетельствующие о выраженности иммунных реакций в лёгких. Слоистые туберкулёмы отличаются концентрическим расположением казеозных масс, чередующихся с концентрически же расположенными пучками коллагеновых волокон. Конгломератная туберкулёма имеет обычно неправильную округлую форму и состоит из нескольких казеозных очагов различного размера, объединённых одной общей капсулой. Туберкулёма инфильтративно-пневмонического типа представляют собой нечётко ограниченное округлое или неправильной овальной формы образование, в котором участки творожистого некроза чередуются с фокусами туберкулёзного воспаления гранулематозного типа и участками пневмонии полиморфного типа. Такие туберкулёмы не имеют чётко сформированной капсулы и рассматриваются как случаи затяжного течения туберкулёзного инфильтрата, в котором преобладает продуктивная гранулематозная реакция.

При прогрессировании туберкулёмы она может увеличиваться, казеоз в ней подвергается расплавлению, воспалительный инфильтрат с капсулы переходит на прилежащие бронхи, в просвет которых выделяются расплавляющиеся казеозные массы. В этих случаях на месте туберкулёмы образуется каверна. При стабилизации туберкулёмы или её заживлении наблюдается рассасывание перифокального воспаления и клеточной инфильтрации капсулы, нарастание в капсуле явлений фиброза, трансформация специфических грануляций в неспецифическую фиброзную ткань, частично проникающую в казеоз и его замещающую.

1.3.7 Деструктивный туберкулёз

Любая форма туберкулёза может осложниться расплавлением казеоза, выделением казеозных масс через бронхи и формированием полости, т.е. переходом процесса в деструктивную форму. При расплавлении казеоза по краю туберкулёзного очага казеозные массы могут отделяться по типу секвестра. Такая каверна называется секвестирующей. При расплавлении масс казеоза по типу аутолиза каверна имеет характер аутолитической. Сформированная каверна характеризуется трёхслойным строением стенок: внутренний казеозно-некротический слой обращен в просвет полости; за ним идёт слой специфических грануляций, содержащий эпителиоидные, лимфоидные и гигантские клетки Пирогова-Лангханса.

По генезу каверны могут быть пневмониогенными, образующимися на месте очага туберкулёзной пневмонии, бронхогенными, формирующимися на месте поражённых туберкулёзом бронхов, гематогенными, возникающими при гематогенно-семинированном туберкулёзе. В зависимости от строения стенок, выраженности фиброзного слоя каверны могут быть эластическими, легко спадающимися, со слабо развитым фиброзом, и ригидными с плотными фиброзными стенками.

В процессе заживления каверны просвет дренирующих бронхов может облитерироваться; в таком случае на месте каверны образуется инкапсулированный очаг казеоза типа туберкулемы. При неблагоприятных условиях казеоз в таком очаге может вновь подвергнуться расплавлению с открытием просвета бронха и снова образуется каверна, поэтому такой тип заживления является неполноценным.

Ригидные каверны при заживлении чаще всего в трансформируются в кистоподобную полость. В этих случаях наблюдается отторжение казеозно-некротического слоя и замещение слоя специфических грануляций неспецифической соединительной тканью. Каверна превращается в кистоподобную полость.

Прогрессирование деструктивного туберкулёза выражается в увеличении казеозно-некротического слоя, который может переходить на слой специфических грануляций и фиброза. Прогрессируют изменения и в бронхах с появлением очагов острой бронхогенной диссеминации.

Кавернозный туберкулёз лёгких характеризуется наличием изолированной сформированной каверны без выраженных фиброзный изменений в её стенках и окружающей лёгочной ткани.

1.3.8 Фиброзно-каверозный туберкулёз

Типичным для этой формы является наличие в одном (чаще правом) или в обоих лёгких каверны или каверн, расположенных среди фиброзно изменённой лёгочной ткани. В стенках каверн в отличие от кавернозного туберкулёза фиброзный слой резко выражен и превалирует над казеозно-некротическим и грануляционным. При прогрессировании процесса в стенке каверн преобладает экссудативно-некротическая реакция и бывает выражена бронхогенная диссеминация, имеющая апико-каудальное распространение. Отличительной особенностью бронхогенных диссеминаций является их чёткое ограничение от окружающей ткани, препятствующее переходу процесса на альвеолы.

Фиброзно-кавернозный туберкулёз отличается волнообразным течением, и в период стабилизации или затихания процесса нарастают явления фиброза и деформации лёгочной ткани. Фиброзно-кавернозный туберкулёз значительно хуже подвергается заживлению, чем кавернозный.

1.3.9 Цирротический туберкулёз

Цирротический туберкулез лёгких характеризуется развитием в лёгочной ткани грубого, деформирующего орган склероза (цирроза), бронхоэктатических, посткавернозных типа кист полостей, эмзифематонных булл или каверн без признаков прогрессирования. Цирротические изменения в лёгких бывают одно- и двусторонними, сегментарными, лобарными или занимающее всё лёгкое. Цирротически изменённое лёгкое резко деформировано, уменьшено в объёме, плотное. Резко деформировано бронхиальное древо, имеются бронхоэктазы различных размеров и формы. В кровеносных сосудах наблюдается перестройка с перекалибровкой их просвета, появлением сосудов замыкающего типа, множеством зияющих артериовенозных анастомозов. Среди резко выраженного фиброза могут определяться туберкулёзные очаги с различно выраженными признаками активности процесса. При значительном склерозе и отсутствии в нём активных туберкулёзных изменений имеет место цирроз как последствие перенесённого туберкулёза.

2. Иммунитет и аллергия при туберкулёзе

2.1 Гуморальный противотуберкулёзный иммунитет

Множество работ посвящено изучению динамики синтеза различных типов антител при экспериментальном туберкулёзе, туберкулёзе людей и вакцинном процессе. Показано, что при вакцинном процессе БЦЖ после введения вакцины титры антител прогрессивно нарастают и достигают максимума в тот период, когда максимально выраженной является резистентность вакцинированных животных к последующему заражению. При экспериментальном туберкулёзе подъём синтеза антител отмечается в ближайшие сроки после заражения.

Вместе с тем различные типы антител имеют неодинаковую динамику при туберкулёзной инфекции. Как показали обследования, антитела, направленные против полисахаридов микобактерий, в наибольших титрах определяются при благоприятном течении туберкулёзного процесса, и наоборот, максимальные титры антипротеиноых антител обнаруживаются во время инфильтративной вспышки туберкулёза.

Изучение динамики циркулирующих антител в крови и в местах их синтеза, хотя и представляет интерес как в теоретическом плане, однако, не даёт ответ на главные вопросы: какое значение имеют антитела в сопротивляемости к туберкулёзной инфекции, полезным или вредным является их синтез, обладают ли они опсонизирующими свойствами в отношении микобактерий и как действуют на фагоцитоз и, наконец, могут ли они прямо токсически действовать на микобактерии, убивать их с помощью комплимента или угнетать из пролиферацию?

В первую очередь следует подчеркнуть, что в прямых опытах, когда с помощью иммунных сывороток пытались усилить устойчивость к туберкулёзу интактных животных, обычно получали отрицательные результаты. Многие исследователи считают антитела «свидетелями» иммунитета, предполагая, что синтез антител (его активность) отражает напряжённость резистентности к туберкулёзу, но не лежит в основе борьбы с микобактериями.

2.2 Клеточный иммунитет

В течение многих лет единственным методом изучения клеточного иммунитета была кожная туберкулиновая проба; кроме того, в 20-30 годы была выполнена серия опытов по изучению стимулирующего и подавляющего действия туберкулина и убитых микобактерий на пролиферацию и миграцию клеток в эксплантатах иммунокомпетентных органов, которые лишь недавно нашли объяснение как реакции клеточного иммунитета.

Установлено, что реакции клеточного иммунитета заключаются во взаимодействии Т-лимфоцитов с антигеном и последующей мобилизации других субпопуляций Т-лимфоцитов или макрофагов, выполняющих эффекторные функции.

При туберкулёзе и вакцинном процессе БЦЖ была изучена динамика пролиферации клеток-эффекторов клеточного иммунитета в тимусзависимых зонах селезёнки и лимфатических узлов.

При туберкулёзе был изучен также синтез медиаторов клеточного иммунитета - веществ, синтезируемых преимущественно Т-лимфоцитами после контакта с соответствующими антигенами и в отсутствии лимфоцитов, выполняющие их некоторые функции. Всё это позволило предположить, что различные проявления клеточного иммунитета зависят от деятельности разных субпопуляций Т-лимфоцитов, которые имеют различное функциональное назначение (в частности при туберкулёзе)

Проведённые опыты in vitro позволили установить, каким образом клетки - эффекторы клеточного иммунитета (Т-лимфоциты) оказывают регулирующее действие на течение туберкулёзной инфекции.

В настоящее время установлено, что микобактерии разрушаются и размножаются исключительно внутриклеточно и преимущественно в макрофагах.

Таким образом, фагоцитоз является основным механизмом разрушения микобактерий.

Следует подчеркнуть, что фагоцитоз - это не иммунологический механизм защиты, поскольку фагоцитарные реакции лишены главного свойства иммунного ответа - специфичности.

Многие исследователи считают, что фагоцитоз при туберкулёзе является незавершённым, т.е. микобактерии захватываются, но не разрушаются фагоцитирующими клетками.

Таким образом, можно сделать вывод, что клеточный иммунитет является центральным звеном резистентности к туберкулёзу и что клетки - эффекторы клеточного иммунитета, вероятно, оказывают своё регулирующее действие на течении туберкулёзной инфекции, усиливая фагоцитарную активность макрофагов.

2.3 Иммунологическая толерантность

Иммунологическая толерантность - это феномен, о значении которого в трансплантационной иммунологии и при аутоиммунных состояниях известно довольно много, но роль которого при инфекциях, в том числе при туберкулёзе, изучена пока недостаточно.

Некоторыми исследователями было показано, что сочетанным введением полиантигена БЦЖ и циклофосфана мышам можно индуцировать у них толерантность к последующему введению антигенов микобактерий с подавлением преимущественно клеточного иммунитета.


Подобные документы

  • Симптомы и предрасполагающие факторы появления туберкулеза. Возбудитель заболевания, клиническая картина течения туберкулеза. Методы диагностики и подготовка к ним. Профилатика и медикаменты, применяемые в ходе лечения болезни. Осложнения туберкулеза.

    курсовая работа [1,0 M], добавлен 21.11.2012

  • Рассмотрение многообразия клинических проявлений и форм туберкулеза. Этапы диагностики туберкулеза, правила сбора мокроты, рентгенологические проявления туберкулеза органов дыхания. Культуральные и молекулярно-генетические методы выявления возбудителя.

    презентация [933,0 K], добавлен 13.04.2015

  • Характеристика микробактерий туберкулеза. Пути и способы заражения туберкулезом. Этиология и иммунитет. Гиперчувствительность замедленного типа. Связь между иммунным ответом и патогенезом. Патологическая анатомия туберкулеза. Туберкулезное воспаление.

    история болезни [69,5 K], добавлен 14.11.2008

  • Классификация внелегочного туберкулеза. Патогенез туберкулеза костей. Дифференциальная диагностика туберкулеза кожи. Этапы развития костно-суставного туберкулеза. Клинические симптомы, их характер и выраженность. Основные стадии туберкулеза почек.

    презентация [11,6 M], добавлен 21.08.2015

  • Понятие туберкулеза, источники заражения и формы болезни. Клинические симптомы туберкулеза органов дыхания, особенности диагностики данного заболевания. Порядок составления анамнеза, физикальное обследование, показатели анализа крови. Принципы лечения.

    реферат [17,8 K], добавлен 12.02.2013

  • Признаки легочной лихорадки в египетских папирусах, произведениях древнейших китайских ученых и священных книгах индусов. Степень влияния наследственных факторов на возникновение и течение болезни. Врожденная относительная резистентность к туберкулезу.

    реферат [18,8 K], добавлен 21.04.2009

  • Изучение проблемы частого употребления алкоголя и сопутствующего ему туберкулеза легких. Описание механизмов влияния алкоголя на развитие туберкулеза через токсическое поражение печени, нарушение обмена веществ, депрессии, угнетение реакций иммунитета.

    презентация [1,7 M], добавлен 14.10.2015

  • Особенности строения и функционирования возбудителя туберкулеза. Туберкулез как инфекционное заболевание. Возможные исходы заражения. Методы выявления и подтверждения диагноза туберкулеза. Методы исследования лекарственной чувствительности микобактерий.

    дипломная работа [3,0 M], добавлен 22.06.2012

  • Формы и классификация туберкулеза, его основной патологический процесс. Методы диагностики и профилактика. Причины и факторы развития туберкулеза, его клинические признаки и лечение. Выявление пневмонического очага. Течение первичного комплекса болезни.

    презентация [1,2 M], добавлен 01.12.2012

  • Флюорографическое исследование как главный диагностический критерий туберкулеза на современном этапе. Сроки специфической вакцинации и ревакцинации детей, противопоказания к проведению данных процедур. Типы реакций на введении вакцины. Проба Манту.

    презентация [303,7 K], добавлен 23.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.