Многогранники и тела вращения

Построение правильных пирамид и призм. Характеристика сечения прямоугольной трубы. Пересечение пирамиды линией и призмой. Последовательность построения 2-х многогранников. Построение сечения и развертки цилиндра, конуса и его развертки, шара и тора.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 26.09.2017
Размер файла 5,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция 4 Многогранники и тела вращения

  • Содержание
  • 1. Призма и пирамида
  • 2. Построение правильных пирамид и призм
  • 3. Сечение прямоугольной трубы
  • 4. Построение сечения пирамиды
  • 5. Пересечение пирамиды линией и призмой
  • 6. Последовательность построения 2-х многогранников
  • 7. Построение сечения цилиндра
  • 8. Построение развертки цилиндра
  • 9. Возможные сечения конуса
  • 10. Построение сечения конуса и его развертки
  • 11. Построение сечения шара
  • 12. Построение сечений тора

1. Призма и пирамида

Рис. 1

Призматическая поверхность неограниченной длины на чертеже может быть изображена проекциями фигуры, полученной при пересечении боковых граней призмы плоскостью, и проекциями ребер призмы. Пересекая призматическую поверхность двумя параллельными между собой плоскостями, получают основания призмы. На чертеже основания призмы удобно располагать параллельно плоскости проекций. Чертеж призмы с проекциями оснований А"В"С", А'В'С и D"E"F", D'E'F' , параллельных плоскости р1 , приведен на

рис.1 (слева). Одноименные проекции ребер призмы параллельны между собой. пирамида призма многогранник конус

Для изображения поверхности пирамиды на чертеже используют фигуру сечения боковых граней пирамиды плоскостью и точку из пересечения - вершину. На чертеже пирамиду задают проекциями ее основания, ребер и вершины, усеченную пирамиду - проекциями обоих оснований и ребер.

Изображая пирамиду, удобно ее основание располагать параллельно плоскости проекций.

На рис. 1 (справа) приведен чертеж неправильной треугольной пирамиды с проекциями А", А' вершины и основанием, проекции которого D"B"C" и D'B'C, лежащим в плоскости проекций р1.

2. Построение правильных пирамид и призм

Рис. 2

Изображения призм и пирамид приведены на рис.2. На приведенных чертежах ребра проецируются в виде отрезков прямых или в виде точек. Например, фронтальные и профильные проекции боковых ребер призм и пирамид - отрезки прямых. Горизонтальные проекции тех же боковых ребер призм на рис. 2 а, б - точки. Профильные проекции ребер оснований призм - точки 2" (3'"), (5'"), 6'" на рис. 2 а, точка 1'", (3'") на рис. 2, б, в.

Грани призм, пирамид, которые перпендикулярны плоскостям проекций, проецируются на них в виде отрезков прямых линии. Так, например, боковые грани призм (рис. 2 а, б) на горизонтальной проекции изображаются в виде отрезков прямых линий, образующих шестиугольник, в виде отрезков прямых линий проецируются на профильную плоскость проекций передняя и задняя грани призмы на рис. 2, а, задняя грань призмы и пирамиды на рис. 6.4, б, в.

Основания изображенных тел проецируются в отрезок прямой линии на фронтальную и профильную плоскости проекций.

Построение недостающих проекций точек на поверхности призм и пирамид по заданным фронтальным проекциям на рис. 2 показано стрелками и соответствующими координатами.

Профильные проекции А'", С" построены с помощью координат уА и уС, определяемых по горизонтальным проекциям.

Горизонтальная D' и профильная D'" проекции точки D на грани А -- 1 --2 пирамиды

(рис. 2, в) построены с помощью 2'4', 2'"4'" отрезка прямой на этой грани. Аналогично, с помощью профильной проекции 1'"5"' отрезка на грани А --1--2 пирамиды (рис.2, г) построена профильная проекция F'".

Горизонтальная проекция F' построена с помощью горизонтали той же грани, проходящей через проекцию 6' на проекции ребра А'1'. Горизонтальная проекция Е' построена с помощью координаты YЕ определенной по профильной проекции Е'".В рассмотренных примерах координаты уА, уЕ заданы относительно плоскостей д(д', д'"), уС - относительно плоскости г (г', г''').

3. Сечение прямоугольной трубы

Рис. 3

При пересечении призмы или пирамиды плоскостью в сечении получается плоская фигура, ограниченная линиями пересечения секущей плоскости с гранями призмы или пирамиды.

Простейший пример конструирования детали пересечением исходной заготовки в виде прямоугольной трубы плоскостью приведен на рис. 3. В этом случае деталь - волновод изготавливают, отрезая часть заготовки по плоскости д(д").

4. Построение сечения пирамиды

Рис. 4

Наклонная площадка ABCD образована срезом верхней части пирамиды фронтально проецирующей плоскостью з (з"). Фронтальные проекции А ", В", С", D" точек находятся на фронтальном следе з" плоскости, а фронтальная проекция площадки ABCD совпадает со следом з".Профильная А '"В"' С '"D"' и горизонтальная А 'В' С 'D' проекции площадки построены по проекциям указанных точек на проекциях соответствующих ребер.

Часто требуется построить натуральный или истинный вид фигуры сечения тела плоскостью. На рис.4 для этой цели вверху слева применен способ перемены плоскостей проекций. В качестве дополнительной плоскости принята плоскость р4, параллельная плоскости з и перпендикулярная плоскости р2. Натуральный вид площадки - фигура сечения AIVBIVCIVDIV. Другой вариант построения натурального вида наклонной площадки ABCD показан на рис.4 справа внизу - A0B0C0D0. Для построения использованы новые координатные оси х1 и у1 лежащие в плоскости з. Ось х1 параллельна плоскости р2, ось у1 - перпендикулярна плоскости р2 .

Координаты по оси х1 точек A0, B0, С0, D0 равны координатам по оси х1 фронтальных проекций А'', В", С", D" этих точек. Координаты х1 точек С0, С" по оси х1 равны нулю. Координаты уВ, yD по оси у1 точек В0, D0 равны координатам по этой оси (параллельной оси у) горизонтальных проекций В', D'. Координаты по оси у1 точек А, С равны нулю. По указанным координатам на осях х1 , у1 строят натуральную величину А0В0C0D0 наклонной площадки ABCD.

5. Пересечение пирамиды линией и призмой

Рис. 5

Построение точек пересечения прямой с поверхностью многогранника сводится к построению линии пересечения многогранника проецирующей плоскостью, в которую заключают данную прямую. На рис. 5(слева) приведено построение проекций Е", Е' и F", F' точек пересечения прямой с проекциями M"N", M'N' с боковыми гранями пирамиды. Пирамида задана проекциями G", G' вершины и А"В"С",А'В'С основания. Прямая MN заключена во вспомогательную фронтальную проецирующую плоскость г(г"). Горизонтальные проекции Е' и F' искомых точек построены в пересечении проекции M'N' с горизонтальными проекциями 1', 3' и 2', 3' отрезков, по которым плоскость г пересекает боковые грани пирамиды. Фронтальные проекции Е" и F" определены по линиям связи.

Изображение пересекающихся между собой в пространстве призмы А и пирамиды Б представлено на рис. 5(справа). Линия их пересечения проходит через точки 1, 3, 4, 6 пересечения ребер пирамиды с гранями призмы и точки 2, 5 пересечения ребра призмы

с гранями пирамиды. В общем случае в пересечении многогранников получается пространственная замкнутая ломаная линия, которая в некоторых частных случаях может оказаться плоской. При построении линии пересечения многогранников применяют два способа и их комбинации.

1. Строят точки пересечения ребер одного многогранника с гранями другого и Ребер второго с гранями первого. Через построенные точки в определенной последовательности проводят ломаную линию пересечения данных многогранников. При этом отрезки прямых проводят лишь через те построенные точки, которые лежат в одной и той же грани.

2. Строят отрезки прямых, по которым грани одной поверхности пересекают грани другой. Эти отрезки являются звеньями ломаной линии пересечения многогранных поверхностей между собой.

Таким образом, построение линии пересечения двух многогранников сводится или к построению линии пересечения двух плоскостей между собой, или к построению точки пересечения прямой с плоскостью

6. Последовательность построения 2-х многогранников

Рис. 6

Рис. 6, а. Прежде чем приступить к построениям, анализируют взаимное положение многогранников и их расположение относительно плоскостей проекций. В данном случае очевидно, что многогранники могут пересекаться только по боковым граням. Ребра призмы и боковые ребра пирамиды параллельны плоскости р2, основания пирамиды параллельны плоскости р1. Нижняя грань призмы и ее основания перпендикулярны плоскости р1.

Указанные особенности расположения призмы и пирамиды определяют и наиболее рациональный способ построения линии пересечения их поверхностей по точкам пересечения ребер призмы с гранями пирамиды и боковых ребер пирамиды с гранями призмы.

Построения показаны на рис. 6, б. Рассмотрим их для левой части чертежа (от оси пирамиды). Проекции 1", 1', 2", 2', 3", 3' ,4", 4' точек пересечения ребер призмы с гранями пирамиды найдены путем проведения через них фронтальных плоскостей в (в'), б (б'), г (г'). Они пересекают левые боковые грани пирамиды по фронталям - прямым линиям, параллельным левому ребру пирамиды. Положение их фронтальных проекций определено по горизонтальным проекциям 21', 22', и 24' точек пересечения горизонтальных проекций в', б' и г' плоскостей в, б, г с горизонтальной проекцией основания пирамиды. В пересечении фронтальных проекций этих линий с фронтальными проекциями ребер призмы найдены фронтальные проекции 1", 2" и 4" точек пересечения ребер призмы с левыми гранями пирамиды. По ним построены горизонтальные проекции 1', 2', 4'.

Проекции 3", 3' точки пересечения ребер AD пирамиды с верхней задней гранью призмы найдены с помощью вспомогательной фронтальной плоскости з(з'), которая проведена через это ребро. Плоскость з пересекает грань призмы по прямой, параллельной ребрам призмы и проходящей через точку 23 на основании призмы. В пересечении фронтальных проекций этой прямой и ребра А" D" найдена фронтальная проекция 3" точки пересечения указанного ребра с задней верхней гранью призмы и на линии связи - горизонтальная проекция 3'. С нижней гранью призмы, перпендикулярной плоскости р2 , ребро AD пересекается в точке с фронтальной проекцией 5 ". В проекционной связи на проекции А' D' построена ее горизонтальная проекция 5'.

Таким образом, проекции точек пересечения всех ребер призмы с левыми гранями пирамиды - 1", 1', 2", 2', 4", 4' и ребра AD пирамиды с двумя гранями призмы - 3", 3' и 5", 5' построены. Соединяем проекции точек, принадлежащих одной грани, и получаем проекции 1" 2" 3" 4" 5" 1" , 1' 2' 3' 4' 5' 1' ломаной линии пересечения.

Построение в правой части чертежа проекции 6" 7" 8" 9" 10" 6", 6' 7' 8' 9' 10' 6' линии пересечения аналогично. Порядок построения иллюстрируется стрелками.

После построения проекций линий пересечения многогранников обводят проекции оставшихся частей ребер многогранников.

Заметим, что переднее и заднее ребра пирамиды не пересекают поверхность призмы.

7. Построение сечения циліндра

Рис.7.

Ось цилиндра и вся цилиндрическая поверхность перпендикулярны плоскости р1. Следовательно, все точки цилиндрической поверхности, в том числе и линия пересечения ее с плоскостью б(б"), проецируются на плоскость р1 в окружность. На ней отмечают горизонтальные проекции точек 1', 2', 3', 4', 5', 6', 7', 8', 9', 10', 11' и 12' эллипса, расположив их равномерно по окружности. В проекционной связи строят фронтальные проекции 1", 2", 3", 4", 5", 6", 7", 8", 9", 10", 11", 12" отмеченных точек на фронтальном следе б" секущей плоскости. Профильные проекции тех же точек строят по их горизонтальной и фронтальной проекциям на линиях связи.

Профильная проекция линии пересечения цилиндра с секущей плоскостью - эллипс, большая ось 10'"4'" которого в данном случае равна диаметру цилиндра, а малая 1'" 7'" -профильная проекция отрезка -- 1-- 7.

Если расположить на рис.7 плоскость б под углом 45° к оси, то профильная проекция эллипса фигуры сечения будет окружность.

Если острый угол между осью цилиндра и секущей плоскостью будет меньше 45°, то малая ось эллипса на профильной проекции станет равной диаметру цилиндра.

Натуральный вид фигуры сечения цилиндра плоскостью б построен способом перемены плоскостей проекций на плоскости р4, перпендикулярной плоскости р2. Большая ось эллипса - отрезок 1IV7IV = 1" 7", малая- отрезок 4IV10IV=d

8. Построение развертки цилиндра

Рис. 8

Построение развертки (рис.8). Полная развертка состоит из четырех частей: развертки боковой поверхности, ограниченной пятью отрезками прямой линии и кривой A0l0B0 - синусоидой; натурального вида фигуры сечения; круга основания цилиндра; сегмента, полученного на верхнем основании.

Полная развертка боковой поверхности цилиндра - прямоугольник с высотой, равной цилиндру, и длиной L = рd, где d - диаметр цилиндра. Для построения на развертке точек линии среза развертку основания цилиндра делят на такое же число частей, как и при построении проекций линии среза. Проводят через точки деления образующие и отмечают на них высоту до точек эллипса среза - точки 10 20 и 120, 30 и 110, 40 и 100, 50 и 90, 60 и 80, 7.Соединяют построенные точки плавной кривой - синусоидой. Натуральный вид фигуры среза цилиндра плоскостью выполнен ранее(1IV2IV3IV…12IV) и его по координатам строят на развертке.

Построим на чертеже цилиндра проекции точки, указанной на разверстке точкой М0. Для этого отметим хорду l2 между образующей, на которой расположена точка М0, и образующей точки 4. По хорде l2 строим горизонтальную проекцию М' и по известной высоте ее расположения найдем ее фронтальную проекцию М".

9. Возможные сечения конуса

Рис. 9

10. Построение сечения конуса и его развертки

Рис. 10

Развертка боковой поверхности прямого кругового конуса представляет собой круговой сектор с углом ц = d/l Ч 180 ° при вершине, где d - диаметр основания, l - длина образующей конуса. Построение сектора (рис. 10 внизу) выполняют с разбивкой его на равные части соответственно разметке образующих на чертеже (см. рис. 10 конуса).

Используя положение образующих на чертеже и на развертке находят положение точек на развертке при помощи натуральных величин отрезков от вершины до соответствующих точек линии пересечения на чертеже. При этом расстояния G0A0 и G0B0 соответствуют фронтальным проекциям G"А " С"В". Отрезки образующих от вершины до других точек проецируются на фронтальную плоскость проекций с искажениями. Поэтому их натуральную величину находят вращением вокруг оси конуса до положения, параллельного фронтальной плоскости проекций. Например, положение точки D0 на развертке найдено при помощи отрезка G "D1" - натуральной величины образующей от вершины G до точки D точки E0, - при помощи отрезка G"Е1" (или G'"E'").

Полная развертка поверхности усеченного конуса состоит из трех частей: 1) развертки боковой поверхности, ограниченной дугой окружности радиуса l, кривой B0I0F0E0D0C0A0 и симметричной ей; круга основания; 3) натурального вида фигуры сечения.

На рис. 10 (вверху) показано построение фронтальной и горизонтальной проекций точки К по изображению К0 этой точки на развертке (рис.10). Для построения проведена образующая G0130 через точку К0 на развертке. С помощью отрезка l1 построена горизонтальная проекция 13'. Через нее проведены горизонтальная G' 13' и фронтальная G"13 " проекции образующей G - 13. Отрезок G0K0 = G"K1" на проекции образующей G "7 ". Обратным вращением построена фронтальная проекция К" точки К на фронтальной проекции образующей G"13".Горизонтальная проекция К' построена с помощью линии связи.

11. Построение сечения шара

Рис. 11

На рис. 11 показано построение проекций некоторых точек.

Проекции С' и D' построены на горизонтальной проекции параллели радиуса 0'1', построенной с

помощью проекции 1". Проекция С'" и D'" построены на профильной проекции окружности, проведенной на сфере через проекции C"(D") так, что плоскость окружности параллельна плоскости проекций.

Проекция Е' является точкой касания эллипса (горизонтальной проекции окружности среза) и экватора сферы. Она построена в проекционной связи на горизонтальной проекции экватора по фронтальной проекции Е".

Горизонтальная проекция М' произвольной точки на линии среза построена с помощью параллели радиуса О'2' , фронтальная проекция которой проходит через проекции М 2" . Проекция F "является точкой касания эллипса (профильной проекции окружности среза) и профильной проекции очерка сферы.

Если плоскость, пересекающая сферу, является плоскостью общего положения, то задачу решают способом перемены плоскостей проекций. Дополнительную плоскость проекций выбирают так, чтобы обеспечить перпендикулярность ее и секущей плоскости. Это позволяет упростить построение линии пересечения.

12. Построение сечений тора

Рис. 12

В примере на рис. 12 показано применение вспомогательных плоскостей г11") и г22") , перпендикулярных оси тора, для построения линии пересечения и натурального вида фигуры сечения поверхности тора плоскостью б (б'"). Тор на рис.12 имеет два изображения - фронтальную проекцию и половину профильной проекции.

Полуокружность радиуса R2 (профильная проекция линии пересечения тора вспомогательной плоскостью г2) касается проекции плоскости б(следа б'"). Тем самым определяются профильная проекция 3'" и по ней фронтальная проекция 3'" одной из точек проекции искомой линии пересечения. Полуокружность радиуса R1 - профильная проекция линии пересечения тора вспомогательной плоскостью г1 . Она пересекает профильную проекцию плоскости б (след б'") в двух точках 5'" и 7'" - профильных проекциях точек линии пересечения. Проводя аналогичные построения, можно получить необходимое количество проекций точек для искомой линии пересечения. Используем найденные точки для построения натурального вида фигуры сечения. Фигура сечения тора плоскостью, параллельной его оси, имеет оси и центр симметрии. При ее построении использованы расстояния l1 и l2 на фронтальной проекции для нанесения точек 50, 70 и 30.

Точки 60 , 80 и 40 построены как симметричные. Построенная кривая пересечения поверхности тора плоскостью выражается алгебраическим уравнением 4-го порядка.

Кривые пересечения тора с плоскостью, параллельной оси, приведены на рис.12 внизу. Они имеют общее название - кривые Персея (Персей -- геометр Древней Греции). Это кривые четвертого порядка. Вид кривых зависит от величины расстояния от секущей плоскости до оси тора.

Размещено на Allbest.ru


Подобные документы

  • Построение разверток поверхностей. Параллелепипед и его развертка. Чертеж развертки поверхности правильной пирамиды, прямого кругового конуса, прямого кругового цилиндра, правильной призмы, прямого эллиптического цилиндра. Способ нормального сечения.

    контрольная работа [1,8 M], добавлен 11.11.2014

  • Пространственные тела и их сечения; точка, прямая, плоскость и векторы. Методы построения, задание и построение сечений пространственных тел, исследование свойств сечения. Способы визуализации трехмерного пространства. Создание компьютерного приложения.

    курсовая работа [533,7 K], добавлен 15.07.2010

  • Изучение однородных выпуклых и однородных невыпуклых многогранников. Определение правильных многогранников. Двойственность куба и октаэдра. Теорема Эйлера. Тела Архимеда. Получение тел Кеплера-Пуансо. Многогранники в геологии, ювелирном деле, архитектуре.

    презентация [4,9 M], добавлен 27.10.2013

  • Различные виды правильных и полуправильных многогранников, их основные свойства. Многогранные поверхности, многогранники, топологические, простейшие и правильные многогранники. Грани, ребра и вершины поверхности многогранника. Пирамиды и призмы.

    курсовая работа [1,7 M], добавлен 21.08.2013

  • Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.

    реферат [1,1 M], добавлен 25.09.2009

  • Понятие многогранника и его элементы с точки зрения топологии. Определение площади и боковой поверхности призмы, параллелепипеда, пирамиды. Понятие правильных, полуправильных, звездчатых многогранников. Многогранники в разных областях культуры и науки.

    курсовая работа [4,6 M], добавлен 02.04.2012

  • Куб (гексаэдр) – представитель правильных выпуклых многогранников, его объем, сечения, площадь и свойства. Характеристика типов правильных многогранников в XIII книге "Начал" Евклида и идеалистической картине мира Платона. Отношение к кубу в философии.

    презентация [531,0 K], добавлен 03.11.2011

  • Определение пирамиды как геометрической фигуры, ее виды. Проекция треугольной пирамиды. Основные свойства полной и усеченной пирамиды, нахождение площади и объема, плоские сечения. Пример построения сечения пирамиды с плоскостью по заданным параметрам.

    практическая работа [2,2 M], добавлен 16.06.2009

  • Определение цилиндра (кругового прямого и наклонного), прямого и усечённого конуса, шара и сферы. Основные формулы по расчету геометрических размеров фигур вращения: радиуса, площади боковой и полной поверхности. Объем шара по Архимеду. Уравнение сферы.

    презентация [3,4 M], добавлен 18.04.2013

  • Понятие и историческая справка о конусе, характеристика его элементов. Особенности образования конуса и виды конических сечений. Построение сферы Данделена и ее параметры. Применение свойств конических сечений. Расчеты площадей поверхностей конуса.

    презентация [499,0 K], добавлен 08.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.