Интегральное исчисление

Определенные и неопределенные интегралы функций и их свойства. Метод непосредственного интегрирования. Интегрирование элементарных и рациональных дробей, биноминальных дифференциалов. Универсальная тригонометрическая подстановка. Теорема Ньютона-Лейбница.

Рубрика Математика
Вид курс лекций
Язык русский
Дата добавления 05.03.2016
Размер файла 120,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1

Интегральное исчисление

Ларин Александр Александрович

1. Первообразная функция

Определение: Функция F(x) называется первообразной функцией функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:

F(x) = f(x).

Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

F1(x) = F2(x) + C.

2. Неопределенный интеграл

Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:

F(x) + C.

Записывают:

Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

Свойства:

1.

2.

3.

4. где u, v, w - некоторые функции от х.

Пример:

Таблица 1.

Интеграл

Значение

Интеграл

Значение

1

-lncosx+C

9

ex + C

2

lnsinx+ C

10

sinx + C

3

11

-cosx + C

4

12

tgx + C

5

13

-ctgx + C

6

ln

14

arcsin + C

7

15

8

16

3. Методы интегрирования

Непосредственное интегрирование.

Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.

Рассмотрим применение этого метода на примере:

Требуется найти значение интеграла . На основе известной формулы дифференцирования можно сделать вывод, что искомый интеграл равен , где С - некоторое постоянное число. Однако, с другой стороны . Таким образом, окончательно можно сделать вывод:

Способ подстановки (замены переменных).

Теорема: Если требуется найти интеграл , но сложно отыскать первообразную, то с помощью замены x = (t) и dx = (t)dt получается:

Доказательство: Продифференцируем предлагаемое равенство:

По рассмотренному выше свойству №2 неопределенного интеграла:

f(x)dx = f[(t)](t)dt

что с учетом введенных обозначений и является исходным предположением. Теорема доказана.

Интегрирование по частям.

Способ основан на известной формуле производной произведения:

(uv) = uv + vu

где u и v - некоторые функции от х.

В дифференциальной форме:

d(uv) = udv + vdu

Проинтегрировав, получаем: , а в соответствии с приведенными выше свойствами неопределенного интеграла:

или ;

Получили формулу интегрирования по частям, которая позволяет находить интегралы многих элементарных функций.

4. Интегрирование элементарных дробей

Определение: Элементарными называются дроби следующих четырех типов:

I. III.

II. IV.

m, n - натуральные числа (m 2, n 2) и b2 - 4ac <0.

Первые два типа интегралов от элементарных дробей довольно просто приводятся к табличным подстановкой t = ax + b.

II.

Рассмотрим метод интегрирования элементарных дробей вида III.

Интеграл дроби вида III может быть представлен в виде:

Здесь в общем виде показано приведение интеграла дроби вида III к двум табличным интегралам.

5. Интегрирование рациональных функций

Интегрирование рациональных дробей.

Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби.

Теорема: Если - правильная рациональная дробь, знаменатель P(x) которой представлен в виде произведения линейных и квадратичных множителей (отметим, что любой многочлен с действительными коэффициентами может быть представлен в таком виде: P(x) = (x - a)…(x - b)(x2 + px + q)…(x2 + rx + s) ), то эта дробь может быть разложена на элементарные по следующей схеме:

где Ai, Bi, Mi, Ni, Ri, Si - некоторые постоянные величины.

При интегрировании рациональных дробей прибегают к разложению исходной дроби на элементарные. Для нахождения величин Ai, Bi, Mi, Ni, Ri, Si применяют так называемый метод неопределенных коэффициентов, суть которого состоит в том, что для того, чтобы два многочлена были тождественно равны, необходимо и достаточно, чтобы были равны коэффициенты при одинаковых степенях х.

Применение этого метода рассмотрим на конкретном примере.

6. Интегрирование некоторых тригонометрических функций

Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда.

Интеграл вида .

Здесь R - обозначение некоторой рациональной функции от переменных sinx и cosx.

Интегралы этого вида вычисляются с помощью подстановки . Эта подстановка позволяет преобразовать тригонометрическую функцию в рациональную.

,

Тогда

Таким образом:

Описанное выше преобразование называется универсальной тригонометрической подстановкой.

Интеграл вида если функция R является нечетной относительно cosx.

Несмотря на возможность вычисления такого интеграла с помощью универсальной тригонометрической подстановки, рациональнее применить подстановку t = sinx.

Функция может содержать cosx только в четных степенях, а следовательно, может быть преобразована в рациональную функцию относительно sinx.

Интеграл вида если функция R является нечетной относительно sinx.

По аналогии с рассмотренным выше случаем делается подстановка t = cosx.

Тогда

Интеграл вида функция R четная относительно sinx и cosx.

Для преобразования функции R в рациональную используется подстановка t = tgx.

Тогда

Интеграл произведения синусов и косинусов различных аргументов.

В зависимости от типа произведения применятся одна из трех формул:

7. Интегрирование некоторых иррациональных функций

Далеко не каждая иррациональная функция может иметь интеграл, выраженный элементарными функциями. Для нахождения интеграла от иррациональной функции следует применить подстановку, которая позволит преобразовать функцию в рациональную, интеграл от которой может быть найден как известно всегда.

Рассмотрим некоторые приемы для интегрирования различных типов иррациональных функций.

Интеграл вида где n- натуральное число.

С помощью подстановки функция рационализируется.

Тогда

8. Интегрирование биноминальных дифференциалов

Определение: Биноминальным дифференциалом называется выражение

xm(a + bxn)pdx

где m, n, и p - рациональные числа.

Как было доказано академиком Чебышевым П.Л. (1821-1894), интеграл от биноминального дифференциала может быть выражен через элементарные функции только в следующих трех случаях:

Если р - целое число, то интеграл рационализируется с помощью подстановки

,

где - общий знаменатель m и n.

Если - целое число, то интеграл рационализируется подстановкой

,

где s - знаменатель числа р.

3) Если - целое число, то используется подстановка

,

где s - знаменатель числа р.

Однако, наибольшее практическое значение имеют интегралы от функций, рациональных относительно аргумента и квадратного корня из квадратного трехчлена.

9. Интегралы вида .

Существует несколько способов интегрирования такого рода функций. В зависимости от вида выражения, стоящего под знаком радикала, предпочтительно применять тот или иной способ.

Как известно, квадратный трехчлен путем выделения полного квадрата может быть приведен к виду:

Таким образом, интеграл приводится к одному из трех типов:

1 способ. Тригонометрическая подстановка.

Теорема: Интеграл вида подстановкой или сводится к интегралу от рациональной функции относительно sint или cost.

Теорема: Интеграл вида подстановкой или сводится к интегралу от рациональной функции относительно sint и cost.

Теорема: Интеграл вида подстановкой или сводится к интегралу от рациональной функции относительно sint или cost.

2 способ. Подстановки Эйлера. (1707-1783)

Если а>0, то интеграл вида рационализируется подстановкой .

Если a<0 и c>0, то интеграл вида рационализируется подстановкой .

Если a<0 , а подкоренное выражение раскладывается на действительные множители a(x - x1)(x - x2), то интеграл вида рационализируется подстановкой .

3 способ. Метод неопределенных коэффициентов.

Рассмотрим интегралы следующих трех типов:

где P(x) - многочлен, n - натуральное число.

Причем интегралы II и III типов могут быть легко приведены к виду интеграла I типа.

Далее делается следующее преобразование:

в этом выражении Q(x)- некоторый многочлен, степень которого ниже степени многочлена P(x), а - некоторая постоянная величина.

Для нахождения неопределенных коэффициентов многочлена Q(x), степень которого ниже степени многочлена P(x), дифференцируют обе части полученного выражения, затем умножают на и, сравнивая коэффициенты при одинаковых степенях х, определяют и коэффициенты многочлена Q(x).

Данный метод выгодно применять, если степень многочлена Р(х) больше единицы. В противном случае можно успешно использовать методы интегрирования рациональных дробей, рассмотренные выше, т.к. линейная функция является производной подкоренного выражения.

10. Несколько примеров интегралов, не выражающихся через элементарные функции

К таким интегралам относится интеграл вида

,

где Р(х)- многочлен степени выше второй. Эти интегралы называются эллиптическими.

Если степень многочлена Р(х) выше четвертой, то интеграл называется ультраэллиптическим.

Если все - таки интеграл такого вида выражается через элементарные функции, то он называется псевдоэллиптическим.

Не могут быть выражены через элементарные функции следующие интегралы:

- интеграл Пуассона ( Симеон Дени Пуассон - французский математик (1781-1840))

- интегралы Френеля (Жан Огюстен Френель - французский ученый (1788-1827) - теория волновой оптики и др.)

- интегральный логарифм

- приводится к интегральному логарифму

- интегральный синус

- интегральный косинус

11. Определенный интеграл

Пусть на отрезке [a, b] задана непрерывная функция f(x).

Обозначим m и M наименьшее и наибольшее значение функции на отрезке [a, b]

Разобьем отрезок [a, b] на части (не обязательно одинаковые) n точками.

x0 < x1 < x2 < … < xn

Тогда x1 - x0 = x1, x2 - x1 = x2, … ,xn - xn-1 = xn;

На каждом из полученных отрезков найдем наименьшее и наибольшее значение функции.

[x0, x1] m1, M1; [x1, x2] m2, M2; … [xn-1, xn] mn, Mn.

Составим суммы:

n = m1x1 + m2x2 + … +mnxn =

n = M1x1 + M2x2 + … + Mnxn =

Сумма называется нижней интегральной суммой, а сумма - верхней интегральной суммой.

Т.к. mi Mi, то n n, а m(b - a) n n M(b - a)

Внутри каждого отрезка выберем некоторую точку .

x0 < 1 < x1, x1 < < x2, … , xn-1 < < xn.

Найдем значения функции в этих точках и составим выражение, которое называется интегральной суммой для функции f(x) на отрезке [a, b].

Sn = f(1)x1 + f(2)x2 + … + f(n)xn =

Тогда можно записать:

mixi f(i)xi Mixi

Следовательно,

Геометрически это представляется следующим образом: график функции f(x) ограничен сверху описанной ломаной линией, а снизу - вписанной ломаной.

Обозначим maxxi - наибольший отрезок разбиения, а minxi - наименьший. Если maxxi 0, то число отрезков разбиения отрезка [a, b] стремится к бесконечности.

Если , то

Определение: Если при любых разбиениях отрезка [a, b] таких, что maxxi 0 и произвольном выборе точек i интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b].

Обозначение:

а - нижний предел, b - верхний предел, х - переменная интегрирования, [a, b] - отрезок интегрирования.

Определение: Если для функции f(x) существует предел то функция называется интегрируемой на отрезке [a, b].

Также верны утверждения:

Теорема: Если функция f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.

12. Свойства определенного интеграла

Если f(x) (x) на отрезке [a, b] a < b, то

Если m и M - соответственно наименьшее и наибольшее значения функции f(x) на отрезке [a, b], то:

Теорема о среднем. Если функция f(x) непрерывна на отрезке [a, b], то на этом отрезке существует точка такая, что

Доказательство: В соответствии со свойством 5:

т.к. функция f(x) непрерывна на отрезке [a, b], то она принимает на этом отрезке все значения от m до М. Другими словами, существует такое число [a, b], что если и = f(), а a b, тогда . Теорема доказана.

7) Для произвольных чисел a, b, c справедливо равенство:

Разумеется, это равенство выполняется, если существует каждый из входящих в него интегралов.

8)

Обобщенная теорема о среднем. Если функции f(x) и (x) непрерывны на отрезке [a, b], и функция (х) знакопостоянна на нем, то на этом отрезке существует точка , такая, что

13. Вычисление определенного интеграла

Пусть в интеграле нижний предел а = const, а верхний предел b изменяется. Очевидно, что если изменяется верхний предел, то изменяется и значение интеграла.

Обозначим = Ф(х). Найдем производную функции Ф(х) по переменному верхнему пределу х.

Аналогичную теорему можно доказать для случая переменного нижнего предела.

Теорема: Для всякой функции f(x), непрерывной на отрезке [a, b], существует на этом отрезке первообразная, а значит, существует неопределенный интеграл.

Теорема: (Теорема Ньютона - Лейбница)

Если функция F(x) - какая- либо первообразная от непрерывной функции f(x), то

это выражение известно под названием формулы Ньютона - Лейбница.

Доказательство: Пусть F(x) - первообразная функции f(x). Тогда в соответствии с приведенной выше теоремой, функция - первообразная функция от f(x). Но т.к. функция может иметь бесконечно много первообразных, которые будут отличаться друг от друга только на какое - то постоянное число С, то

при соответствующем выборе С это равенство справедливо для любого х, т.е. при х = а:

Тогда

.

А при х = b:

Заменив переменную t на переменную х, получаем формулу Ньютона - Лейбница:

Теорема доказана.

Иногда применяют обозначение F(b) - F(a) = F(x).

Формула Ньютона - Лейбница представляет собой общий подход к нахождению определенных интегралов.

Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов, которые были рассмотрены выше при нахождении неопределенных интегралов.

14. Замена переменных

Пусть задан интеграл , где f(x) - непрерывная функция на отрезке [a, b].

Введем новую переменную в соответствии с формулой x = (t).

Тогда если

1) () = а, () = b

2) (t) и (t) непрерывны на отрезке [, ]

3) f((t)) определена на отрезке [, ], то

Тогда

интеграл дифференциал тригонометрический

15. Интегрирование по частям

Если функции u = (x) и v = (x) непрерывны на отрезке [a, b], а также непрерывны на этом отрезке их производные, то справедлива формула интегрирования по частям:

Вывод этой формулы абсолютно аналогичен выводу формулы интегрирования по частям для неопределенного интеграла, который был весьма подробно рассмотрен выше, поэтому здесь приводить его нет смысла.

16. Приближенное вычисление определенного интеграла

Как было сказано выше, существует огромное количество функций, интеграл от которых не может быть выражен через элементарные функции. Для нахождения интегралов от подобных функций применяются разнообразные приближенные методы, суть которых заключается в том, что подинтегральная функция заменяется “близкой” к ней функцией, интеграл от которой выражается через элементарные функции.

17. Несобственные интегралы

Пусть функция f(x) определена и непрерывна на интервале [a, ). Тогда она непрерывна на любом отрезке [a, b].

Определение: Если существует конечный предел , то этот предел называется несобственным интегралом от функции f(x) на интервале [a, ).

Обозначение:

Если этот предел существует и конечен, то говорят, что несобственный интеграл сходится.

Если предел не существует или бесконечен, то несобственный интеграл расходится.

Аналогичные рассуждения можно привести для несобственных интегралов вида:

Конечно, эти утверждения справедливы, если входящие в них интегралы существуют.

Теорема: Если для всех х (x a) выполняется условие и интеграл сходится, то тоже сходится и .

Теорема: Если для всех х (x a) выполняется условие и интеграл расходится, то тоже расходится.

Теорема: Если сходится, то сходится и интеграл .

В этом случае интеграл называется абсолютно сходящимся.

18. Интеграл от разрывной функции

Если в точке х = с функция либо неопределена, либо разрывна, то

Если интеграл существует, то интеграл - сходится, если интеграл не существует, то - расходится.

Если в точке х = а функция терпит разрыв, то

.

Если функция f(x) имеет разрыв в точке b на промежутке [a, с], то

Таких точек внутри отрезка может быть несколько.

Если сходятся все интегралы, входящие в сумму, то сходится и суммарный интеграл.

Размещено на Allbest.ru


Подобные документы

  • Особенности неопределенного интеграла. Методы интегрирования (Замена переменной. Интегрирование по частям). Интегрирование рациональных выражений. Интегрирование рациональных дробей. Метод Остроградского. Интегрирование тригонометрических функций.

    лабораторная работа [1,7 M], добавлен 05.07.2010

  • Понятие первообразной функции. Виды иррациональных функций, приемы их интегрирования. Интегрирование рациональных дробей, алгебраических иррациональностей, биномиальных дифференциалов, тригонометрические подстановки. Примеры решения типовых задач.

    курсовая работа [278,4 K], добавлен 07.06.2012

  • Интегрирование выражений, зависящих от тригонометрических функций. Интегрирование рациональной функции от тригонометрической и алгебраических иррациональностей. Тригонометрические подстановки для интегралов, не выражающихся через элементарные функции.

    контрольная работа [124,8 K], добавлен 22.08.2009

  • Особенность метода Остроградского. Процесс вычисления производных и нахождения интегралов различных функций. Алгоритм Евклида. Интегрирование биноминальных дифференциалов. Тригонометрические и гиперболические подстановки. Основные виды рациональностей.

    курсовая работа [916,8 K], добавлен 06.11.2014

  • Понятие и геометрический смысл определенного интеграла, его свойства. Формула Ньютона–Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям. Объем тела вращения. Несобственные интегралы с бесконечными пределами интегрирования.

    курс лекций [514,0 K], добавлен 31.05.2010

  • Первообразный и неопределенный интеграл. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой, способом подстановки, по частям. Интегрирование рациональных дробей. Простейшие рациональные дроби и их интегрирование.

    курсовая работа [187,8 K], добавлен 26.09.2014

  • Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.

    презентация [525,7 K], добавлен 11.09.2011

  • Класс рациональных функций. Практический пример решения интегралов. Линейная замена переменной. Сущность и главные задачи метода неопределенных коэффициентов. Особенности, последовательность представления подынтегральной дроби в виде суммы простых дробей.

    презентация [240,6 K], добавлен 18.09.2013

  • Углы и их измерение. Соответствие между углами и числовым рядом. Геометрический смысл тригонометрических функций. Свойства тригонометрических функций. Основное тригонометрическое тождество и следствия из него. Универсальная тригонометрическая подстановка.

    учебное пособие [1,4 M], добавлен 18.04.2012

  • Введение в анализ и дифференциальное исчисление функции одного переменного. Нахождение локальных экстремумов функции. Интегральное исчисление функции, пределы интегрирования. Практический пример определения площади плоской фигуры, ограниченной кривыми.

    контрольная работа [950,4 K], добавлен 20.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.