Геометрические фигуры

Изучение основных свойств треугольника, прямоугольника, ромба и квадрата. Признаки равенства прямоугольных треугольников. Замечательные линии и точки в треугольнике. Доказательство теоремы Пифагора. Виды четырёхугольников. Основные геометрические фигуры.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 14.06.2015
Размер файла 326,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Геометрические фигуры

Подготовила Большухина Олеся

Псков 2015

ТРЕУГОЛЬНИК

Треугольник - это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

Если все три угла острые ( рис.20 ), то это остроугольный треугольник. Если один из углов прямой ( C, рис.21 ), то это прямоугольный треугольник; стороны a, b, образующие прямой угол, называются катетами; сторона c, противоположная прямому углу, называется гипотенузой. Если один из углов тупой ( B, рис.22 ), то это тупоугольный треугольник.

Треугольник ABC ( рис.23 ) - равнобедренный, если две его стороны равны ( a = c ); эти равные стороны называются боковыми, третья сторона называется основанием треугольника. Треугольник ABC ( рис.24 ) - равносторонний, если все его стороны равны ( a = b = c ). В общем случае ( a ? b? c ) имеем неравносторонний треугольник.

Основные свойства треугольников

В любом треугольнике:

1. Против большей стороны лежит больший угол, и наоборот.

2. Против равных сторон лежат равные углы, и наоборот.

В частности, все углы в равностороннем треугольнике равны.

3. Сумма углов треугольника равна 180 є .

Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60 є.

4. Продолжая одну из сторон треугольника (AC, рис.25), получаем внешний угол BCD. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним: BCD = A + B.

5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a < b + c, a > b - c; b < a + c, b > a - c; c < a + b, c > a - b).

Признаки равенства треугольников

Треугольники равны, если у них соответственно равны:

a) две стороны и угол между ними;

b) два угла и прилегающая к ним сторона;

c) три стороны.

Признаки равенства прямоугольных треугольников

Два прямоугольных треугольника равны, если выполняется одно из следующих условий:

1) равны их катеты;

2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого; 3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;

4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;

5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.

Замечательные линии и точки в треугольнике

Высота треугольника - это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника ( точка O, рис.26 ) расположен внутри треугольника, а ортоцентр тупоугольного треугольника ( точка O, рис.27 ) - снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

Медиана - это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника ( AD, BE,CF, рис.28 ) пересекаются в одной точке O, всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

Биссектриса - это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника (AD, BE, CF, рис.29 ) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга (см. раздел «Вписанные и описанные многоугольники»).

Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам; например, на рис.29 AE : CE = AB : BC .

Срединный перпендикуляр - это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника АВС ( KO, MO, NO, рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга ( точки K, M, N - середины сторон треугольника ABC ).

В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном - снаружи; в прямоугольном ? в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a, b и гипотенузойc.

Построим квадрат AKMB, используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF, сторона которого равна a + b . Теперь ясно, что площадь квадрата CDEF равна ( a + b ) 2. С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB, то есть

c 2 + 4 ( ab / 2 ) = c 2 + 2 ab ,

c 2 + 2 ab = ( a + b ) 2 ,

c 2 = a 2 + b 2 .

Соотношение сторон в произвольном треугольнике

В общем случае ( для произвольного треугольника ) имеем:

c 2 = a 2 + b 2 - 2ab · cos C,

где C - угол между сторонами a и b .

ПРЯМОУГОЛЬНИК

Прямоугольник - это четырехугольник у которого две противоположные стороны равны и все четыре угла одинаковы.

Прямоугольники отличаются между собой только отношением длинной стороны к короткой, но все четыре угла у них прямые, то есть по 90 градусов.

Длинную сторону прямоугольника называют длиной прямоугольника, а короткую - шириной прямоугольника.

Стороны прямоугольника одновременно является его высотами.

Рис.1

Основные свойства прямоугольника

Прямоугольником могут быть параллелограмм, квадрат или ромб.

1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны: AB = CD, BC = AD

2. Противоположные стороны прямоугольника параллельны: AB||CD, BC||AD

3. Прилегающие стороны прямоугольника всегда перпендикулярны: AB + BC, BC + CD, CD + AD, AD + AB

4. Все четыре угла прямоугольника прямые: ?ABC = ?BCD = ?CDA = ?DAB = 90°

5. Сумма углов прямоугольника равна 360 градусов: ?ABC + ?BCD + ?CDA + ?DAB = 360°

6. Диагонали прямоугольника имеют одинаковой длины: AC = BD

7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон: 2d2 = 2a2 + 2b2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

11. Диагональ прямоугольника является диаметром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов: ?ABC = ?CDA = 180° ?BCD = ?DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника - квадрат).

РОМБ

Ромбом называется параллелограмм, у которого все стороны равны.

Свойства ромба

Так как ромб является параллелограммом, то он обладает всеми свойствами параллелограмма.

1. Противоположные стороны ромба равны: AB=BC=CD=AD (т.к. все стороны равны).

2. Противоположные углы ромба равны: A=C B=D.

3. Диагонали ромба точкой пересечения делятся пополам: BO=OD AO=OC.

4. Сумма углов, прилежащих к одной стороне ромба, равна 180°: A+D=180°.

Свойства ромба, присущие только ему:

5. Диагонали ромба взаимно перпендикулярны: AC?BD.

6. Диагонали ромба являются также биссектрисами его углов (делят углы ромба пополам).

7. Диагонали делят ромб на четыре равных прямоугольных треугольника.

Треугольники ABO, СBO, CDO, ADO -- равные прямоугольные треугольники.

КВАДРАТ

Квадрат - это четырехугольник у которого все четыре стороны и углы одинаковы. Квадраты отличаются между собой только длиной стороны, но все четыре угла у них прямые, то есть по 90°.

Рис.1

Основные свойства квадрата

Квадратом также могут быть параллелограмм, ромб или прямоугольник если они имеют одинаковые длины диагоналей, сторон и одинаковые углы.

1. Все четыре стороны квадрата имеют одинаковую длину, то есть они равны: AB = BC = CD = AD

2. Противоположные стороны квадрата параллельны: AB||CD, BC||AD

3. Все четыре угла квадрата прямые: ?ABC = ?BCD = ?CDA = ?DAB = 90° 4. Сумма углов квадрата равна 360 градусов: ?ABC + ?BCD + ?CDA + ?DAB = 360°

5. Диагонали квадрата имеют одинаковой длины: AC = BD

6. Каждая диагональ квадрата делит квадрат на две одинаковые симметричные фигуры

7. Диагонали квадрата пересекаются под прямым углом, и разделяют друг друга пополам

8. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружности

9. Каждая диагональ делит угол квадрата пополам, то есть они являются биссектрисами углов квадрата: ДABC = ДADC = ДBAD = ДBCD?ACB = ?ACD = ?BDC = ?BDA = ?CAB = ?CAD = ?DBC = ?DBA = 45°

10. Обе диагонали разделяют квадрат на четыре равные треугольника, причем эти треугольники одновременно и равнобедренные и прямоугольные: ДAOB = ДBOC = ДCOD = ДDOA

ЧЕТЫРЁХУГОЛЬНИК

Четырёхугольник -- это многоугольник, содержащий четыре вершины и четыре стороны.

Четырёхугольник, геометрическая фигура -- многоугольник с четырьмя углами, а также всякий предмет, устройство такой формы.

Две несмежные стороны четырехугольника называются противоположными . Две вершины, не являющиеся соседними, называются также противоположными.

Четырехугольники бывают выпуклые и невыпуклые

Виды четырёхугольников:

· Параллелограмм -- четырёхугольник, у которого все противоположные стороны параллельны;

· Прямоугольник -- четырёхугольник, у которого все углы прямые;

· Ромб -- четырёхугольник, у которого все стороны равны;

· Квадрат -- четырёхугольник, у которого все углы прямые и все стороны равны;

· Трапеция -- четырёхугольник, у которого две противоположные стороны параллельны;

· Дельтоид -- четырёхугольник, у которого две пары смежных сторон равны.

ОСНОВНЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ

геометрический фигура теорема пифагор

К основным геометрическим фигурам на плоскости относятся точка и прямая линия.

Отрезок, луч, ломаная линия -- простейшие геометрические фигуры на плоскости.

Точка -- это самая малая геометрическая фигура, которая является основой всех прочих построений (фигур) в любом изображении или чертеже.

Всякая более сложная геометрическая фигура -- это множество точек, которые обладают определенным свойством, характерным только для этой фигуры. Прямую линию, или прямую, можно представить себе как бесчисленное множество точек, которые расположены на одной линии, не имеющей ни начала, ни конца. На листе бумаги мы видим только часть прямой линии, так как она бесконечна.

Часть прямой линии, ограниченная с двух сторон точками, называется отрезком прямой, или отрезком.

Луч -- это направленная полупрямая, которая имеет точку начала и не имеет конца. Если на прямой вы поставили точку, то этой точкой прямая разбивается па два луча, противоположно направленных. Такие лучи называются дополнительными.

Ломаная линия -- это несколько отрезков, соединенных между собой так, что конец первого отрезка является началом второго отрезка, а конец второго отрезка -- началом третьего отрезка и т. д., при этом соседние (имеющие одну общую точку) отрезки расположены не на одной прямой. Если конец последнего отрезка не совпадает с началом первого, то такая ломаная линия называется незамкнутой. Если конец последнего отрезка ломаной совпадает с началом первого отрезка, то такая ломаная линия называется замкнутой. Примером замкнутой ломаной служит любой многоугольник.

ОКРУЖНОСТЬ

Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, -- радиусом окружности.

Часть плоскости, ограниченная окружностью называется кругом.

Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.

Основные термины

Касательная

Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Свойства касательной

1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

2. Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Хорда

Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром.

Свойства хорд

1. Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.

2. Дуги, заключенные между параллельными хордами, равны.

3. Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM*MB = CM*MD.

Свойства окружности

1. Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку (касательная); иметь с ней две общие точки (секущая).

2. Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.

3. Точка касания двух окружностей лежит на линии, соединяющей их центры.

Теорема о касательной и секущей

Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть:

MC2 = MA*MB.

Теорема о секущих

Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. MA*MB = MC*MD.

Углы в окружности

Центральным углом в окружности называется плоский угол с вершиной в ее центре.

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом.

Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла.

Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.

Свойства углов, связанных с окружностью

1. Вписанный угол либо равен половине соответствующего ему центрального угла, либо дополняет половину этого угла до 180°.

2. Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны.

3. Вписанный угол, опирающийся на диаметр, равен 90°.

4. Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.

Длины и площади

1. Длина окружности C радиуса R вычисляется по формуле:

C = 2 R.

2. Площадь S круга радиуса R вычисляется по формуле:

S = R2.

3. Длина дуги окружности L радиуса R с центральным углом ,измеренным в радианах, вычисляется по формуле:

L = R .

4. Площадь S сектора радиуса R с центральным углом в радиан вычисляется по формуле:

S = R2 .

Вписанные и описанные окружности

Окружность и треугольник центр вписанной окружности -- точка пересечения биссектрис треугольника, ее радиус r вычисляется по формуле:

r = ,

где S -- площадь треугольника, а -- полупериметр;

· центр описанной окружности -- точка пересечения серединных перпендикуляров, ее радиус R вычисляется по формуле:

R = ,

R = ;

здесь a, b, c -- стороны треугольника, -- угол, лежащий против стороны a, S -- площадь треугольника;

· центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы;

· центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник -- правильный.

Окружность и четырехугольники

· около выпуклого четырехугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180°:

+ = + = 180°;

· в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон:

a + c = b + d;

· около параллелограмма можно описать окружность тогда и только тогда, когда он является прямоугольником;

· около трапеции можно описать окружность тогда и только тогда, когда эта трапеция -- равнобедренная; центр окружности лежит на пересечении оси симметрии трапеции с серединным перпендикуляром к боковой стороне;

· в параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом

Список литературы

1) учебник по геометрии 7-9 класс Авторы: Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.

2) http://www.bymath.net/

3) http://www.yaklass.ru/

Размещено на Allbest.ru


Подобные документы

  • Свойства и численное значение площади геометрической фигуры. Вычисление площади квадрата, прямоугольника, трапеции, и треугольника. Измерение отрезков. Значение и область применения теоремы Пифагора. Алгебраическое и геометрическое доказательства Евклида.

    презентация [267,8 K], добавлен 04.09.2014

  • Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.

    творческая работа [17,4 K], добавлен 25.06.2009

  • Популярность и биография великого математика, тайны теоремы Пифагора "О равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов", история теоремы. Различные способы доказательств теоремы Пифагора, области ее применения.

    презентация [376,2 K], добавлен 28.02.2012

  • Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.

    курс лекций [3,7 M], добавлен 23.04.2011

  • Меры площади, использовавшиеся в Древней Руси, их эволюция и современное состояние. Площадь многоугольника и прямоугольника. Определение и доказательство площади квадрата. Формула площади параллелограмма и треугольника, трапеции. Теорема Пифагора.

    реферат [389,2 K], добавлен 05.02.2011

  • Путь Пифагора к знаниям, источники его учения и научная деятельность. Формулировка теоремы Пифагора, ее простейшее доказательство на примере равнобедренного прямоугольного треугольника. Применение изучаемой теоремы для решения геометрических задач.

    презентация [174,3 K], добавлен 18.12.2012

  • Теоретические сведения по теме "Признаки равенства треугольников". Методика изучения темы "Признаки равенства треугольников". Тема урока "Треугольник. Виды треугольников". "Свойства равнобедренного и равностороннего треугольников".

    курсовая работа [30,5 K], добавлен 11.01.2004

  • Решение задач по геометрии. Составление кроссвордов на тему "Тела и фигуры вращения". Математика и история. Модель "Седла" - пример криволинейной поверхности. Изучение основных тел. Движение твердого тела вокруг неподвижной точки. Теорема Пифагора.

    творческая работа [688,6 K], добавлен 13.04.2014

  • Жизненный путь Пифагора, его путешествия и загадочная смерть. Заслуги Пифагора в арифметике, геометрии, музыке и астрономии. Древняя и современная формулировки теоремы Пифагора. Тригонометрическое доказательство и некоторые применения этой теоремы.

    презентация [571,0 K], добавлен 13.12.2011

  • История создания теоремы. Краткая биографическая справка из жизни Пифагора Самосского. Основные формулировки теоремы. Доказательство Евклида, Хоукинса. Доказательство через: подобные треугольники, равнодополняемость. Практическое применение теоремы.

    презентация [3,6 M], добавлен 21.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.