Методы и способы математической статистики

Предмет, метод и задачи статистики, основные понятия и показатели. Формы, виды и способы наблюдения. Содержание и задачи статистической сводки. Метод статистической группировки. Статистические ряды распределения. Методы выявления корреляционной связи.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 24.10.2012
Размер файла 143,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Методы и способы математической статистики

1. Предмет, метод и задачи статистики

статистическая группировка наблюдение показатель

Статистика это сложная и многогранна наука, в курсе которой излагаются основные категории и принципы статистической науки, научные основы методов анализа статистических данных. Статистика учит, как нужно собирать, сводить и анализировать статистические материалы. Статистика это сбор массовых первичных данных, их обработка и анализ. Статистика изучает с количественной стороны качественное содержание массовых общественных явлений и процессов. Она исследует количественное выражение массовых закономерностей общественного развития в конкретных условиях места и времени. Следовательно, статистика изучает количественные характеристики процессов и явлений общественного развития. Статистика является общественной наукой. В массовом наблюдении и обобщении фактов состоит познавательная сила статистики. Без широкого привлечения массовых, научно обработанных статистических данных невозможно глубокое исследование состояния и развития общества. Статистика изучает количественные характеристики общественных явлений и процессов с учетом их качественного содержания. Статистика исследует множества, количественно характеризуя их по разным признакам. Она обнаруживает закономерности изменения этих характеристик, которые проявляются в массовом обобщении фактов. Предметом статистики выступают размеры и количественные соотношения качественно определённых социально-экономических явлений, закономерности их связи и развития в конкретных условиях места и времени.

Приемы, с помощью которых статистика изучает свой предмет называются статистической методологией. Различают следующие статистические методы: 1. метод массовых наблюдений, 2. выборочный метод, 3. метод группировки, 4. метод анализа на основе сводки, 5. метод анализа рядов динамики, 6. корреляционно-регрессионный метод анализа, 7. индексный метод.

Задачи статистики: 1. организация работ, связанных с подготовкой и проведением Всероссийской переписки населения; 2. приоритет вопросам совершенствования статистики малого предприятия; 3. создание единого статистического информационного пространства федеральных органов государственной власти и координация их статистической деятельности; 4. целесообразность проведения переоценки основных фондов; 5. совершенствование расчётов в области неформальной и скрытой экономики; 6. повышение качества статистических разработок; 7. совершенствование статистики отдельных отраслей социально-экономической сферы; 8. организация системы муниципальной статистики.

2. Основные понятия статистической науки: статистическая совокупность, единицы совокупности и их признаки, статистический показатель. Статистическая закономерность и обобщающие статистические показатели. Система показателей

Статистическая совокупность это масса единиц одного и того же вида, объединенных качественной единой основой, но различающихся между собой по ряду признаков. Таким образом массовые явления всегда представляют совокупности единиц, которые в определенном отношении однородны, а в других отношениях различаются между собой. Статистика характеризует совокупности своими числами, т.е. показателями. Эти показатели дают обобщающую характеристику объемов совокупности и характеризуют достигнутые уровни развития и играют в статистике первостепенную роль.

Единица совокупности - это неделимые первичные элементы, выражающие её качественную однородность, т.е. являющиеся носителями признаков. Множество совокупностей можно разделить на несколько критерий: 1. Критерий однотипности явлений (однородности и разнородности совокупности). Однородность, т.е. сходство единиц по каким-либо существенным признакам, но различающимся по каким-либо другим признакам. В разнородных существенный признак различный. 2. Критерий статичности (статистические и динамические совокупности). 3. По закону распределения единиц совокупности (когда ед. совокупности распределены по нормальному закону и когда по другим законам).

Признак - показатель, характеризующий некоторое свойство объекта совокупности, рассматриваемый как случайная величина. Варьирующий признак - каждая единица обладает определёнными свойствами, т.е. существенными признаками, которые будут характеризовать совокупность и которые принадлежат изучению имеют вариации, т.е. колебания у различных единиц. Варьирующие признаки могут быть количественные, если их варианты выражаются числовыми значениями и неколичественные, эти признаки представляют собой смысловые понятия. Количественные признаки могут быть дискретными и непрерывными. Случаи, когда варианты признака могут принимать только одно из двух противоположных значений, говорят об альтернативном признаке (да, нет). Признаки подразделяются на существенные или главные, выражающие содержательную сторону явлений, и несущественные, или второстепенные. Признаки, характеризующие статистическую совокупность взаимосвязаны между собой, поэтому следует различать факторные признаки - это независимые признаки, оказывающие влияние на другие, связанные с ними признаками, и результативные признаки - это зависимые признаки, которые изменяются под влиянием факторных признаков.

Статистический показатель, совокупность состоит из множества отдельных единиц. Задача статистики, чтобы установить общее свойство для совокупности в целом. Это достигается с помощью расчета статистических показателей и анализа этих показателей. Ст. показатель - это обобщающая характеристика какого-либо св-ва, группы единиц или всей совокупности в целом.

Обобщающий показатель строится тремя путями: 1. Суммирование абсолютных значений признака; 2. Вычисление среднего значения признака; 3. Нахождение относительных величин (темп роста, индекс цен).

Для описания сложного явления обычно используется не один ст. показатель, а система ст. показателей. Система ст. показателей - это совокупность взаимосвязанных показателей, объективно отражающая существующие между явлениями взаимосвязи, она охватывает все стороны жизни общества. Показатели в системе могут быть связаны, как жёсткой связью, так и стохастической, т.е. случайной.

Статистическая закономерность - это форма проявления причинной связи, это повторяемость отдельных явлений с достаточно высокой вероятностью. Не проявляется на отдельных единицах совокупности, а появляется в массе, когда статистические данные обновляются. Закономерность для которой, каждый отдельный элемент является случайным, а в массе случаев проявляет себя, как закон. Опирается на закон больших чисел. С увеличением числа наблюдений исчезают случайности. Чем больше кол-во наблюдений, тем лучше результат.

3. Статистическое наблюдение, его формы, виды и способы. Программно-методологические и организационные вопросы сбора информации

Статистическое наблюдение это первая стадия всякого статистического исследования, представляющая собой планомерную научно организованную систематическую работу по собиранию массовых первичных данных о явлениях и процессах общественного развития. Всякое статистическое исследование должно начинаться со сбора первичного материала. Этот материал в зависимости от целей и содержания статистической работы может быть разнообразен по своему содержанию и способам получения. Статистическое наблюдении всегда научно организованное и всегда массовое.

В статистическом наблюдении различаются 3 этапа работы: 1. Подготовка наблюдения;

2. Сбор материалов; 3. Контроль материала перед пуском в разработку.

Задачей статистического наблюдения является получение достоверной исходной информации и получение ее в возможно короткий срок.

Применяется две формы сбора первичных статистических материалов:

1. В форме статистической отчетности - это такая форма, при которой сведения поступают в ст. органы от предприятий, учреждений, организаций в виде обязательных отчётов об их деятельности (общегосударственные и внутриведомственные).

2. Специальные органы наблюдения - это наблюдение органов, с какой либо особой целью для получения тех данных, которые не представляются с помощью отчётности (перепись и обследования).

Виды статистического наблюдения: по охвату единиц объекта делятся на: 1. Сплошное - обследуются все единицы совокупности. 2. Несплошное - обследованию подвергаются не все единицы изучаемой совокупности, а только их часть, на основе которой можно получить обобщающую характеристику всей совокупности. Делится на: 1. Метод основного массива - выбираются самые крупные, самые существенные единицы совокупности. 2. Метод выборочный - основан на случайном выборе единиц совокупности. 3. Монографический - обследованию подвергаются отдельные единицы совокупности. По частоте делятся на: 1. Текущие - этот процесс всё время протекает, но идёт регистрация фактов по мере их совершения. 2. Прерывные или периодические - когда наблюдения происходят через определённые промежутки времени. 3. Единовременные - это наблюдение проводится по мере необходимости.

Способы статистических наблюдений: 1. Экспедиционный - сам регистрирует, и сам записывает. 2. Самоисчисление - не регистрирующий записывает, а сами единицы. 3. Корреспондентский - когда статистические органы заключают разговор с человеком и отправляют по почте сведения в статистические органы.

При подготовке статистических наблюдений решаются такие вопросы: 1. Программно-методологические вопросы. К ним относят формулировку задач наблюдений, определение цели, объёма и единиц наблюдения, составление программы наблюдения, проектировка формуляров и текста инструкций, установление источников и сбора информации. Объект наблюдения - это некоторая ст. совокупность в которой протекают социально-экономические явления, процессы. Таким образом между объектом и единицей есть существенные различия. Программа наблюдения - это перечень вопросов, ответы на которые надо получить в процессе наблюдения. 2. Организационные вопросы. Относятся такие вопросы, где определяется вид и способ наблюдения, а также место и сроки проведения наблюдения. Формируется список единиц изучаемой статистической совокупности.

4. Статистическая сводка, её содержание и задачи, роль в обобщении финансово-экономической информации предприятия

Статистическая сводка - вторая стадия статистического исследования; это научно организованная обработка материалов наблюдения, включающая в себя систематизацию, группировку данных, сопоставление таблиц, подсчет групповых и общих итогов, расчет производных показателей (средних, относительных величин). В зависимости от целей и задач исследования, используют простую и сложную сводку. Простая сводка - это подсчет данных по одноименному признаку, она дает представление о размерах и уровнях развития явлений. На основе этих показателей (данных) можно исчислить относительные и средние показатели. Сложная сводка - это выявление типичных показателей по отдельным группам для изучения этих закономерностей развития. По технике или способу выполнения сводка может быть ручная или механизированная. Статистическая сводка проводится по определенной программе и плану. Программа статистической сводки устанавливает следующие этапы: выбор группировочных признаков; определение порядка формирования групп; разработка системы статистических показателей для характеристики групп и объекта в целом; разработка макетов статистических таблиц для представления результатов сводки. План статистической сводки содержит указания о последовательности и сроках выполнения отдельных частей сводки, ее исполнителях и о порядке изложения и представления результатов.

Задачи: 1. Упорядочение и обобщение первичного собранного материала на основе которого даётся характеристика всего объекта с помощью обобщающих показателей. 2. Группировка - разделение всей совокупности на отдельные группы

5. Метод статистической группировки, его задачи. Виды группировок, их применение в анализе финансово-экономической деятельности предприятия

В сводке статистического материала отдельные единицы статистической совокупности объединяются в группы при помощи метода группировок. Статистическая группировка - это процесс образования однородных групп на основе расчленения статистической совокупности на части или объединения изучаемых единиц в частные совокупности по существенным для них признакам, каждая из которых характеризуется системой статистических показателей. Особым видом группировок является классификация, представляющая собой устойчивую номенклатуру классов и групп, образованных на основе сходства и различия единиц изучаемого объекта. Метод группировок применяется для решения задач, возникающих в ходе научного статистического исследования. К таким задачам относятся: выделение социально-экономических типов явлений; изучение структуры явления и структурных сдвигов, происходящих в нем; изучение связей и зависимостей между отдельными признаками явления. Для решения этих задач применяются (соответственно) три вида группировок: типологические, структурные и аналитические (факторные). Типологическая группировка решает задачу выявления и характеристики социально-экономических типов путем разделения качественно разнородной совокупности на классы, социально-экономические типы, однородные группы единиц в соответствии с правилами научной группировки. Признаки, по которым производится распределение единиц изучаемой совокупности на группы, называются группировочными признаками, или основанием группировки. Выделить типичное можно не по любому признаку, а только по определенному, который должен изменяться в зависимости от условий места и времени. Структурной группировкой называется группировка, в которой происходит разделение выделенных с помощью типологической группировки типов явления, однородных совокупностей на группы, характеризующие их структуру по какому-либо варьирующему признаку. К структурным относится группировка населения по размеру дохода, группировка хозяйства по объему продукции и т.д. Анализ структурных группировок, взятых за ряд периодов или моментов времени, показывает изменение структуры изучаемых явлений, т.е. структурные сдвиги. Аналитические (факторные) группировки, в частности, исследуют связи и зависимости между изучаемыми явлениями и их признаками. В основе аналитической группировки лежит факторный признак и каждая выделенная группа характеризуется средними значениями результативного признаки. В зависимости от степени сложности массового явления и от задач анализа группировки могут проводиться по одному или нескольким признакам. Если группы образуются по одному признаку, группировка называется простой. Группировка по двум или нескольким признакам называется сложной. Если группы, образованные по одному признаку, делятся на подгруппы по второму, а последние - на подгруппы по третьему и т.д. признакам, т.е. в основании группировки лежит несколько признаков, взятых в комбинации, то такая группировка называется комбинационной. При составлении структурных группировок на основе варьирующих количественных признаков необходимо определить количество групп и интервалы группировки. При определении количества групп необходимо стремиться к тому, чтобы были учтены особенности изучаемого явления. Число групп должно быть оптимальным, в каждую группу должно входить достаточно большое число единиц совокупности, что отвечает требованию закона больших чисел. Интервал - количественное значение, отделяющее одну единицу (группу) от другой. Т.е. интервал очерчивает количественные границы групп. Интервалы могут быть равными и неравными. Неравные интервалы применяются, когда интервалы изменяются прогрессивно (прогрессивно убывающие, прогрессивно возрастающие). Группировка с равными интервалами целесообразны в тех случаях, когда вариация проявляется в сравнительно узких границах и распределение является практически равномерным. Для группировок с равными интервалами величина интервала будет равна:

i = (Xmax - Xmin)/n,

где Xmax, Xmin - наибольшее и наименьшее значения признака, n - число групп.

6. Статистические ряды распределения, их виды. Основные характеристики ряда распределения, их роль в анализе структуры совокупности

Статистический ряд распределения представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку. Он характеризует состав (структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности. Ряды распределения, построенные по атрибутивным (качественным) признакам, называются атрибутивными (распределение населения по полу, занятости, национальности, профессии и т.д.). Ряды распределения, построенные по количественному признаку, называются вариационными (распределение населения по возрасту, рабочих - по стажу работы, зарплате и т.д.). Вариационные ряды распределения состоят из двух элементов: вариантов и частот. Числовые значения количественного признака в вариационном ряду распределения называются вариантами. Они могут быть положительными и отрицательными, абсолютными и относительными. Частоты - это численность отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяет число элементов всей совокупности. Частости - это частоты, выраженные в виде относительных величин (долях единиц или %). Сумма частостей равна 1 или 100%. Вариационные ряды в зависимости от характера вариации подразделяются на дискретные и интервальные. Дискретные вариационные ряды основаны на дискретных (прерывных) признаках, имеющих только целые значения, на дискретных признаках, представленных в виде интервалов. Интервальные вариационные ряды основаны на непрерывных признаках (имеющих любые значения, даже дробные). Ранжирование ряда - расположение всех вариантов в возрастающем (убывающем) порядке. Графически интервальный ряд может изображаться графически в виде гистограммы. При ее построении на оси абсцисс откладывают интервалы ряда, высота которых равна частотам, отложенным на оси ординат. Над осью абсцисс строятся прямоугольники, площадь которых соответствует величинам произведений интервалов на их частоты. В практике также возникает потребность преобразования рядов распределения в кумулятивные ряды, строящиеся по накопленным частотам. Накопленные частоты определяются путем последовательного прибавления к частотам (или частостям) первой группы этих показателей последующих групп ряда распределения. Используя полученные данные, строят график в виде кумуляты (кривой сумм).

7. Табличное и графическое представление статистических данных

Статистические таблицы, их виды и правила построения. Результаты сводки и группировки материалов наблюдения представляют в виде статистических таблиц. По внешнему виду статистическая таблица представляет собой ряд пересекающихся горизонтальных и вертикальных линий, образующих по горизонтали строки, а по вертикали - графы (столбцы, колонки), которые в совокупности составляют как бы скелет таблицы. В образовавшиеся внутри таблицы клетки записывается соответствующая информация. Составленную таблицу, но не заполненную цифрами принято называть макетом таблицы, в котором мысленно определяются в деталях цель обследования, объем разработки материалов сводки. Статистическая таблица имеет свое подлежащее и сказуемое. Подлежащее таблицы показывает, о каком явлении идет речь в таблице, и представляет собой группы и подгруппы, которые характеризуются рядом показателей. Сказуемым таблицы называются показатели, с помощью которых изучается объект, т.е. подлежащее таблицы. В основном в сказуемом отражаются числовые значения и характеристики изучаемого явления. Составленная и оформленная статистическая таблица должна иметь общий, боковые и верхние заголовки. Общий заголовок обычно располагается над таблицей и выражает ее основное содержание. Помещенные, как правило, слева боковые заголовки раскрывают содержание строк подлежащего, а верхние заголовки - вертикальных граф (сказуемого таблицы). В зависимости от построения подлежащего таблицы делятся на три вида: перечневые, групповые и комбинационные. Таблицы, подлежащее которых содержит перечень единиц изучаемой совокупности, называются перечневыми. Групповые таблицы дают более информативный материал для анализа изучаемых явлений благодаря образованным в их подлежащем группам по существенному признаку или выявлению связи между рядом показателей. Комбинационная таблица устанавливает взаимное действие на результативные признаки (показатели) и существующую связь между факторами группировки. Правила построения и оформления таблиц: 1) По возможности таблицу следует составлять небольшой по размеру, легко обозримой. 2) Общий заголовок таблицы должен кратко выражать ее основное содержание. В нем обычно указывается время, территория, к которым относятся данные, единица измерения, если она одна для всей таблицы. 3) Обычно строки подлежащего и графы сказуемого располагаются в виде частных слагаемых с последующим подытоживанием по каждому из них. 4) Для удобства анализа таблицы при большом числе строк подлежащего и граф сказуемого возникает потребность в нумерации тех из них, которые заполняются данными. Подлежащее и единицы измерения обычно обозначаются буквами. 5) Использование условных обозначений при заполнении таблиц. 6) Одинаковая степень точности, обязательная для всех чисел.

Графический метод в статистике. Виды графиков. Статистический график представляет собой чертеж, на котором при помощи условных геометрических фигур (линий, точек или других символических знаков) изображаются статистические данные. В результате этого достигается наглядная характеристика изучаемой статистикой совокупности. Графический метод в статистике является продолжением и дополнением табличного метода. То, что при чтении таблицы может остаться незамеченным, обнаруживается на графике. При графическом изображении статистических данных становится более выразительной сравнительная характеристика изучаемых показателей, отчетливее проявляется тенденция развития изучаемого явления, лучше видны основные взаимосвязи. Основные элементы статистического графика: поле графика - место, на котором он выполняется; графический образ - это символические знаки, с помощью которых изображаются статистические данные (линии, точки, плоские геометрические фигуры, объемные геометрические фигуры; пространственные ориентиры - определяют размещение графических образов на поле графика, они задаются координатной сеткой или контурными линиями и делят поле графика на части, соответствующие значениям изучаемых показателей; масштабные ориентиры - придают графическим образам количественную значимость, которая передается с помощью системы масштабных шкал; масштаб графика - это мера перевода численной величины в графическую; чем длиннее отрезок линии, принятой за численную единицу, тем крупнее масштаб; масштабная шкала - линия, отдельный точки которой читаются как определенные числа (различают в масштабной шкале: линию - носитель информации в виде черточек, цифровые обозначения чисел; также различают - равномерные и неравномерные шкалы); экспликация графика - это пояснение его содержания; заголовок графика - в краткой и четкой форме поясняет основное содержание изображаемых данных. Статистические графики классифицируются: по способу построения (диаграммы, картограммы и картодиаграммы); форме применяемых графических образов (точечные, линейные, плоскостные и фигурные); характеру решаемых задач (классифицируются по их целевому применению в статистическом изучении коммерческой деятельности на рынке товаров и услуг). Виды статистических графиков: ряд распределения, структура статистической совокупности, ряд динамики, показатель связи, показатель выполнения задания.

8. Выражение статистических показателей в виде абсолютных и относительных величин. Их измерители. Основные виды относительных величин

Явления общественного развития имеют количественную определенность. Статистика измеряет и выражает ее с помощью количественных категорий так называемых статистических величин. Количественная определенность явлений выражается в абсолютных и относительных показателях. Абсолютными в статистике называются суммарные обобщающие показатели, характеризующие размеры (уровни, объемы) общественных явлений в конкретных условиях места и времени. Различают два вида абсолютных величин: индивидуальные и суммарные. Индивидуальными - называют абсолютные величины, характеризующие размеры признака у отдельных единиц совокупности. Они получаются непосредственно в процессе статистического наблюдения и фиксируются в первичных учетных документах. Суммарные - абсолютные величины характеризуют итоговую величину признака по определенной совокупности объектов, охваченных статистическим наблюдением. Они являются суммой количества единиц изучаемой совокупности (численность совокупности) или суммой значений варьирующего признака всех единиц совокупности (объем варьирующего признака). Абсолютные статистические величины представляют собой именованные числа, т.е. имеют какую-либо единицу измерения. В зависимости от сущности исследуемого явления абсолютные величины выражаются в натуральных, стоимостных и трудовых единицах измерения. Натуральные единицы измерения в свою очередь могут быть простыми (тонны, штуки, метры, литры) и сложными, являющимися комбинацией нескольких разноименных величин (тонно-километры, киловатт-часы, человеко-часы и т.д.). Стоимостные единицы измерения используются для выражения объема разнородной продукции в стоимостной форме (рубли, доллары). В трудовых единицах измерения учитываются затраты труда, трудоемкость. Относительная величина - это обобщающий показатель, который представляет собой частное от деления одного абсолютного показателя на другой и дает числовую меру соотношения между ними. Величина, с которой производится сравнение (знаменатель дроби) обычно называется базой сравнения или основанием. В зависимости от выбора базы сравнения относительный показатель может быть представлен в различных долях единицы: десятых, сотых (%), тысячных (промилле - десятая часть процента), десятитысячных (продецимилле - сотая часть процента). По своему содержанию относительные величины подразделяются на виды: 1) относительная величина динамики ( i ) рассчитывается как отношение уровня признака в определенный период или момент времени к уровню этого же признака в предшествующий период или момент времени, т.е. она характеризует изменение уровня какого-либо явления во времени. Относительные величины динами называют темпами роста. 2) относительная величина планового задания ( iпл.з ) рассчитывается как отношение уровня, запланированного на предстоящий период, к уровню, фактически сложившемуся в этом периоде. 3) относительная величина выполнения плана ( iвып.пл ) представляет собой отношение фактически достигнутого в данном периоде уровня к запланированному. Относительные величины динамики, планового задания и выполнения плана связаны соотношением: . 4) относительные величины структуры характеризуют состав изучаемых совокупностей; рассчитываются как отношение абсолютной величины каждого из элементов совокупности к абсолютной величине всей совокупности (части к целому) и представляют собой удельный вес части в целом в %. 5) относительными величинами интенсивности называют показатели, характеризующие степень распространения или уровень развития того или иного явления в определенной среде. 6) относительными величинами координации называют показатели, характеризующие соотношение отдельных частей целого между собой. 7) относительными величинами сравнения называют показатели, представляющие собой частные от деления одноименных абсолютных величин, характеризующих разные объекты, относящихся к одному и тому же периоду времени.

9. Средняя величина в статистике, её сущность и условия применения. Виды и формы средних

Средняя величина - это один из важнейших обобщающих статистических показателей, характеризующий совокупность однотипных явлений по какому-либо количественно варьирующему признаку. Средние величины - это обобщающие показатели, числа, выражающие характерные размеры общественных явлений по одному количественно варьирующему признаку. Среднее выражает типичное присущее большинству единиц совокупности, что позволяет сравнивать, выявлять закономерности и осуществлять прогнозы.

Среднее - это обобщающая характеристика совокупности однотипных явлений. При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Особенностью средней является то, что: 1) она характеризует ту или иную совокупность в целом, но не характеризует каждую отдельную единицу; 2) в ней средние погашаются отдельные индивидуальные отклонения единиц по изучаемому признаку; 3) средняя отражает типичные черты и свойства массы единиц и позволяет изучить всю массу единиц в динамике; 4) в сочетании с методом статистических группировок возникает возможность изучения взаимосвязей между группировочными и результативными признаками; 5) средняя величина является базой для прогнозирования; 6) многие процессы изучаются только на основании средних, если статистическая совокупность велика; 7) средняя преследует цель, показать количественное различие и сходство двух совокупностей. При расчете средней необходимо соблюдать следующие условия: 1) расчет надо вести только однородных по качеству совокупностей, для этого надо сочетать метод средних и метод группировок; 2) общее среднее необходимо дополнять групповыми средними и индивидуальными величинами; 3) для расчета средней нужна масса единиц (20-30); 4) необходимо правильно выбирать единицу совокупности средних.

Выбор вида средней определяется экономическим содержанием определенного показателя и исходных данных. В каждом конкретном случае применяется одна из средних величин: арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т.д. Средняя арифметическая: наиболее распространенный вид средних. Применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц. Чтобы рассчитать среднюю арифметическую, нужно сумму всех значений признаков разделить на их число. Средняя арифметическая применяется в форме простой средней и взвешенной средней. Средняя арифметическая простая равна простой сумме отдельных значений осредняемого признака, деленной на общее число этих значений. Она применяется в тех случаях, когда имеются несгруппированные индивидуальные значения признака:, где х12,…,хп - индивидуальные значения варьирующего признака (варианты); п - число единиц совокупности. Средняя из вариантов, которые повторяются различное число раз, или, как говорят, имеют различный вес, называется взвешенной. В качестве весов выступают численность единиц в разных группах совокупности (в группу объединяют одинаковые варианты).

Средняя арифметическая взвешенная - средняя сгруппированных величин х12,…,хп - вычисляется по формуле:

,

где f1,f2,…fn - веса (частоты повторения одинаковых совокупностей); - сумма произведений величины признаков на их частоты; -общая численность единиц совокупности. В отдельных случаях веса могут быть представлены не абсолютными величинами, а относительными (% или доли единиц).

Тогда формула средней арифметической взвешенной будет иметь вид:

где - частость, т.е. доля каждой частоты в общей сумме всех частот. Если частоты подсчитываются в долях (коэффициентах), то и формула средней арифметической взвешенной имеет вид: .

Средняя гармоническая: когда статистическая информация не содержит частот f по отдельным вариантам х совокупности, а представлена как их произведение , применяется формула средней гармонической взвешенной. Чтобы исчислить среднюю, обозначаем = w, откуда . Далее формула средней арифметической преобразуется таким образом, чтобы по имеющемся данным x и w можно было исчислить среднюю. В формулу средней арифметической взвешенной вместо xf подставляется w, вместо f - отношение w/x и получается формула средней гармонической взвешенной:

.

В тех случаях, когда вес каждого варианта равен единице (индивидуальные значения обратного признака встречаются по одному разу), применяется средняя гармоническая простая:

.

Средняя геометрическая: применяется в тех случаях, когда индивидуальные значения признака представляют собой относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т.е. характеризует средний коэффициент роста. Она исчисляется извлечением корня степени п из произведения отдельных значений - вариантов признака х: , где п - число вариантов, П - знак перемножения. Широко применяется для определения средних темпов изменения в рядах динамики, а также в рядах распределения. Средняя квадратическая: применяется, когда возникает потребность расчета среднего размера признака, выраженного в квадратных единицах измерения. Средняя квадратическая простая является квадратным корнем из частного от деления суммы квадратов отдельных значений признака на их число: . Средняя квадратическая взвешенная: , где f - веса. Средняя кубическая: применяется, когда возникает потребность расчета среднего размера признака, выраженного в кубических единицах измерения. Средняя кубическая простая: ; средняя кубическая взвешенная: . Особым видом средних величин являются структурные средние. Они применяются для изучений внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана. Мода Мо - значение случайной величины, встречающееся с наибольшей вероятностью в дискретном вариационном ряду - вариант, имеющий наибольшую частоту. В интервальных рядах распределения с равными интервалами мода вычисляется по формуле:

,

где ХМо - нижняя граница модального интервала; iMo - модальный интервал; - частоты в модальном, предыдущем и следующем за модальным интервалах (соответственно). Модальный интервал определяется по наибольшей частоте. Медиана Ме - это вариант, который находится в середине вариационного ряда. Медиана делит ряд на две равные (по числу единиц) части - со значениями признака меньше медианы и со значениями признака больше медианы. Чтобы найти медиану, необходимо отыскать значение признака, которое находится в середине упорядоченного ряда. В ранжированных рядах несгруппированных данных нахождение медианы сводится к отысканию порядкового номера медианы. Номер медианы для нечетного объема вычисляется по формуле: NMe = (n+1)/2. В случае четного объема ряда медиана равна средней из двух вариантов, находящихся в середине ряда. В интервальных рядах распределения медианное значение (поскольку оно делит всю совокупность на две равные по численности части) оказывается в каком-то из интервалов признака х. Этот интервал характерен тем, что его кумулятивная частота (накопленная сумма частот) равна или превышает полусумму всех частот ряда. Значение медианы вычисляется линейной интерполяцией по формуле: , где ХМе - нижняя граница медианного интервала; iMе - медианный интервал; - половина от общего числа наблюдений; - сумма наблюдений, накопленная до начала медианного интервала; - число наблюдений в медианном интервале.

10. Понятие о вариации признака в совокупности. Система показателей вариации. Её применение в анализе финансово-экономической деятельности предприятия

Вариация - это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. К показателям вариации относятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, коэффициент вариации. Абсолютные показатели: размах вариации R, представляющий собой разность между максимальным и минимальным значениями признака: .Размах вариации показывает лишь крайние отклонения признака и не отражает отклонений всех вариантов в ряду. При изучении вариации нельзя ограничиваться только определением ее размаха. Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и дает обобщенную характеристику. Простейшим показателем такого типа является среднее линейное отклонение. Среднее линейное отклонение представляет собой среднюю арифметическую абсолютных значений отклонений отдельных вариантов от их средней арифметической (при этом всегда предполагают, что среднюю вычитают из варианта: ()). Среднее линейное отклонение для несгруппированных данных: , где п - число членов ряда; для сгруппированных данных: , где - сумма частот вариационного ряда. Дисперсия признака представляет собой средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий (в зависимости от исходных данных). Простая дисперсия для несгруппированных данных: ; взвешенная дисперсия для вариационного ряда: . Дисперсия обладает определенными свойствами, два из которых: 1) если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А, то дисперсия от этого не изменится; 2) если все значения признака уменьшить или увеличить в одно и то же число раз (i раз). То дисперсия соответственно уменьшится или увеличится в раз. Используя второе свойство дисперсии, разделив все варианты на величину интервала, можно получить формулу вычисления дисперсии в вариационных рядах с равными интервалами по способу моментов: , где -дисперсия, исчисленная по способу моментов; i - величина интервала; -новые (преобразованные) значения вариантов (А - условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой); - момент второго порядка; - квадрат момента первого порядка. Среднее квадратическое отклонение равно корню квадратному из дисперсии: для несгруппированных данных: , для вариационного ряда: . Среднее квадратическое отклонение - это обобщающая характеристика размеров вариации признака в совокупности; оно показывает, на сколько в среднем отклоняются конкретные варианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется. Относительные показатели: Коэффициент вариации представляет собой выраженное в процентах отношение среднего квадратического отклонения к средней арифметической: . Также коэффициент вариации используется как характеристика однородности совокупности. Если , то колеблемость незначительная, если , то колеблемость умеренная-средняя, если , то колеблемость значительная, если , то совокупность однородная. Коэффициент осцилляции: . Относительное линейное отклонение: .

11. Виды дисперсий. Правило сложения дисперсий. Расчёт на его основе коэффициента детерминации и эмпирического корреляционного отношения. Их практическое использование

Вариация признаков обусловлена различными факторами, некоторые из этих факторов можно выделить, если статистическую совокупность разбить на группы по какому-либо признаку. Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучить вариацию для каждой из составляющих ее группы, а также и между этими группами. В простейшем случае, когда совокупность расчленена на группы по одному фактору, изучение вариации достигается посредством исчисления и анализа трех видов дисперсий: общей, межгрупповой и внутригрупповой. Общая дисперсия измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Она равна среднему квадрату отклонений отдельных значение признака х от общей средней величины и может быть вычислена как простая дисперсия или взвешенная дисперсия. Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, обусловленную влиянием признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений групповых (частных) средних от общей средней : , где f - численность единиц в группе. Внутригрупповая (частная) дисперсия отражает случайную вариацию, т.е. часть вариации, обусловленную влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировка. Она равна среднему квадрату отклонений отдельных значений признака внутри группы х от средней арифметической этой группы xi (групповой средней) и может быть исчислена как простая дисперсия или как взвешенная дисперсия . На основании внутригрупповой дисперсии по каждой группе, т.е. на основании можно определить общую среднюю из внутригрупповых дисперсий: . Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий: . Пользуясь правилом сложения дисперсий, можно всегда по двум известным дисперсиям определить третью - неизвестную. Чем больше доля межгрупповой дисперсии в общей дисперсии, тем сильнее влияние группировочного признака на изучаемый признак. Поэтому в статистическом анализе широко используется эмпирический коэффициент детерминации - показатель, представляющий собой долю межгрупповой дисперсии в общей дисперсии результативного признака и характеризующий силу влияния группировочного признака на образование общей вариации: . Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х (остальная часть общей вариации у обуславливается вариацией прочих факторов). При отсутствии связи эмпирический коэффициент детерминации равен нулю, а при функциональной связи - единице. Эмпирическое корреляционное отношение - это корень квадратный из эмпирического коэффициента детерминации: . Он показывает тесноту связи между группировочным и результативным признаками. Эмпирическое корреляционное отношение может принимать значения от 0 до 1. Если связь отсутствует, то корреляционное отношение равно нулю, т.е. все групповые средние будут равны между собой, межгрупповой вариации не будет. Значит, группировочный признак никак не влияет на образование общей вариации. Если связь функциональная, то корреляционное отношение будет равно единице. В этом случае дисперсия групповых средних равна общей дисперсии , т.е. внутригрупповой вариации не будет. Это означает, что группировочный признак целиком определяет вариацию изучаемого результативного признака. Чем значение корреляционного отношения ближе к единице, тем теснее, ближе к функциональной зависимости связь между признаками.

12. Метод выборочного наблюдения, его сущность и преимущество. Виды выборки. Определение необходимой численности выборки. Особенности малых выборок

Выборочное наблюдение - это такое несплошное наблюдение, при котором отбор подлежащих обследованию единиц осуществляется в случайном порядке, отобранная часть изучается, а результаты распространяются на всю исходную совокупность. Наблюдение организуется таким образом, что эта часть отобранных единиц в уменьшенном масштабе представляет всю совокупность. Совокупность, из которой производится отбор, называется генеральной, и все ее обобщающие показатели - генеральными. Совокупность отобранных единиц именуют выборочной совокупностью, и все ее обобщающие показатели - выборочными. Основная задача выборочного наблюдения в экономике состоит в том, чтобы на основе характеристик выборочной совокупности (средней и доли) получить достоверные суждения о показателях средней и доли в генеральной совокупности. При этом возникают ошибки двух видов: регистрации и репрезентативности. Ошибки регистрации могут иметь случайный (непреднамеренный) и систематический (тенденциозный) характер. Случайные ошибки обычно уравновешивают друг друга, поскольку не имеют преимущественного направления в сторону преувеличения или преуменьшения значения изучаемого показателя. Систематические ошибки направлены в одну сторону вследствие преднамеренного нарушения правил отбора. Ошибки репрезентативности присущи только выборочному наблюдению и возникают в силу того, что выборочная совокупность не полностью воспроизводит генеральную. Они представляют собой расхождение между значениями показателей, полученных по выборке, и значениями показателей этих же величин, если бы они были получены при сплошном наблюдении. Для каждого конкретного выборочного наблюдения значение ошибки репрезентативности может быть определено по соответствующим формулам, которые зависят от вида, метода и способа формирования выборочной совокупности. По виду различают индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности; при групповом отборе - качественно однородные группы или серии изучаемых единиц; комбинированный отбор предполагает сочетание первого и второго видов. По методу выборки различают повторную и бесповторную выборки. При повторной выборке общая численность единиц генеральной совокупности в процессе выборки остается неизменной. Ту или иную единицу, попавшую в выборку, после регистрации снова возвращают в генеральную совокупность, и она сохраняет равную возможность со всеми прочими единицами при повторном отборе единиц вновь попасть в выборку. При бесповторной выборке единица совокупности, попавшая в выборку, в генеральную совокупность не возвращается и в дальнейшем в выборке не участвует. Т.о., при бесповторной выборке численность единиц генеральной совокупности сокращается в процессе исследования. Способ отбора определяет конкретный механизм или процедуру выборки единиц из генеральной совокупности. На практике выборочных исследований наибольшее распространение получили следующие виды выборки: собственно-случайная, механическая, типическая, серийная, комбинированная. К собственно-случайной выборке относится отбор единиц из всей генеральной совокупности (без предварительного расчленения ее на какие-либо группы) посредством жеребьевки (преимущественно) или какого-либо иного подобного способа, например, с помощью таблицы случайных чисел. Случайный отбор - это отбор не беспорядочный. Принцип случайности предполагает, что на включение или исключение объекта из выборки не может повлиять какой-либо фактор, кроме случая. Механическая выборка состоит в том, что отбор единиц в выборочную совокупность из генеральной, разбитой по нейтральному признаку на равные интервалы (группы), производится таким образом, что из каждой такой группы в выборку отбирается лишь одна единица. Чтобы избежать систематической ошибки, отбираться должна единица, которая находится в середине каждой группы. Для отбора единиц из неоднородной совокупности применяется так называемая типическая выборка, которая используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, влияющим на изучаемые показатели. Серийная выборка предполагает случайный отбор из генеральной совокупности не отдельных единиц, а их равновеликих групп (серий) с тем, чтобы в таких группах подвергать наблюдению все без исключения единицы. Комбинированная выборка заключается в объединении различных способов выборки, рассмотренных ранее.

13. Средняя и предельная ошибка выборки. Методика их расчёта для средней и доли. Оценка существенности расхождения выборочных средних

Основные характеристики параметров генеральной и выборочной совокупностей обозначаются символами: N - объем генеральной совокупности (число входящих в нее единиц); n - объем выборки (число обследованных единиц); - генеральная средняя (среднее значение признака в генеральной совокупности); - выборочная средняя; p - генеральная доля (доля единиц, обладающих данным значением признака в общем числе единиц генеральной совокупности); w - выборочная доля. Доля выборки есть отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности: . Применяя выборочный метод в статистике, обычно используют два основных вида обобщающих показателя: среднюю величину количественного признака и относительную величину альтернативного признака (долю или удельный вес единиц в статистической совокупности, которые отличаются от всех других единиц этой совокупности только наличием изучаемого признака). Выборочная доля ( w ), или частость, определяется отношением числа единиц, обладающих изучаемым признаком т, к общему числу единиц выборочной совокупности п: w = т / п . Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки. Ошибка выборки или, иначе говоря, ошибка репрезентативности представляет собой разность соответствующих выборочных и генеральных характеристик: для средней количественного признака ; для доли (альтернативного признака) . Выборочная средняя и выборочная доля являются случайными величинами, которые могут принимать различные значения в зависимости от того, какие единицы совокупности попали в выборку. Поэтому определяют среднюю из возможных ошибок - среднюю ошибку выборки.

Средняя ошибка выборки при повторном отборе рассчитывается по следующим формулам: для средней количественного признака: ; для доли (альтернативного признака): . Средняя ошибка выборки при бесповторном отборе рассчитывается по следующим формулам: для средней качественного признака ; для доли (альтернативного признака) . В каждой конкретной выборке расхождение между выборочной средней и генеральной может быть меньше средней ошибки , равно ей или больше ее. Причем каждое из этих расхождений имеет различную вероятность. Поэтому фактические расхождения между выборочной средней и генеральной можно рассматривать как некую предельную ошибку, связанную со средней ошибкой и гарантируемую с определенной вероятностью Р. Предельную ошибку выборки можно рассчитать по следующим формулам: при повторном отборе: для средней , где t - нормированное отклонение - «коэффициент доверия», зависящий от вероятности, с которой гарантируется предельная ошибка выборки; - средняя ошибка выборки; для доли ; при бесповторном отборе: для средней ; для доли . При вероятности 0,683 коэффициент t = 1; при вероятности 0,954 коэффициент t = 2; при вероятности 0,997 коэффициент t = 3. Предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы: для средней ; ; для доли ; . Наряду с абсолютным значением предельной ошибки выборки рассчитывается также и предельная относительная ошибка выборки, которая определяется как процентное отношение предельной ошибки выборки к соответствующей характеристике выборочной совокупности: для средней, %: ; для доли, %: .


Подобные документы

  • Исторические аспекты развития статистики, ее предмет. Понятие статистической методологии. Организация государственной и международной статистики. Программа и формы статистического наблюдения. Формы вариационного ряда. Средняя арифметическая и ее свойства.

    шпаргалка [37,9 K], добавлен 12.12.2010

  • Числовые характеристики выборки. Статистический ряд и функция распределения. Понятие и графическое представление статистической совокупности. Метод наибольшего правдоподобия для нахождения плотности распределения. Применение метода наименьших квадратов.

    контрольная работа [62,6 K], добавлен 20.02.2011

  • Предмет, методы и задачи социально-экономической статистики - система показателей, основные группировки и классификации. Статистическое изучение численности населения, источники статистической информации о населении. Уравнение демографического баланса.

    шпаргалка [516,4 K], добавлен 06.04.2008

  • Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.

    лекция [387,7 K], добавлен 12.12.2011

  • Табличный метод представления данных правовой статистики. Абсолютные и обобщающие показатели. Относительные величины, их основные виды и применение. Среднее геометрическое, мода и медиана. Метод выборочного наблюдения. Классификация рядов динамики.

    контрольная работа [756,5 K], добавлен 29.03.2013

  • Основные понятия математической статистики, интервальные оценки. Метод моментов и метод максимального правдоподобия. Проверка статистических гипотез о виде закона распределения при помощи критерия Пирсона. Свойства оценок, непрерывные распределения.

    курсовая работа [549,1 K], добавлен 07.08.2013

  • Функциональные и корреляционные зависимости. Сущность корреляционной связи. Методы выявления наличия корреляционной связи между двумя признаками и измерение степени ее тесноты. Построение корреляционной таблицы. Уравнение регрессии и способы его расчета.

    контрольная работа [55,2 K], добавлен 23.07.2009

  • Предмет, методы и понятия математической статистики, ее взаимосвязь с теорией вероятности. Основные понятия выборочного метода. Характеристика эмпирической функции распределения. Понятие гистограммы, принцип ее построения. Выборочное распределение.

    учебное пособие [279,6 K], добавлен 24.04.2009

  • Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.

    шпаргалка [945,2 K], добавлен 18.06.2012

  • Задачи математической статистики. Распределение случайной величины на основе опытных данных. Эмпирическая функция распределения. Статистические оценки параметров распределения. Нормальный закон распределения случайной величины, проверка гипотезы.

    курсовая работа [57,0 K], добавлен 13.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.