Многоугольники и их свойства

Многоугольник как замкнутая ломаная без самопересечений. Доказательство теоремы методом математической индукции. Треугольник общего вида. Центр правильного многоугольника с четным числом сторон. Отношение периметров двух подобных многоугольников.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 06.06.2012
Размер файла 60,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Свойства многоугольников

Многоугольник - это геометрическая фигура, обычно определяется как замкнутая ломаная без самопересечений (простой многоугольник (рис. 1а)), однако иногда самопересечения допускаются (тогда многоугольник не является простым).

Вершины ломаной называются вершинами многоугольника, а отрезки - сторонами многоугольника. Вершины многоугольника называются соседними, если они являются концами одной из его сторон. Отрезки, соединяющие несоседние вершины многоугольника, называются диагоналями.

Углом (или внутренним углом) выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине, при этом угол считается со стороны многоугольника. В частности угол может превосходить 180° если многоугольник невыпуклый.

Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. В общем случае внешний угол это разница между 180° и внутренним углом. Из каждой вершины -угольника при > 3 выходят - 3 диагонали, поэтому общее число диагоналей -угольника равно .

Многоугольник с тремя вершинами называется треугольником, с четырьмя - четырёхугольником, с пятью - пятиугольником и т.д.

Многоугольник с n вершинами называется n-угольником.

Плоским многоугольником называется фигура, которая состоит из многоугольника и ограниченной им конечной части площади.

Многоугольник называют выпуклым, если выполнено одно из следующих (эквивалентных) условий:

1. он лежит по одну сторону от любой прямой, соединяющей его соседние вершины. (т.е. продолжения сторон многоугольника не пересекают других его сторон);

2. он является пересечением (т.е. общей частью) нескольких полуплоскостей;

3. любой отрезок с концами в точках, принадлежащих многоугольнику, целиком ему принадлежит.

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны, например равносторонний треугольник, квадрат и пентагон.

Выпуклый многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности

Правильный многоугольник - это многоугольник, у которого все углы и все стороны равны между собой.

Свойства многоугольников:

1 Каждая диагональ выпуклого -угольника, где >3, разлагает его на два выпуклых многоугольника.

2 Сумма всех углов выпуклого -угольника равна .

Д-во: Теорему докажем методом математической индукции. При = 3 она очевидна. Предположим, что теорема верна для -угольника, где <, и докажем ее для -угольника.

Пусть- данный многоугольник. Проведем диагональ этого многоугольника. По теореме 3 многоугольник разложен на треугольник и выпуклый -угольник (рис. 5). По предположению индукции . С другой стороны, . Складывая эти равенства и учитывая, что ( - внутренний луч угла ) и (- внутренний луч угла), получаем .При получаем: .

3 Около любого правильного многоугольника можно описать окружность, и притом только одну.

Д-во: Пусть правильный многоугольник, а и - биссектрисы углов , и (рис. 150). Так как , то , следовательно, * 180° < 180°. Отсюда следует, что биссектрисы и углов и пересекаются в некоторой точке О. Докажем, что O = ОА2 = О =… = ОАп. Треугольник О равнобедренный, поэтому О= О. По второму признаку равенства треугольников , следовательно, О = О. Аналогично доказывается, что О = О и т.д. Таким образом, точка О равноудалена от всех вершин многоугольника, поэтому окружность с центром О радиуса О является описанной около многоугольника.

Докажем теперь, что описанная окружность только одна. Рассмотрим какие-нибудь три вершины многоугольника, например, , А2, . Так как через эти точки проходит только одна окружность, то около многоугольника нельзя описать более чем одну окружность.

4 В любой правильный многоугольник можно вписать окружность и притом только одну.

5 Окружность, вписанная в правильный многоугольник, касается сторон многоугольника в их серединах.

6 Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в тот же многоугольник.

7 Симметрия:

Говорят, что фигура обладает симметрией (симметрична), если существует такое движение (не тождественное), переводящее эту фигуру в себя.

7.1. Треугольник общего вида не имеет осей или центров симметрии, он несимметричен. Равнобедренный (но не равносторонний) треугольник имеет одну ось симметрии: серединный перпендикуляр к основанию.

7.2. Равносторонний треугольник имеет три оси симметрии (серединные перпендикуляры к сторонам) и поворотную симметрию относительно центра с углом поворота 120°.

7.3 У любого правильного n-угольника есть n осей симметрии, все они проходят через его центр. Он также имеет поворотную симметрию относительно центра с углом поворота .

При четном n одни оси симметрии проходят через противоположные вершины, другие - через середины противоположных сторон.

При нечетном n каждая ось проходит через вершину и середину противоположной стороны.

Центр правильного многоугольника с четным числом сторон является его центром симметрии. У правильного многоугольника с нечетным числом сторон центра симметрии нет.

8 Подобие:

При подобии и -угольник переходит в -угольник, полуплоскость - в полуплоскость, поэтому выпуклый n-угольник переходит в выпуклый n-угольник.

Теорема: Если стороны и углы выпуклых многоугольников иудовлетворяют равенствам:

, (1)

где - коэффициент подия

, (2)

то эти многоугольники подобны.

8.1 Отношение периметров двух подобных многоугольников равно коэффициенту подобия.

8.2. Отношение площадей двух выпуклых подобных многоугольников равно квадрату коэффициента подобия.

многоугольник треугольник периметр теорема

Размещено на Allbest.ru


Подобные документы

  • Теоретические основы изучения площадей многоугольников. Вычисление площадей в древности. Различные подходы к изучению понятий "площадь", "многоугольник", "площадь многоугольника". Вычисление площади многоугольника по координатам его вершин. Формула Пика.

    дипломная работа [1,1 M], добавлен 24.02.2010

  • Предикатное представление условий непересечения многоугольников. Алгоритм непересечения многоугольника и полосы. Определение направления обхода вершин многоугольника. Решение систем линейных алгебраических уравнений. Построение интерактивной оболочки.

    дипломная работа [800,2 K], добавлен 10.11.2012

  • Многоугольники, теорема Бойяи-Гервина. Лемма о целых решениях системы однородных линейных уравнений с рациональными коэффициентами. Понятия для доказательства теоремы Дена-Кагана. Задача на деление квадрата на восемь остроугольных треугольников.

    курсовая работа [1,3 M], добавлен 27.05.2012

  • Формулировки и доказательства китайской теоремы об остатках. Доказательство с помощью метода математической индукции. Конструктивный метод доказательства. Основные алгоритмы поиска решения. Применение китайской теоремы об остатках к открытию сейфа.

    курсовая работа [1,0 M], добавлен 08.01.2022

  • Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.

    творческая работа [17,4 K], добавлен 25.06.2009

  • Доказательство утверждения "Уравнение al+bq=cq (где l и q больше или равно 3) не имеет решений в отличных от нуля попарно взаимно простых целых числах a, b и c таких, чтобы a - было четным, b и c - нечетными целыми числами". Частный случай теоремы Ферма.

    творческая работа [856,3 K], добавлен 08.08.2010

  • Свойства изящной математической системы - треугольника Паскаля, в котором каждое число равно сумме двух расположенных над ним чисел. Расстановка шаров в бильярде как классический пример треугольника Паскаля. Изображение треугольника Паскаля в виде точек.

    презентация [382,4 K], добавлен 16.12.2010

  • Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.

    творческая работа [64,8 K], добавлен 20.05.2009

  • Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

    творческая работа [27,7 K], добавлен 17.10.2009

  • Понятие правильного многогранника. Полное математическое описание правильных многогранников Евклида. Открытие двух законов орбитальной динамики. Основные характеристики икосаэдра. Отношение количества вершин правильного многогранника к количеству рёбер.

    презентация [3,5 M], добавлен 19.02.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.