Решение матричных уравнений

Методика и основные этапы решения матричных уравнений, порядок проведения проверки. Составление уравнения прямой и каждой из сторон треугольника. Вычисление расстояния между двумя точками. Нахождение собственных чисел и собственных векторов матрицы.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 10.05.2012
Размер файла 114,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

к/р 1

1. Решить матричные уравнения и сделать проверку

Решение:

Найдём обратную матрицу .

Обратной для матрицы А есть матрица , где - определитель матрицы А, а элементы матрицы A* являются алгебраическими дополнениями соответствующих элементов матрицы А.

Тогда:

.

Найдем элементы матрицы А*:

Тогда:

и для Х получим следующее выражение:

Выполним проверку:

- верное равенство.

Ответ: .

2. Даны координаты точек А, В, С. Найти уравнения сторон треугольника АВС. Найти уравнение одной из медиан треугольника АВС. Найти уравнение одной из высот треугольника АВС. Найти уравнение одной из биссектрис треугольника АВС. Найти площадь треугольника АВС.

Вариант

А

В

С

19

(-3; 1)

(-1; - 3)

(1; 3)

Решение:
Уравнение прямой, проходящей через две точки можно записать как .
Тогда:
- уравнение стороны АВ:
- уравнение стороны АС:
- уравнение стороны ВС:
Найдем уравнение медианы ВМ, проведенной к стороне АС. Точка М - середина отрезка АС, следовательно координаты или
- уравнение медианы ВМ:
Найдём уравнение высоты АH, проведенной к стороне ВС. Уравнение стороны ВС с коэффициентом пропорциональности . Коэффициент пропорциональности перпендикулярной прямой будет и тогда уравнение высоты принимает вид , где К - некая константа, значение которой найдем исходя из условия принадлежности точки А (-3; 1) уравнению высоты AH:
- уравнение высоты АН:
Будем искать уравнение биссектрисы угла С.
Прямые АС: и ВС: наклонены под острым углом к оси абсцисс (коэффициенты пропорциональности положительны), тогда угол между прямыми АС и ВС будет равен , где угол между прямыми ВС и АС и осью ОХ соответственно.
По формуле тангенса разности получаем, что
Половина угла С будет
Тангенс угла наклона биссектрисы к оси ОХ тогда составит:
Уравнение биссектрисы примет вид: , где К некая константа, значение которой определим из условия принадлежности точки С (1; 3) биссектрисе, т.е.
Уравнение биссектрисы CL принимает вид
Для нахождения площади треугольника АВС воспользуемся формулой:
.
Тогда:
кв. ед.
Выполним чертеж:
Ответ: АВ: АС: ВС: - стороны треугольника
ВМ: - медиана треугольника; АН: - высота треугольника;
СL: - биссектриса треугольника; S = 10 кв. ед.
3. Даны координаты точек А1, A2, А3, A4
Найти длину ребра А1А2. Составить уравнение ребра А1А4 и грани А1А2А3. Составить уравнение высоты опущенной из точки А4 на плоскость А1А2А3. Найти площадь треугольника А1A2A3. Найти объем треугольной пирамиды А1A2А3A4

N

Координаты точек

Вар

A1

A2

A3

A4

2.19

(8; 6; 4)

(10; 5; 5)

(5; 6; 8)

(8; 10; 7)

Решение:

Воспользуемся формулой для вычисления расстояние между двумя точками:

Наши точки А1(8; 6; 4) и A2(10; 5; 5):

ед.

Длина ребра А1А2 равна ед.

Составим уравнение прямой проходящей через точки А1(8; 6; 4) и A4(8; 10; 7).

Для этого воспользуемся уравнением:

, т.е. А1А4: .

Найдем уравнение плоскости, проходящей через точки А1(8; 6; 4), A2(10; 5; 5), А3(5; 6; 8).

Воспользуемся формулой:

Подставим данные:

или

Т.е. уравнение грани А1А2А3: или

Искомая высота проходит через точку A4(8; 10; 7) и перпендикулярна плоскости , имеющей вектор нормали .

Направляющий вектор высоты совпадает с вектором нормали плоскости, к которой проведена высота, следовательно, т.к. каноническое уравнение прямой , то уравнение искомой высоты.

Площадь треугольника А1А2А3 можно найти по формуле: , где - векторное произведение двух векторов и .


кв. ед.

Объем пирамиды можно найти по формуле: , где - смешанное произведение трех векторов , и


Тогда куб. ед.

Ответ: ед.; А1А4: ; А1А2А3:

h: ; кв. ед.; куб. ед.

4. Найти собственные числа и собственные векторы матрицы А

уравнение матрица вектор прямая

;

Решение:

Найдем характеристическое уравнение матрицы А - определитель матрицы А -Е, где Е - единичная матрица, - независимая переменная.

А -Е = - = .

Найдем теперь собственные числа матрицы А - корни характеристического уравнения . Получаем:

Получаем:

, , .

Далее найдем собственные векторы матрицы А, соответствующие каждому из собственных чисел.

Пусть Х = - искомый собственный вектор.

Тогда система однородных уравнений (А -Е) = 0 выглядит так:

или

Эта однородная система линейных уравнений имеет множество решений, так как ее определитель равен нулю.

При система принимает вид:

Общее решение этой системы , где любое число.

В качестве собственного вектора достаточно взять любое частное решение.

Пусть, например, , тогда собственный вектор, соответствующий собственному числу , имеет вид: .

При система принимает вид:

Общее решение этой системы , где любое число.

Пусть, например, , тогда собственный вектор, соответствующий собственному числу , имеет вид: .

Аналогично при получаем систему

общее решение которой , где любое число.

Пусть , тогда собственный вектор, соответствующий собственному числу , имеет вид: .

Ответ: , , .

Размещено на Allbest.ru


Подобные документы

  • Методика проверки совместности системы уравнений и ее решение. Вычисление параметров однородной системы линейных алгебраических уравнений. Нахождение по координатам модуля, проекции вектора, скалярного произведения векторов. Составление уравнения прямой.

    контрольная работа [104,2 K], добавлен 23.01.2012

  • Базовые действия над матрицами. Решение матричных уравнений с помощью обратной матрицы и с помощью элементарных преобразований. Понятия обратной и транспонированной матриц. Решение матричных уравнений различных видов: АХ=В, ХА=В, АХВ=С, АХ+ХВ=С, АХ=ХА.

    курсовая работа [172,0 K], добавлен 09.09.2013

  • Нахождение собственных значений и собственных векторов матриц. Нетривиальное решение однородной системы линейных алгебраических уравнений. Метод нахождения характеристического многочлена, предложенный А.М. Данилевским. Получение формы Жордано: form.exe.

    курсовая работа [53,4 K], добавлен 29.08.2010

  • Изучение формул Крамера и Гаусса для решения систем уравнений. Использование метода обратной матрицы. Составление уравнения медианы и высоты треугольника. Нахождение пределов выражений и производных заданных функций. Определение экстремумов функции.

    контрольная работа [59,1 K], добавлен 15.01.2014

  • Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.

    контрольная работа [63,2 K], добавлен 24.10.2010

  • Решение задач систем линейных алгебраических уравнений, матричных уравнений, методы Гаусса и Кремера. Нахождение длины и координат вектора и исчисление его скалярного произведения. Уравнение прямой и определение координат точек неравенства; пределы.

    контрольная работа [220,9 K], добавлен 06.01.2011

  • Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.

    контрольная работа [97,3 K], добавлен 24.05.2009

  • Понятие равных матриц, их суммы и произведения. Нахождение элемента матрицы, свойства ее произведения. Расположение вне главной диагонали элементов квадратной матрицы. Понятие обратной матрицы, матричные уравнения. Теорема о базисном миноре, ранг матрицы.

    реферат [105,3 K], добавлен 21.08.2009

  • Определение собственного вектора матрицы как результата применения линейного преобразования, задаваемого матрицей (умножения вектора на собственное число). Перечень основных действий и описание структурной схемы алгоритма метода Леверрье-Фаддеева.

    презентация [55,2 K], добавлен 06.12.2011

  • Понятие Диофантовых уравнений, их сущность и особенности, методика и этапы решения. Великая теорема Ферма и порядок ее доказательства. Алгоритм решения иррациональных уравнений. Метод поиска Пифагоровых троек. особенности решения уравнения Каталана.

    учебное пособие [330,2 K], добавлен 23.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.