Определители второго и третьего порядков

Определители второго порядка, их особенности. Примеры решения систем двух уравнений с двумя неизвестными методом определителей. Решение систем из трех линейных уравнений с тремя неизвестными методом определителей. Основные свойства определителей.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 23.11.2011
Размер файла 13,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Определители

Введение

Определители впервые были введены для решения системы уравнений первой степени. В 1750 году швейцарский математик Г. Крамер дал общие формулы, выражающие неизвестные через Определители , составленные из коэффициентов системы. Примерно через сто лет теория определителей, выйдя далеко за пределы алгебры, стала применяться во всех математических науках.

В настоящем реферате рассмотрены определители второго и третьего порядка, приведены примеры решения систем уравнений методом определителей.

Определители второго порядка

Рассмотрим систему уравнений:

a1x + b1y = с1

a2x + b2y = с2

Данную систему можно решить традиционными методами - подстановки и сложения уравнений. Однако, в ряде случаев оказывается легче применить определители

Представим систему в виде квадратной матрицы:

| a1 b1 |

А = | |

| a2 b2 |.

число а1b1- а2b2 называют определителем системы и обозначают det A или D

| a1 b1 | | a1 b1 |

Dx = | | , Dy = | |

| a2 b2 | | a2 b2 |

Определитель Dx получается из D заменой элементов первого столбца свободными членами системы; аналогично Dy.

Возможны три случая:

Случай 1: определитель системы не равен нулю: D № 0. Тогда система имеет единственное решение: x = Dx/D , y= Dy/D.

Случай 2: определитель системы равен нулю: D = 0 (т.е. коэффициенты при неизвестных пропорциональны). Пусть при этом один из определителей Dx, Dy не равен нулю (т.е. свободные члены не пропорциональны коэффициентам при неизвестных). В этом случае системы не имеет решений.

Случай 3: D = 0, D x = 0, D y = 0 (т.е. коэффициенты и свободные члены пропорциональны). Тогда одно из уравнений есть следствие другого: система сводится к одному уравнению с двумя неизвестными и имеет бесчисленное множество решений.

Рассмотрим несколько примеров решения систем двух уравнений с двумя неизвестными методом определителей.

Пример 1. Решить систему уравнений:

2x + 3y = 8

7x - 5y = -3

| 2 3 | | 8 3| | 2 8 |

D= | | = -31 Dx = | | = -31 Dy = | | = - 62

| 7 -5 | | -3 -5| | 7 -3 |

Система имеет единственное решение.

х = Dx/D =1 y = Dy/D = 2

Пример 2. Решить систему уравнений:

2x + 3y = 8

4x + 6y = 10

| 2 3 | | 8 3|

D = | | = 0, при этом Dx = | |= 18 № 0. | |

| 4 6 | | 10 6 |

Коэффициенты пропорциональны, а свободные члены не подчинены той же пропорции. Система не имеет решений.

Пример 3. Решить систему уравнений:

2x + 3y = 8

4x +6y = 10

| 2 3 | | 8 3 | | 2 8 |

D = | |= 0 Dx = | | =0 Dy = | | =0

| 4 6 | | 16 6 | | 4 16 |

Одно из уравнений есть следствие другого (например, второе получается из первого, умножая на два). Система сводится к одному уравнению и имеет бесчисленное множество решений.

Определители третьего порядка

Решение систем из трех линейных уравнений с тремя неизвестными также можно решить методом определителей .

Определителем квадратной матрицы третьего порядка

| a1 b1 c1 | называется выражение D = а1b2c3 - a1b3c2 + b1c2a3 -

А= | a2 b2 c2 | b1c3a2 + c1a2b3 - c1a3b2

| a3 b3 c3 |

или, если выразить его через определители 2-го порядка:

| b2 c2| | a2 c2 | | a2 b2

a1 | | - b1 | | + c1 | |

| b3 c3| | a3 c3 | | a3 b3|

Определители n -го порядка

Определителем квадратной матрицы n-го порядка А, где

| a11 a12 … a1n | | a22 a23…a2n |

| a21 a22 … a2n | называют число D = a11 | …………… | -

A = | ………………… | | an2 an3…annn|

| an1 an2 … ann |

| a21 a23…a2n | | a21 a22…a2(n-1)|

- a12 | ………….. | +…+ (-1)n+1a1n | ……………. |

| an1 an3…ann | | an1 an2…an(n-1) |

т.е. мы имеем знакочередующуюся сумму произведений, в которых один из из множителей - элемент первой строки, а другой - определитель матрицы (n-1)-го порядка, полученной вычеркиванием той строки и того столбца которым принадлежит первый множитель.

Например:

| 4 1 3 5 |

| 2 3 2 1 | | 3 2 1 | | 2 2 1 | | 2 3 1 | | 2 3 2 |

| 5 2 1 4 | = 4 | 2 1 4 | - 1 | 5 1 4 | + 3 | 5 2 4 | - 5 | 5 2 1 |

| 11 6 5 10| | 6 5 10| | 11 5 10 | |11 6 10 | | 11 6 5 |

= 4( 3(10-20) - 2(20-24) + 1(10-6)) - 1( 2(10-20) -2(50-44) + 1(25-11)) +

+ 3( 2(20-24) - 3(50-44) + 1(30-22)) -5( 2(10-6) - 3(25-11) +2(30-22)) = -28

Свойства определителей

1. Величина определителя не изменяется, если каждую строку заменить столбцом с тем же номером.

Пример 1:

| a1 b1 | | a1 a2 | | 2 3 | | 2 7 |

| | = | | | | = 2(-5) - 7 3 = -31 = | |

| a2 b2 | | b1 b2 | | 7 -5 | | 3 -5 |

2. При перестановке каких-либо двух строк или каких-нибудь двух столбцов абсолютное значение определителя остается прежним, а знак меняется на обратный.

| a1 b1 c1 | | a1 b1 c1 | (переставлены вторая и третья строки)

| a2 b2 c2 | = - | a3 b3 c3 |

| а3 b3 c3 | | a3 b3 c3 |

Пример 2: | 2 3 | | 5 7 |

| 5 7 | = - | 2 3 |

3. Определитель, у которого элементы одной строки (или столбца) соответственно пропорциональны элементам другой строки (или столбца), равен нулю. В частности, определитель с двумя одинаковыми строчками (столбцами) равен нулю.

Пример 3:

| 2 -1 3|

| 4 -2 -3| = 2(-2 2 -(-3)(-3)) - (-1)(4 2- 6(-3)) + 3(4(-3)- 6(-2))

| 6 -3 2| = 0 (первый и второй столбцы пропорциональны).

| 2 2 2 |

| -5 -3 -3| = 0 (второй и третий столбцы одинаковы).

| 0 -1 -1|

4. Общий множитель всех элементов одной строки (или столбца) можно вынести за знак определителя.

| ma ma' ma'' | | a a' a'' | Пример 4: | 3 5 | | 1 5 |

| b b' b'' | = m | b b' b'' | | 6 7 | = 3 | 2 7 |

| c c' c'' | | c c' c'' |

5. Если каждый элемент какого-либо столбца (строки) есть сумма двух слагаемых, то определитель равен сумме двух определителей: в одном вместо каждой суммы стоит только первое слагаемое, в другом - только второе (остальные элементы в обоих определителях те же, что в данном ).

| a1 (b1+c1) d1 | | a1 b1 d1 | | a1 c1 d1 |

| a2 (b2+c2) d2 | = | a2 b2 d2 | + | a2 c2 d2 |

| a3 (b3+c3) d3 | | a3 b3 d3 | | a3 c3 d3 |

Пример 5:

| 5 13 | | 5 6 | | 5 7 |

| 3 7 | = | 3 3 | + | 3 4 |

6. Если ко всем элементам какого-либо столбца прибавить слагаемые, пропорциональные соответствующим элементам другого столбца, то новый определитель равен старому. То же для строк.

Пример 6:

| 2 -1 3 |

определитель | 4 1 -3 | = 12.

| 5 0 2 |

Прибавим к этим элементам первой строки элементы второй и получим | 6 0 0 | Этот определитель тоже = 12, но вычисляется

| 4 1 3 | проще ( в разложении по элементам первой

| 5 0 2 | строки два слагаемых равны нулю.

Пример 7:

Для вычисления определителя

| 4 2 3 | прибавим к элементам первого столбца элементы второго,

|-1 3 5 | умноженные на -2

| 6 3 -1 |

Получим | 0 2 3 |

| -7 3 5 | Этот определитель легко вычисляются

| 0 3 -1 | разложением по элементам первого столбца

Получаем:

| 2 3 |

7 | | = -77.

| 3 -1 |

Таким образом, рассмотрев свойства определителей, мы видим, что существует множество возможностей упростить вычисление определи-телей. При «ручном» вычислении определителей очень часто решение системы оказывается сложнее, чем традиционными методами. Однако, решение систем методом определителей легко запрограммировать, и тогда данный метод даст тем больший выигрыш, чем выше порядок системы уравнений.

Заключение

определитель линейное уравнение

В настоящем реферате показан способ решения линейных уравнений любого сколь угодно большого порядка методом определителей. Рассмотрены свойства определителей, решены примеры. Метод определителей позволяет ввести единый алгоритм решения систем, т.е. дает возможность запрограммировать это решение. Таким образом, чем выше порядок системы, тем больше будет выигрыш при решении систем методом определителей, чем при традиционных способах решения.

Список литературы

1. Энциклопедический словарь юного математика /Сост.А.П.Савин.- М.: Педагогика, 1989.

2. Петраков И.С. Математические кружки в 8 -1 0 классах: Кн. для учителя.- М.: Просвещение, 1987.

Размещено на Allbest.ru


Подобные документы

  • Теория определителей в трудах П. Лапласа, О. Коши и К. Якоби. Определители второго порядка и системы двух линейных уравнений с двумя неизвестными. Определители третьего порядка и свойства определителей. Решение системы уравнений по правилу Крамера.

    презентация [642,7 K], добавлен 31.10.2016

  • Определители второго и третьего порядков, свойства определителей. Два способа вычисления определителя третьего порядка. Теорема разложения. Теорема Крамера, которая дает практический способ решения систем линейных уравнений используя определители.

    лекция [55,2 K], добавлен 02.06.2008

  • Понятие и сущность определителей второго порядка. Рассмотрение основ системы из двух линейных уравнений с двумя неизвестными. Изучение определителей n–ого порядка и методы их вычисления. Особенности системы из n линейных уравнений с n неизвестными.

    презентация [316,5 K], добавлен 14.11.2014

  • Определители второго и третьего порядка. Перестановки и подстановки. Миноры и алгебраические дополнения. Применение методов приведения определителя к треугольному виду, представления определителя в виде суммы определителей, выделения линейных множителей.

    курсовая работа [456,6 K], добавлен 19.07.2013

  • Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.

    учебное пособие [223,0 K], добавлен 04.03.2010

  • Пример вычисления определителя второго порядка в общем виде. Свойства векторного произведения и их доказательства. Пример применения правила Крамера для решения систем из n уравнений с n неизвестными. Векторное произведение векторов заданных проекциями.

    контрольная работа [297,9 K], добавлен 14.03.2009

  • Нахождение длины ребер, углов между ними, площадей граней и объема пирамиды по координатам вершин пирамиды. Решение системы трех линейных уравнений с тремя неизвестными методом Крамера, средствами матричного исчисления. Уравнение кривой второго порядка.

    контрольная работа [330,3 K], добавлен 01.05.2012

  • Решение системы трех уравнений с тремя неизвестными при помощи определителей. Исследование системы на совместность, составление канонического уравнения эллипса. Изучение функции методами дифференциального исчисления, поиск точки разрыва функции.

    контрольная работа [1,1 M], добавлен 16.04.2010

  • Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.

    реферат [532,7 K], добавлен 10.11.2009

  • Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.

    реферат [203,0 K], добавлен 12.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.