Применение цепных дробей при расчёте числа золотого сечения

Определение цепных дробей, их свойства и примеры. Представление действительных чисел цепными дробями общего вида. Золотое сечение – гармоническая пропорция, история данного понятия. Расчёт его числа при помощи ряда Фибоначчи и с помощью цепных дробей.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 07.11.2011
Размер файла 384,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ТЕМА РАБОТЫ

ПРИМЕНЕНИЕ ЦЕПНЫХ ДРОБЕЙ ПРИ РАСЧЁТЕ ЧИСЛА ц ЗОЛОТОГО СЕЧЕНИЯ

по алгебре и геометрии

учащейся 10а класса Курзяковой Елены

Введение

Основная цель моей работы заключается в том, чтобы показать способ представления действительных чисел с помощью цепных дробей, в частности, рассчитать значение числа ц золотого сечения с заданной точностью.

Цепные дроби

Определение цепных дробей

Целое число, являющееся делителем каждого из целых чисел , называется общим делителем этих чисел. Общий делитель этих чисел называется их наибольшим общим делителем, если он делится на всякий общий делитель данных чисел.

Пусть - рациональное число, причем b>0. Применяя к a и b алгоритм Евклида для определения их наибольшего общего делителя, получаем конечную систему равенств:

где неполным частным последовательных делений соответствуют остатки с условием b>>>…>>0, а соответствует остаток 0.

Системе равенств (1) соответствует равносильная система

из которой последовательной заменой каждой из дробей и т.д. ее соответствующим выражением из следующей строки получается представление дроби в виде:

Такое выражение называется правильной (конечной) цепной или правильной непрерывной дробью, при этом предполагается, что - целое число, а , …, - натуральные числа.

Имеются различные формы записи цепных дробей:

Согласно последнему обозначению имеем

Числа , , …, называются элементами цепной дроби.

Алгоритм Евклида дает возможность найти представление (или разложение) любого рационального числа в виде цепной дроби. В качестве элементов цепной дроби получаются неполные частные последовательных делений в системе равенств (1), поэтому элементы цепной дроби называются также неполными частными. Кроме того, равенства системы (2) показывают, что процесс разложения в цепную дробь состоит в последовательном выделении целой части и перевертывании дробной части.

Последняя точка зрения является более общей по сравнению с первой, так как она применима к разложению в непрерывную дробь не только рационального, но и любого действительного числа.

Разложение рационального числа имеет, очевидно, конечное число элементов, так как алгоритм Евклида последовательного деления a на b является конечным.

Понятно, что каждая цепная дробь представляет определенное рациональное число, то есть равна определенному рациональному числу. Но возникает вопрос, не имеются ли различные представления одного и того же рационального числа цепной дробью? Оказывается, что не имеются, если потребовать, чтобы было .

Теорема. Существует одна и только одна конечная цепная дробь, равная данному рациональному числу, но при условии, что .

Доказательство: 1) Заметим, что при отказе от указанного условия единственность представления отпадает. В самом деле, при :

так что представление можно удлинить:

например, (2, 3, 1, 4, 2)=( 2, 3, 1, 4, 1, 1).

2) Принимая условие , можно утверждать, что целая часть цепной дроби равна ее первому неполному частному . В самом деле:

если n=1, то

если n=2, то ; поэтому

если n>2, то

=

,

где >1, т.к.

Поэтому и здесь . Докажем то, что рациональное число однозначно представляется цепной дробью , если .

Пусть с условием , . Тогда , так что . Повторным сравнением целых частей получаем , а следовательно и так далее. Если , то в продолжении указанного процесса получим также . Если же , например , то получим , что невозможно.

Теорема доказана.

Вместе с тем мы установили, что при соблюдении условия между рациональными числами и конечными цепными дробями существует взаимно однозначное соответствие.

Замечания:

В случае разложения правильной положительной дроби первый элемент , например, .

При разложении отрицательной дроби (отрицательный знак дроби всегда относится к числителю) первый элемент будет отрицательным, остальные положительными, так как целая часть отрицательной дроби является целым отрицательным числом, а ее дробная часть, как всегда, положительна.

Пример: , а так как , то .

Всякое целое число можно рассматривать как непрерывную дробь, состоящую из одного элемента.

Пример: 5=(5); .

Свойства и примеры цепных дробей

· Любое рациональное число может быть представлено в виде конечной цепной дроби двумя способами, например:

· Теорема Лагранжа: Число представляется в виде бесконечной периодической цепной дроби тогда и только тогда, когда оно является иррациональным решением квадратного уравнения с целыми коэффициентами.

Например:

золотое сечение

· Для остальных -- не квадратичных -- алгебраических чисел характер разложений совершенно не известен. До сих пор неизвестно разложение хотя бы одного алгебраического числа степени N>2 в цепную дробь.

· Для некоторых трансцендентных чисел можно найти простую закономерность. Например, для основания натурального логарифма:

e ? 1 = [1;1;2;1;1;4;1;1;6;1;1;8;...;1;1;2n ? 2;1;1;2n;...]

для числа

tg1 = [1;1;1;3;1;5;1;7;...;1;2n + 1;1;2n + 3;...]

· Для числа пи подобной закономерности не выявлено:

р = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15,…]

· Теорема Гаусса -- Кузмина: Почти для всех (кроме множества меры нуль) действительных чисел существует среднее геометрическое коэффициентов соответствующих им цепных дробей, и оно равно одному и тому же числу.

Представление действительных чисел цепными дробями общего вида.

Рассмотренные до сих пор правильные бесконечные и конечные цепные дроби являются частным случаем бесконечных и конечных цепных дробей общего вида:

(1),

когда в них принимается, что все , , а остальные .

В общем случае элементы цепной дроби и , k>1 могут принимать произвольные, отличные от 0 рациональные значения, а может также быть равно нулю.

При помощи цепных дробей общего вида одно и то же рациональное число можно представить различными способами. Например,

.

В цепной дроби (1), которую записывают также иначе, например, () или () числа и (k=2, 3, …) называют звеньями, и - членами k-го звена, из них - частным числителем, а - частным знаменателем.

Чтобы получить разложение рационального числа в конечную цепную дробь (1), можно все и , за исключением одного, выбрать произвольно.

Можно, например, найти разложение ; для этого следует положить . Можно цепную дробь преобразовать так, чтобы все были равны 1, то есть, чтобы (1) приняло вид (2).

Так, например, . Дроби вида (2) называют обыкновенными цепными дробями, а , , …, - их неполными частными. Правильные цепные дроби можно поэтому определить как обыкновенные цепные дроби с целыми положительными неполными частными, начиная с , причем может быть любым целым числом.

Правильные цепные дроби являются наиболее простыми и наиболее изученными среди цепных дробей общего вида, однако и другие цепные дроби играют большую роль и имеют важные применения, например, в приближенном анализе, где при их помощи без сложных выкладок получают дробно-рациональные приближения функций.

Рассмотрим обзорно некоторые свойства цепных дробей общего вида.

Происхождение таких цепных дробей связано с обобщенным алгоритмом Евклида.

Если мы имеем систему равенств , , , … с произвольными рациональными числами, то при b, c, d0, из них следуют равенства , , , …, так что, подставляя по цепочке, получаем .

k-я подходящая дробь определяется для по формуле при условии, что , , , .

Пользуясь ею, найдем, например, подходящие дроби для разложения . Имеем =, , , , , . Заметим, что получаемые в процессе рекуррентного вычисления подходящие дроби могут быть сократимыми, но сокращать их можно лишь при определенных условиях.

Свойства подходящих дробей цепных дробей общего вида с положительными элементами и правильных цепных дробей вполне аналогичны.

Бесконечная цепная дробь (1) называется сходящейся, если существует конечный предел ; в таком случае принимается за значение этой дроби. Не всегда общие бесконечные цепные дроби являются сходящимися, даже тогда, когда они имеют лишь положительные элементы.

Существует ряд признаков сходимости цепных дробей:

Пусть дана непрерывная дробь вида

, где ,

Пусть , все члены последовательностей , действительные числа и для всех , начиная с некоторого. Если для таких k выполняется неравенство , то цепная дробь сходится.

Пусть и все члены последовательности , начиная с k=2 положительны. Тогда цепная дробь сходится тогда и только тогда, когда ряд расходится (теорема Зейделя).

Интересной особенностью цепных дробей общего вида является то, что даже рациональные числа могут ими разлагаться в бесконечные цепные дроби. Например, имеется разложение

=, , , , , …

0,3; 0,42; 0,45; 0,467; …

Примечательно то, что квадратические иррациональности разлагаются и в непериодические цепные дроби общего вида.

Например, имеется разложение

=, , , , , , , …

1; 1,5; 1,38; 1,44; 1,40; …

Но самое интересное и важное это то, что в то время как до настоящего времени неизвестно разложение в правильную цепную дробь ни одной алгебраической иррациональности степени выше второй (другими словами, неизвестны общие свойства неполных частных таких разложений, разложения сами по себе со сколь угодной точностью можно практически найти), при помощи общих цепных дробей такие разложения находятся довольно легко. Отметим, например, некоторые разложения и соответствующие подходящие дроби для :

=, , , , , , …

1,33; 1,22; 1,284.

=, , , , , , …

1,17; 1,25; 1,258; 1,2596; …

Приведем еще несколько примеров разложений других иррациональностей в цепные дроби общего вида:

=, , , , , , …

Эта цепная дробь для была найдена еще более 300 лет назад английским математиком Брункером.

=, , , , , , ,

В 1776 году И. Ламберт нашел разложение tg x в цепную дробь: tg

x=

А. Лежандр в предположении, что эта цепная дробь сходится, показал, что ее значение для рациональных значений x иррационально. Принято считать, что тем самым была доказана иррациональность числа .

Л. Эйлер нашел, что: =(1; 6, 10, 14, …). Также Эйлер нашел разложение в цепную дробь числа e. e=(2; 1, 2, 1, 1, 4, 1, 1, 6, …), то есть элементы разложения e в цепную дробь имеют вид:

, ,

Швейцарский математик Иоганн Генрих Ламберт (1728-1777) нашел разложение числа в виде цепной дроби.

Первые 25 неполные частные разложения числа в правильную цепную дробь есть числа:

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1.

цепной дробь золотое сечение

Золотое сечение

Золотое сечение - гармоническая пропорция

В математике пропорцией (лат. proportio) называют равенство двух отношений: a: b = c: d.

Отрезок прямой АВ можно разделить на две части следующими способами:

· на две равные части - АВ: АС = АВ: ВС;

· на две неравные части в любом отношении (такие части пропорции не образуют);

· таким образом, когда АВ: АС = АС: ВС.

Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему

a: b = b: c или с: b = b: а.

Рис. 1. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Рис. 2. Деление отрезка прямой по золотому сечению. BC = 1/2 AB; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая - 38 частям.

Свойства золотого сечения описываются уравнением:

x2 - x - 1 = 0.

Решение этого уравнения:

Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.

Второе золотое сечение

Болгарский журнал «Отечество» (№10, 1983 г.) опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и дает другое отношение 44: 56.

Такая пропорция обнаружена в архитектуре, а также имеет место при построении композиций изображений удлиненного горизонтального формата.

Рис. 3. Построение второго золотого сечения

Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Е делит отрезок AD в отношении 56: 44.

Рис. 4. Деление прямоугольника линией второго золотого сечения

На рисунке показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.

История золотого сечения

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Рис. 7. Динамические прямоугольники

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

Рис. 8. Античный циркуль золотого сечения

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро Делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли «Божественная пропорция» с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок - бога отца, а весь отрезок - бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».

Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица - ртом и т.д. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).

Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, - писал он, - что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

Если на прямой произвольной длины, отложить отрезок m, рядом откладываем отрезок M. На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов

Рис. 9. Построение шкалы отрезков золотой пропорции

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребенка». Вновь «открыто» золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».

Рис. 10. Золотые пропорции в частях тела человека

Рис. 11. Золотые пропорции в фигуре человека

Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа - важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела - длина плеча, предплечья и кисти, кисти и пальцев и т.д.

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.

В конце XIX - начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.

Золотой треугольник

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой.

Рис. 5. Построение правильного пятиугольника и пентаграммы

Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471...1528). Пусть O - центр окружности, A - точка на окружности и Е - середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Рис. 6. Построение золотого треугольника

Проводим прямую АВ. От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d1 соединяем прямыми с точкой А. Отрезок dd1 откладываем на линию Ad1, получая точку С. Она разделила линию Ad1 в пропорции золотого сечения. Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника.

Золотое сечение и гармония в искусстве

Под «правилом золотого сечения» в архитектуре и искусстве обычно понимается асимметричные композиции, не обязательно содержащие золотое сечение.

Многие утверждают, что объекты, содержащие в себе «золотое сечение», воспринимаются людьми как наиболее гармоничные. Обычно такие исследования не выдерживают строгой критики. В любом случае ко всем этим утверждениям следует относиться с осторожностью, поскольку во многих случаях это может оказаться результатом подгонки или совпадения. Есть основание считать, что значимость золотого сечения в искусстве преувеличена и основывается на ошибочных расчётах. Некоторые из таких утверждений:

· Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона якобы свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании.

· Согласно Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению. Древнеегипетский зодчий Хесира, вырезанный на деревянной доске, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого сечения. В фасаде древнегреческого храма Парфенона также присутствуют золотые пропорции. В циркуле из древнеримского города Помпеи (музей в Неаполе) также заложены пропорции золотого деления, и т. д. и т. п.

· Результаты исследования золотого сечения в музыке впервые изложены в докладе Эмилия Розенова (1903) и позднее развиты в его статье «Закон золотого сечения в поэзии и музыке» (1925). Розенов показал действие данной пропорции в музыкальных формах эпохи Барокко и классицизма на примере произведений Баха, Моцарта, Бетховена.

Расчёт числа ц «золотого» сечения

Расчёт числа ц при помощи ряда Фибоначчи

С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:

Месяцы

0

1

2

3

4

5

6

7

8

9

10

11

12

и т.д.

Пары кроликов

0

1

1

2

3

5

8

13

21

34

55

89

144

и т.д.

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение - 0,618: 0,382 - дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Таким образом,

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.

Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.

Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8, 16... на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2..., во втором - это сумма двух предыдущих чисел 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2.... Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?

Действительно, зададимся числовым параметром S, который может принимать любые значения: 0, 1, 2, 3, 4, 5... Рассмотрим числовой ряд, S + 1 первых членов которого - единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n-й член этого ряда мы обозначим через цS (n), то получим общую формулу

цS (n) = цS (n - 1) + цS (n - S - 1).

Очевидно, что при S = 0 из этой формулы мы получим «двоичный» ряд, при S = 1 - ряд Фибоначчи, при S = 2, 3, 4. новые ряды чисел, которые получили название S-чисел Фибоначчи.

В общем виде золотая S-пропорция есть положительный корень уравнения золотого S-сечения xS+1 - xS - 1 = 0.

Нетрудно показать, что при S = 0 получается деление отрезка пополам, а при S = 1 -знакомое классическое золотое сечение.

Отношения соседних S-чисел Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S-пропорциями! Математики в таких случаях говорят, что золотые S-сечения являются числовыми инвариантами S-чисел Фибоначчи.

Факты, подтверждающие существование золотых S-сечений в природе, приводит белорусский ученый Э.М. Сороко в книге «Структурная гармония систем» (Минск, «Наука и техника», 1984). Оказывается, например, что хорошо изученные двойные сплавы обладают особыми, ярко выраженными функциональными свойствами (устойчивы в термическом отношении, тверды, износостойки, устойчивы к окислению и т. п.) только в том случае, если удельные веса исходных компонентов связаны друг с другом одной из золотых S-пропорций. Это позволило автору выдвинуть гипотезу о том, что золотые S-сечения есть числовые инварианты самоорганизующихся систем. Будучи подтвержденной экспериментально, эта гипотеза может иметь фундаментальное значение для развития синергетики - новой области науки, изучающей процессы в самоорганизующихся системах.

С помощью кодов золотой S-пропорции можно выразить любое действительное число в виде суммы степеней золотых S-пропорций с целыми коэффициентами.

Принципиальное отличие такого способа кодирования чисел заключается в том, что основания новых кодов, представляющие собой золотые S-пропорции, при S > 0 оказываются иррациональными числами. Таким образом, новые системы счисления с иррациональными основаниями как бы ставят «с головы на ноги» исторически сложившуюся иерархию отношений между числами рациональными и иррациональными. Дело в том, что сначала были «открыты» числа натуральные; затем их отношения - числа рациональные. И лишь позже - после открытия пифагорийцами несоизмеримых отрезков - на свет появились иррациональные числа. Скажем, в десятичной, пятеричной, двоичной и других классических позиционных системах счисления в качестве своеобразной первоосновы были выбраны натуральные числа - 10, 5, 2, - из которых уже по определенным правилам конструировались все другие натуральные, а также рациональные и иррациональные числа.

Своего рода альтернативой существующим способам счисления выступает новая, иррациональная система, в качестве первоосновы, начала счисления которой выбрано иррациональное число (являющееся, напомним, корнем уравнения золотого сечения); через него уже выражаются другие действительные числа.

В такой системе счисления любое натуральное число всегда представимо в виде конечной - а не бесконечной, как думали ранее! - суммы степеней любой из золотых S-пропорций. Это одна из причин, почему «иррациональная» арифметика, обладая удивительной математической простотой и изяществом, как бы вобрала в себя лучшие качества классической двоичной и «Фибоначчиевой» арифметик.

Расчёт числа ц с помощью цепных дробей (практическая часть)

Пусть АВ=1 (для удобства).

Ў Обозначим АЕ = х, тогда ВЕ = 1-х.

Ў Т. К, получим уравнение

Цепная дробь приводящая к числу ц:

Например, или

Обозначив эту дробь через х>0, можно увидеть то же самое х в знаменателе первой дроби. Поэтому получим уравнение, где х - его положительный корень:

Также можно получить тригонометрическую форму записи числа ц

-- иррациональное алгебраическое число, положительное решение квадратного уравнения

-- представляется через тригонометрические функции:

представляется в виде бесконечной цепочки квадратных корней:

Список литературы

Виленкин Н.Я. За страницами учебника математики: геометрия. Старинные и занимательные задачи: пособие для учащихся 10-11 классов-М.: Просвещение, 2008. - 175с.: ил

Хинчин А.Я.: Цепные дроби.1960 г.

Арнольд В.И.: Цепные дроби.2001 г.

Интернет-ресурсы.

Размещено на Allbest.ru


Подобные документы

  • Из истории десятичных и обыкновенных дробей. Действия над десятичными дробями. Сложение (вычитание) десятичных дробей. Умножение десятичных дробей. Деление десятичных дробей.

    реферат [8,3 K], добавлен 29.05.2006

  • Определение золотого сечения и его роль в науке. Присутствие золотого сечения в окружающей жизни. Золотое сечение в расположении листьев на стебле и в пропорциях тела. Деление тела точкой пупа. Числа Фибоначчи, золотая пропорция и тело человека.

    реферат [2,2 M], добавлен 09.04.2012

  • Особенности возникновения и использования дробей в Египте. Особенности применения шестидесятеричных дробей в Вавилоне, греческими и арабскими математиками и астрономами. Отличительные черты дробей в Древнем Риме и Руси. Дробные числа в современном мире.

    презентация [1,3 M], добавлен 29.04.2014

  • На протяжении многих веков на языках народов ломаным числом именовали дробь. Необходимость в дробях возникла на ранней ступени развития человечества. Виды дробей. Запись дробей в Египте, Вавилоне. Римская система дробей. Дроби на Руси - "ломаные числа".

    презентация [1022,3 K], добавлен 21.01.2011

  • Изучение принципа золотого сечения – высшего проявления структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Золотое сечение – гармоническая пропорция. Деление отрезка прямой. Динамические прямоугольники.

    презентация [1,5 M], добавлен 14.12.2011

  • Понятие золотого сечения. История открытия "золотой" пропорции, ее использование в архитектуре, живописи и природе. Проведение исследования, доказывающего утверждение Ле Корбюзье. Примеры золотого сечения. Геометрическая загадка портрета Джоконды.

    презентация [7,0 M], добавлен 10.11.2014

  • Появление слова "дробь" в русском языке в VIII веке. Старые названия дробей: полтина, четь, треть, полчеть, полтреть. Особенности древнеримской дробной системы. Л. Пизанский - ученый, который стал использовать и распространять современную запись дробей.

    презентация [2,5 M], добавлен 18.11.2013

  • Понятие "золотое сечение" как пропорции, деления в крайнем и среднем отношении. Математические свойства сечения, его использование в музыке, архитектуре, искусстве. Пропорции тела человека. Исследование распространения "золотого сечения" в природе.

    презентация [1,9 M], добавлен 27.02.2012

  • Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.

    курсовая работа [416,0 K], добавлен 09.08.2015

  • Спиральная последовательность квадратов чисел. Последовательность чисел Фибоначчи и "золотое сечение" Леонардо да Винчи. Живые и неживые числа. Общая корзина "Гармонии Мироздания". Показательная спираль живой органики или спираль "Китовраса".

    статья [4,1 M], добавлен 18.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.