Гамма и ее приложения

Представление бета и гамма функций с помощью интегралов Эйлера соответственно первого и второго рода, их применение для вычисления интегралов. Бета и гамма функции. Производная гамма функции. Вычисление интегралов формула Стирлинга, примеры вычислений.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 30.10.2010
Размер файла 133,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Гамма и ее приложения

Содержание

Введение

Бета функции

Гамма функции

Производная гамма функции

Вычисление интегралов формула Стирлинга

Примеры вычеслений

Выводы

Список литературы

Введение

Выделяют особый класс функций, представимых в виде собственого либо несобственого интеграла, который зависит не только от формальной переменной, а и от параметра.

Такие функции называются интегралами зависящими от параметра. К их числу относятся гамма и бета функции Эйлера.

Бета функции представимы интегралом Эйлера первого рода:

гамма функция представляется интегралом Эйлера второго рода:

1. Бэта-функции 6

Бэта - функции определяются интегралом Эйлера первого рода:

= (1.1)

сходятся при .Полагая =1 - t получим:

= - =

т.e. аргумент и входят в симетрично. Принимая во внимание тождество

по формуле интегрирования почестям имеем

Откуда

= (1.2)

При целом b = n последовательно применяя(1.2)

Получим

(1.3)

при целых = m,= n,имеем

но B(1,1) = 1,следовательно:

Положим в (1.1) .Так как график функции

симметрична относительно прямой ,то

и в результате подстановки

,

получаем

полагая в(1.1)

,

Откуда

,

получим

(1.4)

разделяя интеграл на два в пределах от 0 до 1 и от 1 до и применение ко второму интегралу подстановки

,

получим

=

2. Гамма-функция

Гамма функцию определяет интеграл Эйлера второго рода

(a) = (2.1)

сходящийся при 0.Положим =ty,t > 0,имеем

(a) =

и после замены , через и t через 1+t,получим

Умножая это равенство и интегрируя по t и пределах от 0 до, имеем:

или на основании (1.4) и после изменения в правой части порядка интегрирования,получаем:

откуда

(2.2)

заменяя в (2,1) ,на и интегрируем по частям

получаем рекурентною формулу

(2.3)

так как

но при целом имеем

(2.4)

то есть при целых значениях аргумента гамма-функция превращается в факториал.Порядок которого на единицу меньше взятого значения аргумента.При n=1 в (2.4) имеем

3. Производная гамма функции

Интеграл

сходится при каждом ,поскольку

,

и интеграл

при сходится.

В области , где - произвольное положительное число, этот интеграл сходится равномерно, так как

и можна применить признак Веерштраса. Сходящимся при всех значениях является и весь интеграл

так как и второе слогаемое правой части является интегралом, заведомо сходящимся при любом.Легко видеть что интеграл сходится пов любой области

где произвольно.Действительно для всех указаных значений и для всех

,

и так как

сходится, то выполнены условия признака Веерштрасса. Таким образом, в области

Интеграл

cходится равномерно.

Отсюда вытекает непрерывность гамма функции при.Докажем дифференцируемость этой функции при .Заметим что функция

непрерывна при и, и покажем,что интеграл:

сходится равномерно на каждом сегменте

, .

Выберем число так, чтобы

; тогда при .

Поэтому существует число такое, что

и на.

Но тогда на справедливо неравенство

и так как интеграл

сходится, то интеграл

сходится равномерно относительно на . Аналогично для существует такое число , что для всех выполняется неравенство

.

При таких и всех получим

,

откуда в силу признака сравнения следует, что интеграл

сходится равномерно относительно на . Наконец, интеграл

в котором подынтегральная функция непрерывна в области

,

очевидно, сходится равномерно относительно на . Таким образом, на интеграл

сходится равномерно, а, следовательно, гаммма функция бесконечно дифференцируема при любом и справедливо равенство

.

Относительно интеграла можна повторить теже рассуждения и заключить, что

По индукции доказывается, что Г-функция бесконечно дифференцируема прии для ее я -ой производной справедливо равенство

Изучим теперь поведение - функции и построим єскиз ее графика.

Из выражения для второй производной -функции видно, что для всех . Следовательно, возрастает. Поскольку

,

то по теореме Роля на сегменте [1,2] производная при и при , т. е. Монотонно убывает на и монотонно возрастает на . Далее, поскольку

, то при .

При из формулы

следует, что при .

Равенство

,

справедливое при , можно использовать при распространении - функции на отрицательное значение .

Положим для, что

.

Правая часть этого равенства определена для из (-1,0). Получаем, что так продолженная функция принимает на (-1,0) отрицательные значения и при , а также при функция .

Определив таким образом на , мы можем по той же формуле продолжить ее на интервал (-2,-1). На этом интервале продолжением окажется функция, принимающая положительные значения и такая, что при и . Продолжая этот процесс, определим функцию , имеющею разрывы в целочисленных точках (см. рис.1)

Отметим еще раз, что интеграл

определяет Г-функцию только при положительных значениях , продолжение на отрицательные значения осуществлено нами формально с помощью формулы приведения

.

4. Вычисление некоторых интегралов

Формула Стирлинга

Применим гамма функцию к вычислению интеграла:

где m > -1,n > -1.Полагая, что ,имеем

и на основании (2.2) имеем

(3.1)

В интеграле

Где k > -1,n > 0,достаточно положить

Интеграл

Где s > 0,разложить в ряд

=

где

- дзетта функция Римана

Рассмотрим неполные гамма функции (функции Прима)

связанные неравенством

Разлагая, в ряд имеем

Переходя к выводу формулы Стирлинга, дающей в частности приближенное значение n! при больших значениях n,рассмотрим предварительно вспомогательную функцию

(3.2)

Непрерывна на интервале (-1,) монотонно возрастает от до при изменении от до и обращаются в 0 при u = 0.Так как

то

при u > 0 и при u < 0, далее имеем

И так производная непрерывна и положительна во всем интервале ,удовлетворяет условию

Из предыдущего следует, что существует обратная функция,

определенная на интервале непрерывная и монотонно возрастающая в этом интервале,

Обращающаяся в 0 при v=0 и удовлетворяющая условие

(3.3)

Формулу Стирлинга выведем из равенства

полагая ,имеем

Положим далее

введенная выше обратная функция, удовлетворяющая условиям u = -1при ,и при .Замечая что(см.3.2)

имеем

,

полагая на конец,,получим

или

в пределе при т.е. при (см3.3)

откуда вытекает формула Стирлинга

которую можно взять в виде

(3.4)

где ,при

для достаточно больших полагают

(3.5)

вычисление же производится при помощи логарифмов

если целое положительное число, то

и (3.5)

превращается в приближенную формулу вычисления факториалов при больших значениях n

приведем без вывода более точную формулу

где в скобках стоит не сходящийся ряд.

5. Примеры вычисления интегралов

Для вычисления необходимы формулы:

Г()

Вычислить интегралы

Выводы

Гамма функции являются удобным средством для вычисления некоторых интегралов в частности многих из тех интегралов, которые не представимы в элементарных функциях.

Благодаря этому они широко применяются в математике и ее приложениях, в механике, термодинамике и в других отраслях современной науки.

Список литературы

1. Специальные функции и их приложения: Лебедев И.И.,М.,Гостехтериоиздат,1953

2. Математический анализ часть 2: Ильин О.А., Садовничий В.А., Сендов Бл.Х.,М.,”Московский университет”,1987

3. Сборник задач по математическому анализу: Демидович Б.П.,М.,Наука,1966

4. Интегралы и ряды специальные функции: Прудников А.П., Брычков Ю.А.,М.,Наука,1983

5. Специальные функции: Кузнецов, М.,”Высшая школа”, 1965


Подобные документы

  • Определение функций "бета", "гамма". Эйлеров интеграл первого и второго рода. Связь между функциями "бета" и "гамма". Формула Эйлера, интеграл Раабе. Основные свойства гамма-функции при ее определении. Отличие дифференцирования от интегрирования.

    дипломная работа [167,9 K], добавлен 08.10.2011

  • Класс функций, представимых в виде собственного либо несобственного интеграла, зависящего не только от формальной переменной, а и от параметра. Эти функции называются интегралами зависящими от параметра. К ним относятся гамма и бета функции Эйлера.

    курсовая работа [851,0 K], добавлен 03.07.2008

  • Несобственные интегралы первого, второго и третьего рода. Вычисление несобственных интегралов с помощью вычетов. Несобственные интегралы, содержащие параметр. Гамма-функция и бета-функция Эйлера. Критерий Коши и эквивалентные условия сходимости.

    курсовая работа [1,5 M], добавлен 20.09.2013

  • Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.

    курсовая работа [187,8 K], добавлен 18.05.2019

  • Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.

    курсовая работа [1,0 M], добавлен 11.03.2013

  • Изучение способов нахождения пределов функций и их производных. Правило дифференцирования сложных функций. Исследование поведения функции на концах заданных промежутков. Вычисление площади фигуры при помощи интегралов. Решение дифференциальных уравнений.

    контрольная работа [75,6 K], добавлен 23.10.2010

  • Общие свойства эллиптических интегралов и эллиптических функций. Параллелограммы периодов, основные теоремы. Эллиптические функции второго порядка. Вычисление длины дуги эллипса, эллиптические координаты, сумма вычетов эллиптической функции.

    курсовая работа [289,0 K], добавлен 26.04.2011

  • Понятие и назначение интегралов, их классификация и разновидности. Вычисление интегралов от тригонометрических функций: методика, основные этапы, используемые инструменты. Интегралы, зависящие от параметра, их отличительные особенности и вычисление.

    курсовая работа [1,1 M], добавлен 19.09.2011

  • Нахождение неопределенных интегралов (с проверкой дифференцированием). Разложение подынтегральных дробей на простейшие. Вычисление определенных интегралов, представление их в виде приближенного числа. Вычисление площади фигуры, ограниченной параболой.

    контрольная работа [123,7 K], добавлен 14.01.2015

  • Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.

    реферат [99,0 K], добавлен 05.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.