Преобразования плоскости

Использование движения плоскости в начертательной геометрии для установления и исследования функциональной зависимости между различными величинами. Вращение плоскости и пространства, определение его центра и оси. Классификация видов и формул поворота.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 16.08.2010
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Курсовая работа

Преобразования плоскости

Содержание

  • 1. Преобразования плоскости
    • 1.1 Отображение плоскости на себя
    • 1.2 Движение
    • 1.3 Подобие
  • 2. Вращение плоскости - частный случай движения плоскости
  • 3. Применение вращения к решению задач
  • Заключение
  • Литература
  • Введение
  • Движения плоскости занимают особое положение в начертательной геометрии. Используя движение, можно создать наглядные модели многих процессов и проследить их течение во времени. Движение позволяет установить и исследовать функциональную зависимость между различными величинами. С помощью движения удаётся решать многие научные и инженерные задачи, решение которых аналитическим путём часто приводит к использованию чрезвычайно громоздкого математического аппарата.
  • Движения плоскости широко используются при решении задач.
  • Таким образом, целью данной курсовой работы является рассмотрение вращения плоскости вокруг точки, как частного вида движения, а также применение вращения плоскости вокруг точки к решению задач.
  • Данная курсовая работа состоит из теоретической части, в которой рассмотрено движение плоскости и, более подробно, частный случай движения - вращение плоскости вокруг точки, а также практической части - содержащей рассмотрение примеров решения задач на вращение плоскости вокруг точки.

1. Преобразования плоскости

1.1 Отображение плоскости на себя

Отображением плоскости на себя называется такое преобразование, что каждой точке исходной плоскости сопоставляется какая-то точка этой же плоскости, причем любая точка плоскости оказывается сопоставленной другой точке. Если при отображении плоскости на себя фигура F преобразовывается в фигуру F', то говорят, что фигура F' - образ фигуры F, а фигура F - прообраз фигуры F'. Если одним отображением фигура F переводится в фигуру F', а затем фигура F' переводится в фигуру F'', то отображение, переводящее F в F'' называется композицией двух отображений. Неподвижной точкой отображения называется такая точка A которая этим отображением переводится сама в себя. Отображение, все точки которого неподвижные называется тождественным отображением. Если при данном отображении разным точкам фигуры соответствуют разные образы, то такое отображение называется взаимно однозначным. Пусть фигура F' получена из фигуры F взаимно однозначным отображением f, то можно задать отображение обратное отображению f, которое определяется так: композиция отображения f и отображения, обратного f является тождественным отображением. Существует множество видов отображения плоскости на себя, рассмотрим некоторые из них:

Движение

Параллельный перенос

Осевая симметрия

Поворот вокруг точки

Центральная симметрия

Подобие

Гомотетия

1.2 Движение

Движением называется отображение плоскости на себя, при котором сохраняются все расстояния между точками. Движение имеет ряд важных свойств:

Три точки, лежащие на одной прямой, при движении переходят в три точки, лежащие на одной прямой, и три точки, не лежащие на одной прямой, переходят в три точки, не лежащие на одной прямой.

Доказательство: пусть движение переводит точки A, B, C в точки A', B', C'. Тогда выполняются равенства

A'B'=AB , A'C'=AC , B'C'=BC

Если точки A, B, C лежат на одной прямой, то одна из них, например точка B лежит между двумя другими. В этом случае AB+BC=AC, и из равенств (1) следует, что A'C'+B'C'=A'C'. А из этого следует, что точка B' лежит между точками A' и C'. Первое утверждение доказано. Второе утверждение докажем методом от противного: Предположим, что точки A', B', C' лежат на одной прямой даже в том случае, если точки A, B, C не лежат на одной прямой, то есть являются вершинами треугольника. Тогда должны выполнятся неравенства треугольника:

AB<AC+BC

AC<AB+BC

BC<AB+AC

но из равенств (1) следует, что те же неравенства должны выполнятся и для точек A', B', C' следовтельно точки A', B', C' должны быть вершинами треуголька, следовтельно точки A', B', C' не должны лежать на одной прямой.

Отрезок движение переводится в отрезок.

При движении луч переходит в луч, прямая в пррямую.

Треугольник движением переводится в треугольник.

Движение сохраняет величины углов.

При движении сохраняются площади многоугольных фигур.

Движение обратимо. Отображение, обратное движению является движением.

Композиция двух движений также является движением.

Используя определение движения можно дать такое определение равнества фигур:

Две фигуры называются равными, если одну из них можно перевести в другую некоторым движением.

Виды движений

На плоскости существуют четыре типа движений:

Параллельный перенос.

Осевая симметрия

Поворот вокруг точки

Центральная симметрия

Рассмотрим подробнее каждый вид.

Параллельный перенос

Параллельным переносом называется такое движение, при котором все точки плоскости перемещаются в одном и том же направлении на одинаковое расстояние.

Подробнее: параллельный перенос произвольным точкам плоскости X и Y ставит в соответствие такие точки X' и Y', что XX'=YY' или еще можно сказать так: параллельный перенос это отображение, при котором все точки плоскости перемещаются на один и тот же вектор - вектор переноса. Параллельный перенос задается вектором переноса: зная этот вектор всегда можно сказать, в какую точку перейдет любая точка плоскости.

Параллельный перенос является движением, сохраняющим направления. Действительно, пусть при параллельном переносе точки X и Y перешли в точки X' и Y' соответственно. Тогда выполняется равенство XX'=YY'. Но из этого равенства по признаку равных векторов следует, что XY=X'Y', откуда получаем, что во-первых XY=X'Y', то есть параллельный перенос является движением, и во вторых, что XY X'Y', то есть при параллельном переносе сохраняются направления.

Это свойство параллельного переноса - его характерное свойство, то есть справедливо утверждение: движение, сохраняющее направления является параллельным переносом.

Осевая симметрия

Точки X и X' называются симметричными относительно прямой a, и каждая из них симметричной другой, если a является серединным перпендикуляром отрезка XX'. Каждая точка прямой a считается симметрична самой себе (относительно прямой a). Если дана прямая a, то каждой точке X соответсвует единственная точка X', симметричная X относительно a.

Симметрией плоскости относительно прямой a называется такое отображение, при котором каждой точке этой плоскости ставится в соответствие точка, симметриченая ей относительно прямой a.

Докажем, что осевая симметрия является движением используя метод координат: примем прямую a за ось x декартовых координат. Тогда при симметрии относительно нее точка, имеющая координаты (x;y) будет преобразована в точку с координатами (x, -y).

Возьмем любые две точки A(x1, y1) и B(x2, y2) и рассмотрим симметричные им относительно оси x точки A'(x1,- y1) и B'(x2, -y2). Вычисляя растояния A'B' и AB, получим

Таким образом осевая симметрия сохраняет расстояние, следовательно она является движением.

Поворот

Поворот плоскости относительно центра O на данный угол () в данном направлении определяется так: каждой точке X плоскости ставится в соответствие такая точка X', что, во-первых, OX'=OX, во-вторых и, в-третьих, луч OX' откладывается от луча OX в заданном направлении. Точка O называется центром поворота, а угол -углом поворота.

Докажем, что поворот является движением:

Пусть при повороте вокруг точки O точкам X и Y сопоставляются точки X' и Y'. Покажем, что X'Y'=XY.

Рассмотрим общий случай, когда точки O, X, Y не лежат на одной прямой. Тогда угол X'OY' равен углу XOY. Действительно, пусть угол XOY от OX к OY отсчитывается в направлении поворота. (Если это не так, то рассматриваем угол YOX). Тогда угол между OX и OY' равен сумме угла XOY и угла поворота (от OY к OY'):

с другой стороны,

Так как (как углы поворота), следовательно . Кроме того, OX'=OX, и OY'=OY. Поэтому - по двум сторонам и углу между ними. Следовательно X'Y'=XY.

Если же точки O, X, Y лежат на одной прямой, то отрезки XY и X'Y' будут либо суммой, любо разностью равных отрезков OX, OY и OX', OY'. Поэтому и в этом случае X'Y'=XY. Итак, поворот является движением.

Центральная симметрия

Можно дать такое определение:

Центральная симметрия с центром в точке O это такое отображение плоскости, при котором любой точке X сопоставляется такая точка X', что точка O является серединой отрезка XX'.

Однако можно заметить, что центральная симметрия является частным случаем поворота, а именно, поворота на 180 градусов. Действительно, пусть при центральной симметрии относительно точки O точка X перешла в X'. Тогда угол XOX'=180 градусов, как развернутый, и XO=OX', следовательно такое преобразование является поворотом на 180 градусов. Отсюда также следует, что центральная симметрия является движением.

Центральная симметрия является движением, изменяющим направления на противоположные. То есть если при центральной симметрии относительно точки O точкам X и Y соответствуют точки X' и Y', то

XY= - X'Y'

Доказательство: Поскольку точка O - середина отрезка XX', то, очевидно,

OX'= - OX

Аналогично

OY'= - OY

Учитывая это находим вектор X'Y':

X'Y'=OY'OX'=OY+OX=(OYOX)= XY

Таким образом X'Y'=XY.

Доказанное свойство является характерным свойством центральной симметрии, а именно, справедливо обратное утверждение, являющееся признаком центральной симметрии: "Движение, изменяющее направления на противоположные, является центральной симметрией."

О симметрии фигур

Говорят, что фигура обладает симметрией (симметрична), если существует такое движение (не тождественное), переводящее эту фигуру в себя.

Например, фигура обладает поворотной симметрией, если она переходит в себя некоторым поворотом.

Рассмотрим симметрию некоторых фигур:

Отрезок имеет две оси симметрии (серединный перпендикуляр и прямая, содержащая этот отрезок) и центр симметрии (середина).

Треугольник общего вида не имеет осей или центров симметрии, он несимметричен. Равнобедренный (но не равносторонний) треугольник имеет одну ось симметрии: серединный перпендикуляр к основанию.

Равносторонний треугольник имеет три оси симметрии (серединные перпендикуляры к сторонам) и поворотную симметрию относительно центра с углом поворота 120.

У любого правильного n-угольника есть n осей симметрии, все они проходят через его центр. Он также имеет поворотную симметрию относительно центра с углом поворота .

При четном n одни оси симметрии проходят через противоположные вершины, другие через середины противоположных сторон.

При нечетном n каждая ось проходит через вершину и середину противоположной стороны.

Центр правильного многоугольника с четным числом сторон является его центром симметрии. У правильного многоугольника с нечетным числом сторон центра симметрии нет.

Любая прямая, проходящая через центр окружности является ее осью симметрии, окружность также обладает поворотной симметрией, причем угол поворота может быть любым.

1.3 Подобие

Подобием с коэффициентом k>0 называется отображение плоскости, при котором любым двумя точкам X и Y соответствуют такие точки X' и Y', что X'Y'=kXY.

Отметим, что при k=1 подобие является движением, то есть движение есть частный случай подобия.

Фигура F называется подобной фигуре F' с коэффициентом k, если существует подобие с коэффициентом k, переводящее F в F'.

Простейшим, но важным примером подобия является гомотетия

Гомотетия

Гомотетией с центром в точке O и коэффициентом k называется такое отображение плоскости, при котором каждой точке X сопоставляется такая точка X', что OX' = kOX, причем не исключается и возможность k<0.

При k =1 получается центральная симметрия с центром в точке O, при k =1 получается тождественное преобразование.

Основное свойство гомотетии

При гомотетии с коэффициентом k каждый вектор умножается на . Подробнее: если точки и при гомотетии с коэффициентом перешли в точки ' и ', то

'' =

Доказательство.

Пусть точка центр гомотетии. Тогда ' = , ' = . Поэтому '' = ' ' = = ( ) = .

Из равенства '' = следует, что A'B' = |k|AB, то есть гомотетия с коэффициентом k является подобием с коэффициентом |k|.

Отметим, что любое подобие с коэффициентом можно представить в виде композиции гомотетии с коэффициентом и движения.

Некоторые свойства гомотетии

Гомотетия отрезок переводит в отрезок.

Гомотетия сохраняет величину углов.

Композиция двух гомотетий с общим центром и коэффициентами k1 и k2, будет гомотетией с тем же центром и коэффициентом Преобразование, обратное гомотетии с коэффициентом будет гомотетией с тем же центром и коэффициентом 1/k.

Свойства подобия

Подобие отрезок переводит в отрезок.

Подобие сохраняет величину углов.

Подобие треугольник переводит в треугольник. Соответственные стороны этих треугольников пропорциональны, а соответственные углы равны

В результате подобия с коэффициентом площади фигур умножаются на 2.

Композиция подобий с коэффициентами k1 и k2 есть подобие с коэффициентом k1k2.

Подобие обратимо. Отображение, обратное подобию с коэффициентом есть подобие с коэффициентом 1/.

2. Вращение плоскости вокруг точки - частный случай движения плоскости

Вращение - частный случай движения, при котором по крайней мере одна точка плоскости (пространства) остаётся неподвижной. При вращении плоскости неподвижная точка называется центром вращения, при вращении пространства неподвижная прямая называется осью вращения. Вращение плоскости (пространства) называется собственным (вращение первого рода) или несобственным (вращение второго рода) в зависимости от того, сохраняет оно или нет ориентацию плоскости (пространства).

На плоскости в прямоугольных декартовых координатах собственное вращение выражается формулами

x' = x cos? - y sin?, y' = x sin? + y cos?,

где ?- угол поворота, а центр вращения выбран в начале координат. При тех же условиях несобственное вращение плоскости выражается формулой

x' = xcos? + y sin?, y' = x sin?- y cos?.

Поворотом плоскости вокруг точки S на направленный угол ѓї называется такое отображение плоскости на себя, которое каждую точку М плоскости переводит в такую точку M`, что SM = SM` и направленный угол ЃЪMSM` равен ѓї.

Точка S называется центром поворота, а направленный угол ѓї - углом поворота. Напомним, что угол называется направленным, если указано, какая из его сторон считается первой, а какая - второй.

Для обозначения поворота будем использовать символ .

Прежде всего докажем, что поворот плоскости сохраняет расстояние между точками. Для этого на плоскости возьмем две различные точки M и N. Обозначим через M` и N` их образы при повороте вокруг точки S на направленный угол ѓї. Рассмотрим треугольники SMN и SM`N`. В этих треугольниках стороны SM и SM`, SN и SN`, соответственно, равны.

Нетрудно убедиться и в том, что углы MSN и M`SN` этих треугольников тоже равны. А это значит, что равны и сами треугольники MSN и M`SN`. Из равенства этих треугольников следует равенство отрезков MN и M`N`. Таким образом, поворот плоскости вокруг данной точки на заданный направленный угол является движением.

На плоскости рассмотрим поворот с центром в точке S и углом ѓї. Зададим ПДСК так, чтобы ее началом служила точка S, а координатные векторы i, j были единичны и взаимно перпендикулярны. Произвольно на плоскости возьмем точку М (х, у) с координатами х и у относительно ПДСК Sху. Под действием поворота эта точка перейдет в некоторую точку M`(x`, y`). Выразим координаты точки M` через координаты ее прообраза, угол ѓї и координаты центра поворота. В треугольнике SM`Mx` длина катета SMx` равна |х`|, а длина катета М`Мх` равна |у`|, а в треугольнике SMMx - SMx = |x|, MMx = |y|. Обозначим через ѓА направленный угол, который образует луч SM с положительным направлением оси абсцисс (рис. 2.2). Тогда в ориентированном прямоугольном треугольнике Mx`SM` направленный угол ЃЪ Mx`SM` равен сумме направленных углов ѓї и ѓА, а длина гипотенузы SM` равна . С учетом этих соотношений получаем, что

Эти формулы являются формулами поворота плоскости вокруг начала координат на направленный угол ѓї. Используя эти формулы, можно показать, что поворот плоскости вокруг точки на заданный направленный угол обладает следующими свойствами.

Свойства поворота плоскости вокруг точки

1. При повороте плоскости вокруг данной точки на заданный направленный угол прямая переходит в прямую, образующую с данной прямой направленный угол, равный углу поворота.

Доказательство. Пусть относительно системы координат Oxy прямая d определяется уравнением ax + by + c = 0, где . Зададим поворот плоскости вокруг точки О на направленный угол ѓї формулами (2.1.). Найдем уравнение образа прямой d при этом повороте. Для этого из формул (2.1.) выразим x и y через xЃЊ и yЃЊ получим формулы вида,

Чтобы получить уравнение образа прямой d в уравнении ax + by + c = 0 заменим х и у выражениями (xЃЊ cosѓї + yЃЊ sinѓї) и (? xЃЊ sinѓї + yЃЊcosѓї) . В результате получим уравнение вида . В левой части этого уравнения раскроем скобки и приведем его к виду

.

Поскольку

,

то уравнение (acosѓї ? bsinѓї )xЃЊ + (asinѓї + bcosѓї ) yЃЊ + c = 0 определяет на плоскости прямую.

2. При повороте вокруг данной точки на заданный направленный угол параллельные прямые переходят в параллельные прямые.

3. Поворот плоскости вокруг данной точки на заданный направленный угол сохраняет простое отношение трех точек.

Доказательство. На плоскости зададим ПДСК Оху. Произвольно возьмем две точки и . Пусть точка M(x, y) делит отрезок М1М2 в отношении ѓЙ Ѓ‚ ?1. Рассмотрим поворот плоскости вокруг точки О на направленный угол ѓї формулами (2.1.). Обозначим через , и MЃЊ (xЃЊ, yЃЊ) образы точек , и M (x, y) при этом повороте. Покажем, что поворот сохраняет простое отношение трех точек , и M (x, y) . Поскольку для координат точек , и M (x, y) справедливы соотношения

то для доказательства того факта, что точка MЃЊ(xЃЊ, yЃЊ) делит отрезок в том же самом отношении ѓЙ Ѓ‚ ?1 достаточно показать, что

Для этого в формулах

заменим на , на , на , на , на , на . В результате получим соотношения

Умножим первое - на cos? , а второе - на ? sin? и сложим. В результате получим равенство . Теперь умножим обе части первого соотношения на sin? , а второго - на cos? и сложим. Получим равенство .

Итак, мы показали, что точка M? (x?, y?) делит отрезок в том же самом отношении ? ? ?1, что и точка делит отрезок M1M2. А это значит, что поворот плоскости вокруг точки на заданный угол сохраняет простое отношение трех точек.

4. При повороте плоскости вокруг данной точки на заданный направленный угол отрезок переходит в равный ему отрезок, луч - в луч, полуплоскость - в полуплоскость.

5. При повороте плоскости вокруг данной точки на заданный направленный угол ортонормированный репер R переходит в ортонормированный R`.

При этом точка М с координатами х и у относительно репера R переходит в точку М` с теми же самыми координатами х и у, но относительно репера R`.

6. Композиция двух поворотов вокруг точки О есть поворот с центром в точке О.

7. Композиция двух поворотов плоскости есть поворот на направленный угол с центром в точке С такой, что , .

8. Композиция двух осевых симметрий плоскости с непараллельными осями m1 и m2, пересекающимися в точке О и образующими направленный угол, есть поворот плоскости вокруг точки О.

9. Всякий поворот плоскости вокруг точки О можно представить в виде композиции двух осевых симметрий, осью одной из них будет служить прямая p, проходящая через центр О, а осью другой - прямая q, содержащая биссектрису угла, образованного образом m` луча m при повороте вокруг точки О на заданный угол и образом m`` луча m` при осевой симметрии с осью р.

При решении задач, связанных с нахождением образов и прообразов геометрических фигур, заданных своими аналитическими условиями относительно прямоугольной декартовой системы координат Oxy, при повороте плоскости вокруг точки на заданный направленный угол, целесообразно использовать формулы, задающие поворот с центром в произвольной точке S(х0, у0), отличной от начала координат. Для того, чтобы вывести эти формулы, воспользуемся тем, что поворот плоскости переводит ортонормированный репер R в ортонормированный репер R`, а всякую точку M с координатами (х, у) относительно репера R в точку M` с теми же самыми координатами, но относительно репера R`.

С другой стороны, точка M` относительно репера R` тоже имеет какие-то координаты. Обозначим их через x` и y`. Таким образом, на плоскости имеем две системы координат: одна из них определяется репером R, а другая - репером R`.

Первую из них назовем "старой", а вторую - "новой". В соответствии с этим "старыми" координатами точки M` будет являться упорядоченная пара чисел (x`, y`), а "новыми" координатами - упорядоченная пара чисел (х, у). Используя формулы, выражающие "старые" координаты точки через ее "новые" при переходе от одной системы координат к другой, получим формулы:

Поскольку точка является инвариантной точкой поворота, то ее координаты удовлетворяют следующим условиям:

Вычитая из обеих частей равенств (2.2.) соответствующие части соответствующих равенств (2.3.), получим формулы, которые выражают координаты образа M` точки M через координаты самой точки M:

Формулы (2.4) являются формулами поворота плоскости вокруг точки на заданный направленный угол .

3. Применение вращения к решению задач

Рассмотрим применение простейшего движения плоскости, такого как вращение (поворот) при решении задач элементарной геометрии на вычисление и доказательство.

При решении задач используются основные свойства движения. Так, всякое движение переводит:

прямую в прямую, а параллельные прямые - в параллельные прямые,

отрезок - в отрезок, а середину отрезка - в середину отрезка,

луч - в луч,

угол - в равный ему угол,

точки, не лежащие на одной прямой - в точки, не лежащие на одной прямой,

полуплоскость - в полуплоскость.

Задача 1.

Даны две окружности 1(O1,r) и 2(O2,r), каждая из которых проходит через центр другой. Через точку А пересечения окружностей проведена прямая, пересекающая окружности в точках M и H. Найти угол между касательными, проведенными к окружностям в точках M и H.

Решение.

Пусть 1 - касательная к окружности 1 в точке H, а 2 - касательная к окружности 2 в точке М. В треугольнике O1BO2 имеем O1O2=O1B=O2B. Аналогично O1O2=O1A=O2A в треугольнике O!AO2. Тогда BO1A=BO2A=120. Отсюда следует, что BO2A=BO1A=120. В треугольнике MBH получим BMA=BHA=60. Тогда MBH=60. Рассмотрим поворот вокруг точки В на угол 600. RB60:O1O2, MH. Значит RB60:O1MO2H. Тогда RB60:12, так как по свойству касательной 1 O1M, 2 O2H. Следовательно, угол между прямыми 1 и 2 равен 60.

Задача 2.

На катетах CA и CB равнобедренного прямоугольного треугольника ABC выбраны точки D и E так, что CD = CE. Прямые, проведенные через точки D и C перпендикулярно к AE, пресекают гипотенузу AB соответственно в точках К и H. Доказать, что KH = HB.

Решение.

Рассмотрим поворот вокруг точки C на 90. RC90:A B, DE, EE1, CC. Значит RC90:AEBE1, CECE1. Следовательно, AEBE1, CE = CE1. Так как CD=CE, то CD=CE1. По условию DKAE и CHAE. Тогда BE1||CH||DK. По теореме Фалеса имеем BH=HK.

Задача 3.

В прямоугольном треугольнике АВС проведена медиана СМ. На катетах АС и ВС вне треугольника построены квадраты АСКН и ВСДЕ. Доказать, что прямые СМ и ДК перпендикулярны.

Решение.

Рассмотрим поворот вокруг точки С на 900:

Следовательно, . Тогда В треугольнике АВК1 отрезок СМ является средней линией, поэтому СМ//ВК1. Тогда , так как .

Задача 4.

Доказать, что биссектрисы внутренних углов параллелограмма при пересечении образуют прямоугольник.

Решение.

Пусть дан параллелограмм АВСД, АА1, ВВ1, СС1 и ДД1 - биссектрисы его внутренних углов; К, Н, М, Р - точки их пересечения. Надо доказать, что четырехугольник КНМР является прямоугольником. Рассмотрим поворот вокруг точки пересечения диагоналей параллелограмма на 1800, то есть центральную симметрию относительно точки .

.

Тогда . Следовательно, четырехугольник КНМР - параллелограмм, так как его диагонали в точке пересечения делятся пополам. В параллелограмме АВСД имеем: . Значит . Тогда в треугольнике АВК найдем . В параллелограмме КНМР получили , следовательно этот параллелограмм - прямоугольник.

Задача 5.

Дан равносторонний треугольник АВС и произвольная точка М. Доказать, что длина большего из трех отрезков МА, МВ, МС не больше суммы длин двух других.

Решение.

Пусть ВМ - наибольший из указанных отрезков. Рассмотрим поворот вокруг точки В на 600.

Поэтому АМ=СМ1, ВМ=ВМ1. Следовательно, треугольник МВМ1 будет равносторонним. Поэтому МВ=ММ1. Но в треугольнике МСМ1: ММ1<МС+СМ1=МС+МА, то есть МВ<МС+МА. Равенство будет в том и только в том случае, когда точка М лежит на окружности, описанной около треугольника АВС.

Дополнительно о возможностях использования движений при решении геометрических задач можно прочитать в приведенной ниже литературе.

Задача 6.

Точка Q расположена на стороне MN треугольника LMN так, что NQ : QM = 1 : 2. При повороте этого треугольника на некоторый угол вокруг точки Q вершина L переходит в вершину N, а вершина M -- в точку P, лежащую на продолжении стороны LM за точку L. Найдите углы треугольника LMN.

Решение.

Используя подобие треугольников NQL, NLM и PQM, докажите, что треугольник QLM -- прямоугольный.

Обозначим NQ = QL = x. Тогда QM = QP = 2x. Заметим, что NQL = PQM (угол поворота), поэтому QNL = QPM. Тогда треугольник NLM подобен треугольнику PQM, а значит, и треугольнику NQL. Из равенства отношений (отношение основания к боковой стороне в подобных равнобедренных треугольниках NQL и NLM) следует, что

NL2 = LQ . MN = x . 3x = 3x2,NL = .

Таким образом, стороны треугольника QLM равны QL = x, QM = 2x и LM = NL =. Следовательно, этот треугольник - прямоугольный. Его углы равны

QLM = 90o,QML = 30o,LQM = 60o.

а углы треугольника LMN равны 120o, 30o, 30o.

Задача 7.

Два квадрата BCDA и BKMN имеют общую вершину В. Докажите, что медиана ВЕ треугольника АВК и высота ВF треугольника СBN лежат на одной прямой. (Вершины квадратов перечислены против часовой стрелки).

Решение.

Для доказательства того, что медиана ВЕ и высота BF лежат на одной прямой, достаточно показать, что прямая ВЕ перпендикулярна прямой CN.

Применим поворот плоскости вокруг точки В на угол 90° против часовой стрелки. При этом повороте вершина К перейдет в вершину N, вершина С - в вершину А. Обозначим через A` образ точки А при данном повороте. Отметим, что точки С, В и A` лежат на одной прямой, причем точка В делит пополам отрезок СA`. Поскольку поворот плоскости вокруг данной точки на заданный направленный угол сохраняет простое отношение трех точек, то середина Е отрезка АК перейдет в середину E` отрезка A`N. В силу того, что мы применяем поворот вокруг точки В на угол +90°, то ЕВE` = 90°. Далее рассмотрим треугольник СA`N. В этом треугольнике BE` - средняя линия. Значит, прямая ВЕ` параллельна прямой CN. Следовательно, прямая ВЕ перпендикулярна прямой CN, т.е. точки Е, В, F лежат на одной прямой.

Примечание. В ходе решения данной задачи было установлено, что отрезок ВЕ не только перпендикулярен отрезку CN, но и равен его половине. Таким образом, требование предложенной задачи можно переформулировать следующим образом: доказать, что медиана ВЕ треугольника АВК перпендикулярна отрезку СN и равна его половине.

Задача 8.

На сторонах ВС и CD квадрата ABCD взяты точки М и К так, что периметр треугольника СМК равен удвоенной стороне квадрата. Найдите величину угла МАК.

Решение.

Применим поворот плоскости вокруг вершины А на 90°, при котором вершина В перейдет в вершину D. Обозначим через M` образ точки М при этом повороте. Поскольку периметр треугольника СМК равен удвоенной стороне квадрата, то СМ + МК + СК = ВС + CD. Так как ВС = ВМ + МС, CD = СК + KD, то СМ + МК + СК = ВМ + МС + СК + КD. Откуда следует, что МК = ВМ + КD.

При повороте плоскости вокруг точки А на 90° отрезок ВМ переходит в отрезок DM`, отрезок АМ - в отрезок AM`, следовательно, МК = DM` + KD, АМ` = АМ. Но точка D лежит между точками M` и К, значит, DM` + KD = M`K. Таким образом, мы установили, что треугольники АМК и АМ`К равны. Следовательно, ЃЪМАК = ЃЪМ`АК = 45°.

Задача 9.

Внутри равнобедренного прямоугольного треугольника АВС (ЃЪАСВ=90°) взята точка М такая, что AM = , BM = , CM = 4 . Найти площадь треугольника АВС.

Решение.

Для того чтобы найти площадь равнобедренного прямоугольного треугольника достаточно знать длину его катета или гипотенузы. Для нахождения длины катета треугольника рассмотрим треугольник МВС. В этом треугольнике нам известны длины двух сторон BM = , CM = 4 . Для определения длины третьей стороны нам необходимо знать угол между ними. Для этого применим поворот плоскости вокруг вершины С на угол 90°. При этом повороте вершина А перейдет в вершину В, а точка М - в некоторую точку М`.

Рассмотрим треугольник МСМ`. Поскольку СМ=СМ`=4, ЃЪMСM`=90°, то по теореме Пифагора получаем, что MM`= 4. Так как при повороте плоскости вокруг точки С на 90° точка А переходит в точку В, то отрезок АМ перейдет в отрезок ВМ`. Теперь рассмотрим треугольник МВМ`. В этом треугольнике мы знаем длины всех трех сторон: BM`= , BM = , MM`= 4 . Следовательно, по теореме косинусов находим, что

или

Откуда получаем, что . Значит, ЃЪВMМ`=60°.

По свойству равнобедренного треугольника имеем, что ЃЪСMM`=45°. Итак, ЃЪBMС=105° . По теореме косинусов из треугольника ВМС получаем, что

или

.

Следовательно,

Задача 10.

На сторонах АВ и АС правильного треугольника АВС выбраны точки D и E так, что AD + AE = AB. Доказать, что DC = BE, и найти величину угла DOE, где О - центр тяжести треугольника АВС.

Решение.

Анализируя условие задачи, приходим к заключению, что каждая сторона треугольника АВС видна из центра О под одним и тем же углом 120°, что позволяет положить в основу решения задачи поворот вокруг точки О на данный угол. При этом повороте правильный треугольник АВС переходит в себя, т.е. данный поворот входит в группу симметрий рассматриваемой фигуры.

Заметим, что при рассматриваемом повороте точка С переходит в точку В, а точка D переходит в точку Е.

Значит, отрезок СD переходит в отрезок ВЕ. Следовательно, они равны. Поскольку при этом повороте точка D переходит в точку Е, значит, угол DOE = 120°.

Задача 11.

На сторонах правильного треугольника, вне его, построены квадраты. Доказать, что их центры являются вершинами правильного треугольника.

Решение.

При повороте вокруг точки О на 120° по часовой стрелке квадрат ABRL переходит в квадрат ВСNM, а квадрат ВСNM переходит в квадрат САED, квадрат САED переходит, в свою очередь, в квадрат АВRL. Важно заметить, что при этом повороте точка O1 переходит в точку О2, а точка О2 переходит в точку О3. Значит, стороны О1О2, О2О3, О1О3 равны между собой. Следовательно, треугольник О1О2О3 - правильный.

При повороте вокруг точки О на 120° квадрат ABRL переходит в квадрат ВСNM, а квадрат ВСNM переходит в квадрат САED, квадрат САED переходит, в свою очередь, в квадрат АВRL. Важно заметить, что при этом повороте точка O1 переходит в точку О2, а точка О2 переходит в точку О3. Значит, стороны О1О2, О2О3, О1О3 равны между собой. Следовательно, треугольник О1О2О3 - правильный.

Задача 12.

Точка В лежит между точками А и С. На отрезках АВ и ВС в одной полуплоскости с границей АС построены правильные треугольники АВЕ и ВСF. Точки М и N - середины отрезков АF и СЕ. Доказать, что треугольник ВMN правильный.

Решение.

При повороте вокруг точки В на направленный угол 60° точка С перейдет в точку F, а точка Е перейдет в точку А. Следовательно, отрезок СЕ перейдет в отрезок AF. Поскольку поворот, как и всякое движение плоскости, сохраняет простое отношение трех точек, значит, середина N отрезка СЕ перейдет в середину отрезка AF, т.е. точка N перейдет в точку М при повороте плоскости вокруг точки В на угол 60°. Таким образом, мы доказали, что треугольник BMN - правильный.

Задача 13.

В прямоугольном треугольнике СМ - медиана. Па катетах АС и ВС, вне треугольника ABC, построены квадраты ACFN и BCDE. Доказать, что:

1) прямые СМ и DF перпендикулярны;

2)CM = 0,5DF.

Решение.

За центр поворота примем вершину прямого угла. Такой выбор центра поворота плоскости определяет и угол поворота - 90°. При повороте вокруг точки С на угол -90° вершина В прямоугольного треугольника ABC перейдет в точку В' принадлежащую катету АС, вершина А перейдет в вершину F квадрата. При этом гипотенуза АВ отобразится на отрезок FB' а его середина М перейдет в середину М' отрезка FB'.

Заметим, что отрезки СМ и СМ' взаимно перпендикулярны и равны. Это позволяет сделать следующее заключение: для того, чтобы доказать, что медиана СМ треугольника ABC перпендикулярна отрезку FD и равна его половине, достаточно показать, что отрезок СМ' является средней линией треугольника FB'D, что доказывается очень просто. Точка С есть середина отрезка DB' а точка М' есть середина отрезка FB'. Значит, СМ' - средняя линия треугольника FB'D.

Задача 14.

В правильном шестиугольнике ABCDEF точки М и N - середины сторон CD и DE, Р - точка пересечения отрезков AM и BN.

Найдите угол между прямыми AM и BN.

Докажите, что треугольник АВР и четырехугольник MDNP - равновелики.

Решение.

Применим поворот плоскости вокруг центра правильного шестиугольника на 60°, переводящем вершину А в вершину В. При этом повороте сторона CD перейдет в сторону DE, значит, точка М, как середина отрезка CD, перейдет в точку N - середину отрезка DE. Следовательно, прямая AM при повороте плоскости вокруг точки О на 60° переходит в прямую BN. По свойству поворота угол между ними равен углу поворота, т.е. 60°. Далее отметим, что при этом повороте плоскости пятиугольник AMDEF переходит в пятиугольник BNEFA. Замечательным свойством этих пятиугольников является то, что они содержат общую часть - это пятиугольник APNEF.

Если из пятиугольников AMDEF и BNEFA вырезать их общую часть -пятиугольник APNEF, то получим равновеликие фигуры - треугольник АВР и четырехугольник MDNP.

Задача 15.

Вокруг квадрата ABCD описан параллелограмм A1B1C1D1. Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют квадрат.

Решение.

Параллелограмм A1B1C1D1 описан около квадрата ABCD так, что точка А лежит на стороне A1B1, точка В - на стороне B1C1 , точка С - на стороне C1D1, а точка D - на стороне A1D1. Из вершин параллелограмма A1B1C1D1 опустим перпендикуляры т1, т2, т3, т4 на стороны квадрата ABCD. Для того, чтобы доказать, что эти перпендикуляры образуют квадрат, достаточно показать, что при повороте плоскости вокруг центра О квадрата ABCD на 90° прямые т1, т2, т3, т4 переходят друг в друга. Прежде всего отметим, что при этом повороте точки A1, B1, C1, D1 переходят в точки А2, В2, С2, D2. А это значит, что образом стороны A1B1 параллелограмма A1B1C1D1 при повороте плоскости вокруг точки О на 90°служит сторона А2В2. Следовательно, отрезок А2В перпендикулярен отрезку АВ1. Далее прямая A1D1 при повороте плоскости вокруг точки О на 90° перейдет в прямую A2D2. Поскольку прямые B1C1 и A1D1 параллельны, то отрезок АА2 перпендикулярен отрезку ВВ1 Таким образом, мы установили, что точка А2 является ортоцентром треугольника АВВ1. Значит, прямая т1 при повороте плоскости вокруг точки О на 90° переходит в прямую т2. Аналогичными рассуждениями можно установить, что при этом повороте плоскости прямая т2 переходит в прямую т3, а прямая т3 - в прямую т4, прямая т4 - в прямую т1 . Следовательно, при пересечении они образуют квадрат.

Задача 16.

Доказать, что две трапеции равны, если равны их соответственные стороны.

Доказательство. На плоскости зададим две трапеции A1B1C1D1 и A2B2C2D2 с основаниями A1B1 и C1D1, A2B2 и C2D2. Пусть A1B1 = A2B2 , B1C1 = B2C2, C1D1 = C2D2, A1 D1 = A2 D2. Можно показать, что при заданных условиях расстояния между основаниями этих трапеций, углы D1A1B1 и D2A2B2 равны. Для того чтобы доказать, что A1B1C1D1 = А2В2С2D2 покажем, что существует движение плоскости, которое переводит одну из этих трапеций в другую. Рассмотрим параллельный перенос, определяемый вектором . При этом переносе трапеция A1B1C1D1 перейдет в равную ей трапецию . Возможны два случая расположения трапеции относительно трапеции A2B2C2D2. Первый, когда они лежат в одной полуплоскости, определяемой прямой А2В2; второй, когда они не лежат в одной полуплоскости с границей А2В2. Обозначим через а угол между прямыми A1B1 и А2В2. Заметим, что угол между прямыми, содержащими меньшие основания трапеции тоже равен а. В первом случае рассмотрим поворот плоскости вокруг точки А2 на угол по часовой стрелки. При этом отрезок перейдет в отрезок А2В2; прямая в прямую C2D2 . Поскольку , то при повороте вокруг точки А2 на угол образом точки будет служить точка D2. Аналогичным образом получаем, что образ точки совпадает с точкой С2.

Итак, мы показали, что при композиции параллельного переноса на вектор и поворота плоскости вокруг точки А2 на угол трапеция A1B1C1D1 переходит в трапецию A2B2C2D2. Значит они равны. Пусть теперь трапеции и A2B2C2D2 не лежат в одной полуплоскости с границей А2В2. Рассмотрим поворот плоскости вокруг точки А2 на угол 360° по часовой стрелке. Аналогичными рассуждениями можно показать, что при этом повороте трапеция перейдет в трапецию A2B2C2D2. Если рассмотреть поворот плоскости вокруг точки А2 на угол по часовой стрелке, то трапеция перейдет в некоторую трапецию .

Задача 17.

Два одинаково ориентированных квадрата ABCD и AB1C1D1 на плоскости имеют общую вершину A. Доказать, что центры O1, О2 этих квадратов и середины О3 и О4 отрезков A1D и ВС1 образуют квадрат.

Решение. Как известно четырехугольник является квадратом тогда и только тогда, когда при повороте плоскости вокруг середины одной из его диагоналей он переходит в себя. Для решения данной задачи воспользуемся аналитическим способом задания поворота. На плоскости зададим ПДСК с началом в точке А и единичными векторами и . Обозначим через угол между вектором и вектором . Тогда относительно заданной ПДСК А вершины квадратов ABCD и AB1C1D1 имеют следующие координаты:

Зная координаты точек В и D, D иВ1,А и С1,В и D1, найдем координаты середин этих отрезков. Имеем:

Теперь найдем координаты середины О диагонали О2О4. Имеем:

Составим формулы поворота плоскости вокруг точки О на угол -90°. Получим, что

или

Поскольку , то формулы поворота плоскости вокруг точки о на угол -90 принимают следующий вид:

Найдем образ точки O1 при повороте . Имеем:

Заметим, что образ точки О1 при повороте совпадает с вершиной О2. Теперь найдем образ этой вершины. Имеем:

Заметим, что образ точки О2 при повороте совпадает с вершиной О3. Теперь найдем образ этой вершины. Имеем:

Заметим, что образ точки О3 при повороте совпадает с вершиной О4. Аналогичным образом можно показать, что образ вершины О4 при повороте совпадает с вершиной O1. Следовательно, четырехугольник О1О2О3О4 есть квадрат.

Рассмотрим вращение плоскости вокруг точки для решения задач на построение.

Пусть а1 и а2 - две различные прямые, пересекающиеся в точке О. Пусть Х - произвольная точка плоскости. Построим точку Х, симметричную точке Х относительно прямой а1, а затем построим точку Х, симметричную точке Х относительно прямой а2 (Рис. 3.19) Преобразование, которое сопоставляет точке Х точку Х указанным образом, называется поворотом относительно точки О.

Если прямые а1 и а2 перпендикулярны, то поворот сводится к симметрии относительно точки О. Если прямые а1 и а2 не перпендикулярны, то угол ХОХ не зависит от точки Х и равен удвоенному острому углу, под которым пересекаются прямые а1 и а2. Этот угол называется углом поворота. Наметим доказательство этого утверждения.

Пусть точка Х находится внутри острого угла, образованного прямыми а1, а2, и 1, 2 - части этого угла, на которые он разбивается полупрямой ОХ (рис. 3.19). Тогда по свойству симметрии относительно прямой угол ХОХ равен 21, а угол ХОХ равен 22. Соответственно угол ХОХ равен 21222(12). Читателю предлагается рассмотреть случай, когда точка Х лежит внутри тупого угла, образуемого прямыми а1 и а2, а также случай, когда прямые а1 и а2 перпендикулярны.

Поворот прямой а на угол вокруг центра О выполняется так.

Строится ОМа (Ма). Затем в нужном направлении производится поворот отрезка ОМ на угол в положение ОМ, после чего строится прямая аОМ.

Отметим следующее очевидное свойство отражения фигур, обладающих осевой симметрией.

Преобразование симметрии относительно оси s, выполненное по отношению к фигуре, обладающей хотя бы одной осью симметрии, может быть заменено поворотом (в частном случае параллельным переносом).

Подвергнем фигуру F1 (Рис. 3.20) преобразованию симметрии относительно прямой s. В результате получим фигуру F2, противоположно ориентированную. Выполним для фигуры F2 преобразование симметрии относительно оси s2 (s2 есть, очевидно, образ оси s1). Тогда фигура F2 преобразуется в себя и будет одинаково ориентирована с F1, следовательно, фигуры F1 и F2 могут быть совмещены поворотом вокруг точки О пересечения оси симметрии фигуры и оси s. Если эти оси параллельны, то достаточно выполнить некоторый параллельный перенос.

Поворот на некоторый угол 180 имеет применение при решении задач на построение. При этом поворот выполняется либо по отношению ко всей фигуре чертежа-наброска, либо по отношению к отдельным элементам фигуры.

Рассмотрим примеры.

Задача 18.

Даны точка О и прямые а и b, не проходящие через нее. Из точки О как из центра провести такую окружность, чтобы дуга ее, заключенная между данными прямыми, была видна из точки О под данным острым углом .

Анализ. Допустим, что задача решена, - искомая окружность, А и В - концы дуги, заключенной между данными прямыми, АОВ = (Рис. 3.21.). Если осуществить поворот прямой а около точки О на угол , то точка А попадет в точку В. Следовательно, точка В может быть найдена как пересечение образа прямой а с прямой b. После этого легко строится искомая окружность.

Задача 19.

Внутри данного треугольника АВС найти точку Р, сумма расстояний которой до вершин А, В и С была бы наименьшей.

Анализ. Пусть Р1 - искомая точка. Для выяснения ее геометрических свойств повернем сначала треугольник АВР1 на 60 вокруг точки А (Рис. 3.22). Тогда АР11В+Р1С=ВР+Р1Р+Р1С.

Эта сумма будет наименьшей, если ВС - прямая. Аналогичные рассуждения относительно треугольника ВР1С (тогда В переходит в В) показывают, что АВ - прямая.

Заключение

Таким образом, в ходе выполнения курсовой работы было рассмотрено вращение как частный случай движения, при котором по крайней мере одна точка плоскости (пространства) остаётся неподвижной. При вращении плоскости неподвижная точка называется центром вращения, при вращении пространства неподвижная прямая называется осью вращения. Вращение плоскости (пространства) называется собственным (вращение первого рода) или несобственным (вращение второго рода) в зависимости от того, сохраняет оно или нет ориентацию плоскости (пространства).

А также рассмотрено применение вращения плоскости к решению задач. Были рассмотрены задачи, которые решены с применением вращения плоскости и приведены подробные решения данных задач с развёрнутыми чертежами.

Литература

1. Адамар Ж. Элементарная геометрия: В 2-х т. Т. 1, 2. - М.: Учпедгиз, 1958.

2. Александров П.С. Лекции по аналитической геометрии. - М.: Наука, 1968.

3. Аргунов Б.И. Элементарная геометрия / Б.И. Аргунов, М.Б. Балк. - М.: Просвещение, 1966.

4. Атанасян Л.С. Сборник задач по элементарной геометрии / Л.С. Атанасян, М.В. Васильева, Г.Б. Гуревич, А.С. Ильин, Т.Л. Козьмина, О.С. Редозубова. - М.: Просвещение, 1964.

5. Атанасян Л.С. Геометрия / Л.С. Атанасян, В.Т. Базылев. - М.: Просвещение, 1986. - Ч. I. - 336 с.

6. Атанасян Л.С. Геометрия / Л.С. Атанасян, В.Т. Базылев. - М.: Просвещение, 1986. - Ч. II. - 352 с.

7. Базылев В.Т. Геометрия / В.Т. Базылев, К.И. Дуничев, В.П. Иваницкая. - М.: Просвещение, 1973. - Ч. I. - 341 с.

8. Базылев В.Т. Геометрия / В.Т. Базылев, К.И. Дуничев. - М.: Просвещение, 1973. - Ч. II. - 367 c.

9. Барыбин К.С. Сборник геометрических задач на доказательство. - М.: Учпедгиз, 1954.

10. Болтянский В.Г. Поворот и центральная симметрия // Математика в школе. - 1989. - №6. - С. 108-120.

11. Василевский А.Б. Методы решения геометрических задач. - Минск: Вышейшая школа, 1969.

12. Вернер А.Л. Геометрия/ А.Л.Вернер, Б.Е.Кантор, С.А.Франгулов.- Спб.: "Специальная литература".1997.Ч.I.-352 с.

13. Вернер А.Л. Геометрия/ А.Л.Вернер, Б.Е.Кантор, С.А.Франгулов.- Спб.: "Специальная литература".1997.Ч.II.-320 с.

14. Гальперин Т.А. Московские математические олимпиады / Т.А. Гальперин, А.К. Толпыго. - М.: Просвещение, 1986.

15. Готман Э.Г. Геометрические задачи, решаемые с помощью поворота // Математика в школе. - 1989. - №3. - С. 108-114.

16. Готман Э.Г. Решение геометрических задач аналитическим методом / Э.Г. Готман, З.А. Скопец. - М.: Просвещение, 1979.

17. Гусев В.А. Практикум по элементарной математике. Геометрия / В.А. Гусев, В.Н. Литвиненко, А.Г. Мордкович. - М.: Просвещение, 1992.

18. Гусев В.А. Математика / В.А. Гусев, А.Г. Мордкович. - М.: Просвещение, 1998.

19. Гусев В.А. Каким должен быть курс школьной геометрии? // Математика в школе. - 2002. - №3. - С. 4-8.

20. Дорофеев С.Н. Основы подготовки будущих учителей математики к творческой деятельности. - Пенза: Информационно-издательский центр Пенз. гос. ун-та, 2002. - 218 с.

21. Дорофеев С.Н. Решение геометрических задач векторным методом. - М.-Пенза: ПГПУ, 2000. - 55 с.

22. Дынкин Е.Б. Математические задачи / Дынкин Е.Б. и др. - М.: Наука, 1966.

23. Литвиненко В.Н. Сборник задач по стереометрии с методами решений. - М.: Просвещение, 1998. - 255 с.

24. Литвиненко В.Н. Практикум по элементарной математике. - М.: Вербум-М, 2000. - 480 с.

25. Мантуров О.В. Курс высшей математики / О.В. Мантуров, Н.М. Матвеев. - М.: Высшая школа, 1998. - 480 с.

26. Миганова Е.Ю. Методика конструирования систем учебных математических задач (на примере курса геометрии педвузов). - Арзамас: АГПИ, 2001. - 96 c.

27. Мусхелишвили Н.И. Курс аналитической геометрии. - М.: Высшая школа, 1967.

28. Прасолов В.В. Задачи по планиметрии. - 2-е изд., перераб. и доп. - М.: Наука. Гл. ред. физ.-мат. лит., 1991. - Ч. II. - 240 с.

29. Саранцев Г.И. Задачи и упражнения на геометрические преобразования. - М.: Просвещение, 1999.

30. Сборник московских математических олимпиад / Под ред. В.Г. Болтянского. - М.: Просвещение, 1965. - 384 с.

31. Сборник задач по геометрии / Под ред. В.Т. Базылева. - М.: Просвещение, 1980. - 240 с.

32. Скопец З.А. Задачи и теоремы по элементарной геометрии / З.А. Скопец, В.А. Жаров. - М.: Просвещение, 1968.

33. Смирнова И.М. Геометрия: Учебное пособие для 9-11 классов естественнонаучного профиля / И.М. Смирнова, В.А. Смирнов. - М.: Просвещение, 2001. - 239 с.

34. Шарыгин И.Ф. Задачи по геометрии (планиметрия). - М.: Наука, 1986.

35. Шарыгин И.Ф. Задачи по геометрии (стереометрия). - М.: Наука, 1987.

36. Шустеф Ф.В. Сборник олимпиадных задач по математике. - Минск: Вышейшая школа, 1977.

37. Яглом И.М. Геометрические преобразования. - М.: Гостехиздат, 1956. - Т. 1, 2.

38. Яковлев Г.Н. Всероссийские математические олимпиады школьников / Г.Н. Яковлев, Л.П. Купцов, С.В. Резниченко, П.Б. Гусятников. - М.: Просвещение, 1992. - 383 с.


Подобные документы

  • Понятие плоскости и определение ее положения в пространстве. Задание плоскости ее следами на комплексном чертеже. Плоскости и проекции уровня. Свойство проецирующих плоскостей собирать одноименные проекции всех элементов, расположенных в данной плоскости.

    реферат [69,0 K], добавлен 17.10.2010

  • Различные способы задания прямой на плоскости и в пространстве. Конструктивные задачи трехмерного пространства. Изображения фигур и их правильное восприятие и чтение. Использование в геометрии монографического и математического метода исследования.

    курсовая работа [1,1 M], добавлен 22.09.2014

  • Уравнение плоскости, проходящей через точку и перпендикулярной заданному вектору, плоскости в отрезках, проходящей через три точки. Общее уравнение плоскости. Условие параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.

    презентация [106,9 K], добавлен 21.09.2013

  • Правые и левые ориентации. Стороны прямой на плоскости и плоскости в пространстве. Деформации базисов и ориентации. Отношение одноименности отличных от нуля векторов прямой, деформируемости базисов. Задание направления движения по окружности в плоскости.

    контрольная работа [448,0 K], добавлен 09.04.2016

  • Понятие параллельности как отношения между прямыми. Случаи расположения прямой и плоскости. Признаки параллельности прямой и плоскости. Основные свойства двух прямых. Отсутствие общих точек у прямой и плоскости. Признаки параллельности плоскостей.

    презентация [1,5 M], добавлен 14.10.2014

  • Особенности применения координатного метода при изучении стереометрии в 10-11-х классах. Определение расстояния от точки до прямой и до плоскости в пространстве, а также между скрещивающимися прямыми. Нахождение углов между двумя прямыми и плоскостями.

    статья [2,1 M], добавлен 04.12.2012

  • Оптимальные фигуры многоугольников на плоскости. Соотношение размеров соседних фигур на плоскости на примере соприкасающихся окружностей. Реализация шестигранных ячеек в природе. Характеристика таких категорий: целое и части, дискретное и непрерывное.

    статья [290,7 K], добавлен 28.03.2012

  • Определение алгебраической линии на плоскости. Теорема о независимости порядка линии от выбора аффиной системы координат. Классификация алгебраической линии. Понятие алгебраической линии на плоскости и окружности как составляющих метода координат.

    курсовая работа [197,3 K], добавлен 29.09.2014

  • Окружность множество точек плоскости, равноудаленных от данной точки. Эллипс, множество точек плоскости, для каждой из которых сумма расстояний до двух точек плоскости. Парабола, множество точек плоскости, равноудаленных от данной точки плоскости.

    реферат [197,7 K], добавлен 03.08.2010

  • Возможные случаи ориентации прямой и плоскости для заданного уравнения. Условия их перпендикулярности и параллельности. Скалярное произведение перпендикулярных векторов. Координаты точки, лежащей на прямой. Угол между прямой и плоскостью, его определение.

    презентация [65,2 K], добавлен 21.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.