История тригонометрии

История возникновения тригонометрии как науки, особенности ее формирования. Анализ вклада члена Российской академии наук Л. Эйлера в развитие современной тригонометрии. Общая характеристика и методика решения тригонометрических уравнений и неравенств.

Рубрика Математика
Вид доклад
Язык русский
Дата добавления 06.05.2010
Размер файла 66,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

История тригонометрии как науки

Тригонометрия, как и любая другая научная дисциплина, возникла из потребностей практической деятельности человека. Различные задачи астрономии, мореплавания, землемерия, архитектуры привели к необходимости разработки способа вычисления элементов геометрических фигур по известным значениям других их элементов, найденных путем непосредственных измерений. Само название «тригонометрия» греческого происхождения, обозначающее «измерение треугольников»: (тригонон) - треугольник, (метрейн) - измерение.

Зарождение тригонометрии относится к глубокой древности. Еще задолго до новой эры вавилонские ученые умели предсказывать солнечные и лунные затмения. Это позволяет сделать вывод о том, что им были известны некоторые простейшие сведения из тригонометрии. Постепенно в геометрии и астрономии установились понятия синуса, косинуса и тангенса угла. По существу, ими оперировали еще древние математики, рассматривая отношение отрезков в треугольниках и окружностях.

Накопившийся материал астрономических наблюдений потребовал математической обработки. Одним из основоположников тригонометрии считается древнегреческий астроном Гиппарх, живший во II в. до н.э. Гиппарх является автором первых тригонометрических таблиц. Эти таблицы до нас не дошли, но они вошли (в усовершенствованном виде) в сочинение «Великое построение» (Альмагест) знаменитого александрийского астронома Клавдия Птолемея, жившего во второй половине II в. н.э. В этих таблицах, в течение многих веков служивших средством для решения треугольников, давались значения хорд окружности для различных значений соответствующего центрального угла. Единицей измерения хорд служила часть радиуса.

Эти таблицы, говоря современным языком, являются таблицами значений удвоенного синуса половины соответствующего центрального угла. В них были даны значения хорд для всех углов (через каждые полградуса) от 00 до 1800. Однако надо иметь в виду, что в древней Греции тригонометрия не выделялась в самостоятельную науку, а считалась частью астрономии.

Важный вклад в развитие тригонометрии был внесен индийской математикой в период V - XII вв. н.э. Индийские математики стали вычислять не полную хорду, как это делали греки, а ее половину (то есть «линию синусов»). Линия синусов именовалась ими «архаджива», что буквально означало «половина тетивы лука». Индийцы составилди таблицу синусов, в которой были даны значения полухорд, измеренных частями (минутами) окружности для всех углов от 00 до 900 (через каждые ). Эти таблицы были точнее таблиц Птолемея. Об их высокой точности говорит тот факт, что для синуса и косинуса были вычислены значения и , отличающиеся от истинных менее чем на .

Индийским математикам были известны соотношения, которые в современных обозначениях пишутся так:

.

В XI - XIII вв. в трудах математиков Средней Азии, Закавказья, Ближнего Востока и Индии началось формирование тригонометрии как отдельной науки. И в дальнейшем потребности географии, геодезии, военного дела способствовали развитию тригонометрии как науки. Особенно усиленно тригонометрия развивалась в средние века, в первую очередь на юго-востоке: в Индии (Ариабхата, Брамагупта, Бхаскара), в Узбекистане, Азербайджане и Таджикистане (Насирад-Дин ат-Туси, ал-Каши, ал-Бируни), в Арабии (Ахмад, ибн-Абдаллах, ал-Баттани). Большая заслуга в формировании тригонометрии как отдельной науки принадлежит азербайджанскому ученому Насирад-Дину Муххамаду ат-Туси (1201 - 1274), написавшему «Трактат о полном четырехугольнике». Работы ученых этого периода привели к выделению тригонометрии как нового самостоятельного раздела математики. Однако в их трудах еще не было необходимой символики, и поэтому развитие тригонометрии происходило медленно.

С XV в. и в Европе появляются работы, посвященные вопросам тригонометрии. Немецкий ученый Иоганн Мюллер (1436 - 1476), известный в науке под именем Региомонтан, издал труд «Пять книг о треугольниках всех видов», сыгравший важную роль в развитии тригонометрии. В нем дано систематическое изложение тригонометрии как самостоятельной научной дисциплины. Региомонтан составил таблицы синусов с точностью уже до . В его таблицах радиус круга принимался за вместо числа кратного 60, то есть по сути был совершен переход от шестидесятиричной системы измерения к десятичной. В 1595 г. появился труд Варфоломея Питискуса «Тригонометрия, или Краткий обзорный трактат о решении треугольников».

В XV - XVII в. в Европе было составлено и издано несколько тригонометрических таблиц. Над их составлением работали крупнейшие ученые: Н. Коперник (1473 - 1543), и. Кеплер (1571 - 1630), Ф. Виет (1540 - 1603) и др. В России первые тригонометрические таблицы были изданы в 1703 г. при участии Л.Ф. Магницкого.

Таким образом, тригонометрия возникла на геометрической основе, имела геометрический язык и применялась к решению геометрических задач. Развитие алгебраической символики позволило записывать тригонометрические соотношения в виде формул; применение отрицательных чисел позволило рассматривать направленные углы и дуги и распространить понятие тригонометрических линий (определенных отрезков в круге) для любых углов. В этот период создалась база для изучения тригонометрических функций как функций числового аргумента, основа аналитической теории тригонометрических (круговых) функций. Аналитический аппарат, позволяющий вычислять значения тригонометрических функций с любой степенью точности, был разработан Ньютоном.

Современный вид тригонометрия получила в трудах великого ученого, члена Российской академии наук Л. Эйлера (1707 - 1783). Эйлер стал рассматривать значения тригонометрических функций как числа - величины тригонометрических линий в круге, радиус которого принят за единицу («тригонометрический круг» или «единичная окружность»). Эйлер дал окончательное решение о знаках тригонометрических функций в разных четвертях, вывел все тригонометрические формулы из нескольких основных, установил несколько неизвестных до него формул, ввел единообразные обозначения. Именно в его трудах впервые встречаются записи . Он также открыл связь между тригонометрическими и показательной функциями от комплексного аргумента. На основании работ Л. Эйлера были составлены учебники тригонометрии, излагавшие ее в строгой научной последовательности.

Аналитическое (не зависящее от геометрии) построение теории тригонометрических функций, начатое Эйлером, получило завершение в трудах великого русского ученого Н.И. Лобачевского.

Современная точка зрения на тригонометрические функции как на функции числового аргумента во многом обусловлена развитием физики, механики, техники. Эти функции легли в основу математического аппарата, при помощи которого изучаются различные периодические процессы: колебательные движения, распространение волн, движения механизмов, колебание переменного электрического тока. Как показал Ж. Фурье (1768 - 1830), всякое периодическое движение с любой степенью точности можно представить в виде суммы простейших синусоидальных (гармонических) колебаний. Если в начале развития тригонометрии соотношение

лишь выражало зависимость между площадями квадратов, построенных на сторонах переменного прямоугольного треугольника с гипотенузой равной 1, то в последующем это отношение стало отражать также сложение двух колебательных движений с происходящей при этом интерференцией.

Таким образом, на первоначальных стадиях своего развития тригонометрия служила средством решения вычислительных геометрических задач. Ее содержанием считалось вычисление элементов простейших геометрических фигур, то есть треугольников. Но в современной тригонометрии самостоятельное и столь же важное значение имеет изучение свойств тригонометрических функций. Этот период развития тригонометрии был подготовлен всем ходом развития механики колебательных движений, физики звуковых, световых и электромагнитных волн.

В этот период даны обобщения многим терминам тригонометрии и, в частности, выведены соотношения для , где n - натуральное число, и др. Функции и рассматриваются теперь как суммы степенных рядов:

Одновременно развивается учение о тригонометрических функциях комплексного переменного.

Тригонометрия как учебный предмет

История изучения тригонометрии в школе чрезвычайно поучительна для специалистов в области обучения математике. Это история одного из разделов математической науки, только во второй половине XVIII в. обретшего достаточно стройный и завершенный вид.

Современному учителю уже достаточно сложно найти материалы, раскрывающие идеи и структуру прежних программ обучения математике. В то же время в современной школе, в условиях определенной академической свободы учителя, эти сведения могут быть полезны для обоснования планирования изучения тригонометрии, поскольку они иллюстрируют иные подходы к изучению этого курса, отличающие от предлагаемых сегодня во многих учебниках.

Напомним, что в связи с открытием Н.И. Лобачевским новой геометрии выяснилось, что тригонометрия состоит из двух различных частей:

а) первой (ее обычно называют гониометрией) - части математического анализа, где независимо от геометрических соображений аналитически раскрывается учение о трансцендентных тригонометрических функциях с их свойствами;

б) второй - собственно тригонометрии, где соединяются математический анализ и геометрия того или иного пространства.

Гониометрия не зависит от аксиомы параллельных, а тригонометрия в собственном смысле зависит от этой аксиомы. Соотношение характеризует в общем случае операции с соответствующими рядами и только в евклидовом пространстве выражает соотношение между площадями квадратов, построенных на сторонах прямоугольного треугольника с гипотенузой равной 1.

Известное соотношение между сторонами и углами треугольника

Тригонометрические неравенства

Пример 1. Решим неравенство

(1)

Решение. Обозначив , перепишем неравенство (1) в виде

. (2)

Множество решений неравенства (2) есть серия интервалов

,

поэтому все решения неравенства (1) найдем, решив двойное неравенство

,

откуда получим

,

то есть множество решений неравенства (1) состоит из серии интервалов

.

Ответ:

Пример 2. Решим неравенство

. (3)

Решение. Перепишем неравенство (3) в виде

.

Обозначим . Так как неравенство имеет множество решений , то решения неравенства (3) найдем, решив двойное неравенство .

Неравенство

Справедливо для любых x, а множество решений неравенства есть серия промежутков

.

Она и является множеством решений неравенства (3).

Ответ: .

Пример 3. Определим все , при каждом их которых неравенство

(4)

имеет хотя бы одно решение.

Решение. Разделим неравенство (4) на число , получим неравенство

, (5)

равносильное неравенству (4).

Так как , то существует такой угол , что и . Перепишем неравенство (5) в виде

.

Последнее неравенство, а значит, и неравенство (4), имеет хотя бы одно решение при каждом таком, что , то есть при каждом .

Ответ: .

Самостоятельная работа.

Решите неравенство (1 - 4).

1. а) ; б) ; в) .

2. а) ; б) .

3. .

4. Определите все , при каждом из которых неравенство имеет хотя бы одно решение.

Введение вспомогательного угла.

Введение вспомогательного угла уже использовалось для преобразования выражений в пунктах 9.1. и 9.3. Покажем, как его можно применять для решения уравнений и неравенств.

Сначала рассмотрим уравнение вида

, (А)

где - данные числа и .

Так как , то, разделив обе части уравнения (А) на число , перепишем уравнение (А) в виде

, (1)

где

.

Так как , то можно подобрать такой угол , что и . Уравнение (1) можно записать в виде , или в виде

. (2)

Если подобрать такой угол , что и , то уравнение (1) можно записать в виде

. (3)

Таким образом, решение уравнения (А) сводится к решению простейшего уравнения - (2) или (3).

Пример1. Решим уравнение

. (4)

Разделив обе части уравнения (4) на число , перепишем его в виде

.

Так как и , то уравнение (4) можно записать в виде

. (5)

Все решения уравнения (5), а, значит, и уравнения (4), задаются формулами , откуда получаем, что уравнение (5) имеет одну серию решений .

Пример 3. Решим неравенство

. (8)

Разделив обе части неравенства (8) на число , перепишем его в виде

. (9)

Так как и , то неравенство (9) перепишется в виде

. (10)

Все решения неравенства (10) задаются условиями

.

Откуда получаем, что все решения неравенства (8) есть серия интервалов .

Введение вспомогательного угла позволяет решать уравнения вида

(С)

и неравенства вида

(D)

где - данные числа и .

Для этого надо сначала применить формулы двойного угла, а затем ввести вспомогательный угол.

Пример 5. Решим уравнение

(14)

Применив формулы двойного угла, перепишем уравнение (14) в виде

(15)

Разделив обе части уравнения (13) на число , перепишем это уравнение в виде

. (16)

Так как , а , то уравнение (16) перепишется в виде

. (17)

Все решения уравнения (17) задаются формулами

и

,

откуда получим, что уравнение (14) имеет две серии решений: и .

Пример 6. Решим неравенство


Подобные документы

  • Понятие тригонометрии, ее сущность и особенности, история возникновения и развития. Структура тригонометрии, ее элементы и характеристика. Создание и развитие аналитической теории тригонометрических функций, роль в нем академика Леонарда Эйлера.

    творческая работа [69,7 K], добавлен 15.02.2009

  • Знакомство с особенностями возникновения тригонометрии, рассмотрение этапов развития. Анализ способов решения треугольников, основанных на зависимостях между сторонами и углами треугольника. Характеристика аналитической теории тригонометрических функций.

    презентация [654,4 K], добавлен 24.06.2014

  • Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.

    дипломная работа [1,9 M], добавлен 06.05.2010

  • История развития тригонометрии, характеристика ее основных понятий и формул. Общие вопросы, цели изучения и способы определения тригонометрических функций числового аргумента в школьном курсе. Рекомендации и методы решения тригонометрических уравнений.

    курсовая работа [257,7 K], добавлен 19.10.2011

  • Исторический обзор формирования тригонометрии как науки от древности до наших дней. Введение понятия тригонометрических функций на уроках алгебры и начал анализа по учебникам А.Г. Мордковича, М.И. Башмакова. Решения линейных дифференциальных уравнений.

    дипломная работа [2,6 M], добавлен 02.07.2011

  • Развитие аналитического, логического, конструктивного мышления учащихся и формирование их математической зоркости. Изучение тригонометрии в курсе геометрии основной школы, методы решения нестандартных задач из курса 8 класса и из альтернативных учебников.

    курсовая работа [396,0 K], добавлен 01.03.2014

  • Сущность и стадии развития тригонометрии. Свойства функции синус, косинус, тангенс, котангенс. Решение простых тригонометрических уравнений. Формула Эйлера как связь между математическим анализом и тригонометрией. Применение тригонометрических вычислений.

    реферат [648,7 K], добавлен 15.06.2014

  • Исторический обзор формирование тригонометрии как науки. Различные способы введения понятия тригонометрических функций. Анализ школьных учебников М.И. Башмакова и А.Г. Мордковича по данной тематике. Перспективы использования материала для преподавания.

    дипломная работа [2,7 M], добавлен 02.07.2011

  • История появления тригонометрии, роль Л. Эйлера в ее развитии. Тригонометрические функции плоского угла. Применение гармонических колебаний и волновых процессов. Преобразование Фурье и Хартли. Общее понятие про тригонометрическое нивелирование.

    презентация [12,2 M], добавлен 29.03.2012

  • Европейская математика эпохи Возрождения. Создание буквенного исчисления Франсуа Виет и метода решения уравнений. Усовершенствование вычислений в конце XVI – начале XVII веков: десятичные дроби, логарифмы. Установление связи тригонометрии и алгебры.

    презентация [4,9 M], добавлен 20.09.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.